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Abstract 

This document is the first deliverable of the third and last iteration of the DAEMON project, which builds 

on the results of the second iteration presented in D2.2, D3.2, D4.2, and D5.2 and covers the following key 

aspects to finalize the DAEMON Network Intelligence (NI) framework. Firstly, it provides a final update on 

the functional and non-functional requirements of the eight NI-assisted functionalities, assessing their risks 

and completion status. Secondly, it presents the final updates of the Network Intelligence Plane (NIP), 

which has evolved throughout the project lifetime into a unified framework incorporating operational 

hierarchy, orchestration, and the N-MAPE-K representation of NI components. Thirdly, it analyzes the 

specific needs that NI algorithms induce on the NIP, discusses the challenges NI algorithms pose in terms 

of management by the Network Intelligence Orchestrator (NIO), and provides functionalities and 

architectural designs to address such challenges. Additionally, the document includes a comprehensive 

literature review on integrating machine learning and NI in mobile network management, highlighting 

key trends and the unique contributions of the DAEMON project within that scope. All these findings 

inform the final updates to the project guidelines, emphasizing the importance of tailored NI design for 

6G network management and the need to develop more interpretable models. 
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Executive summary 

This is the third and last public deliverable of WP2 of the DAEMON project. It builds upon the material of 

the previous deliverable of WP2, i.e., D2.2 [1], and on activities and results achieved during the second 

iteration of the project in WP3 D3.2 [2], WP4 D4.2 [3], and WP5 D5.2 [4]. As a result, the document 

describes the following content. 

First, it provides the final update on the functional and non-functional requirements of the eight NI-

assisted functionalities (Reconfigurable Intelligent surfaces control - RISC, Multi-timescale Edge resource 

management – MTERM, In-backhaul support for service management – IBSSI, Compute-aware radio 

scheduling – CAWRS, Energy-aware VNF control and orchestration – EAWVNF, Self-learning MANO – 

SLMANO, Capacity forecasting – CFORE, and Automated anomaly response – AARES) tackled by 

DAEMON at the end of the WP2. Although no new updates were added to the functionalities, we assess 

the risks to achieve the requirements and its current completion status. For the requirements that were 

not finalized at the time of this deliverable, we also specify what is required to successfully finalize it and 

in which deliverable (e.g., WP3 D3.3, WP4 D4.3, or WP5 D5.3) the results will be provided.   

Second, it presents the final updates of the Network Intelligence Plane (NIP), a collection of modules and 

interfaces responsible for managing NI within the network. In this deliverable, the NIP has evolved, and it 

is presented as a unified framework that brings together (i) the operational hierarchy of NI components 

and their orchestration and (ii) the N-MAPE-K representation of the NI components. By doing so, we make 

another step forward toward the vision of a complete NIP initially presented in D2.2 [1].  

Third, in addition to the unified DAEMON framework, we also identify and present in detail the specific 

needs that NI algorithms pose on the NIP. Moreover, we analyze their specificity in terms of challenges 

towards the procedures for NI management at the Network Intelligence Orchestrator (NIO) level. We 

also devise and describe the functionalities that the NIO shall provide to support such requirements and 

how they fit the whole architecture together. The architectural design is complemented by presenting 

and discussing the interfaces required to allow communication between NIP components and with 

external entities such as the RAN controller and the 5G Core systems. These interfaces are also enablers 

for designing the set of procedures that address the needs and challenges introduced in this document.  

Fourth, this document provides the final, comprehensive overview of the literature review carried out by 

the project, focused on the integration of machine learning and NI in mobile network management. The 

survey highlights key trends in current research and showcases the distinctive contributions made by the 

DAEMON project. The insights that originated from this analysis also support our final updates to the 

project guidelines, including new ones, for practical NI design. As in D2.2 [1], these guidelines focus on 

two main directions: i) NI design tailored to the needs of B5G network management, orchestration, and 

control, and ii) NI design that considers the use of more traditional, more straightforward, or interpretable 

models to avoid overburdening the system with data-heavy models and promotes the utilization of 

models that are easier to understand and interpret. 

We closed this document with additional closing remarks and two appendices containing 

complementary information related to the functional requirements and the literature review.  
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1 Introduction 
Let us recall the twofold target of Work Package 2 (WP2) of the DAEMON project:  

• Design an overall architecture for the harmonized integration of Network Intelligence (NI) in 

Beyond 5G (B5G) systems. 

• Develop a knowledge base and a rigorous methodology for the development of Artificial 

Intelligence (AI) and Machine Learning (ML) tools that effectively support Network Intelligence 

functionalities.  

By achieving the twofold target above, WP2 is contributing to pursuing the following objectives within 

the DAEMON project. 

• Objective 1.1. To enable and drive the coordination and cross-compatibility across NI deployed 

in different network domains operating at different timescales.  

• Objective 1.2. To enable NI deep into the network infrastructure.  

• Objective 3.1. To adjust AI techniques to the specific necessities of the network environment and 

operations and to develop novel AI hybrid approaches.  

• Objective 3.2. To introduce appropriate and tailored cost functions for the networking context 

that can be used for training AI techniques.  

• Objective 3.3. To develop novel AI techniques that can dynamically adapt to available network 

resources by trading off accuracy with, e.g., inference latency or computational complexity.  

During the third public deliverable of the project's WP2, which was built on the material of D2.2 [1], we 

are presenting the following contributions.  

• We provide the final update on the functional and non-functional requirements of the eight NI-

assisted functionalities tackled by DAEMON. Although no new updates were added to the 

functionalities, we assess the risks to achieve the requirements and its current completion status.  

• We evolve the Network Intelligence Plane (NIP) towards the Network Intelligence Stratum, an 

architecture that emerges from a collection of modules and interfaces responsible for managing 

NI within the network, and it is now a unified framework that brings together (i) the operational 

hierarchy of NI components and their orchestration and (ii) the N-MAPE-K representation of the 

NI components. As a result, the original NIP architecture is transformed from a purely separate 

plane to a more orthogonal approach where Network Intelligence Functions (NIFs) and Network 

Intelligence Services (NISs) can effectively be integrated into the traditional planes (data, 

control, and management). 

• We identify and detail the specific needs that NI algorithms pose on the NIP towards the 

procedures for NI management at the Network Intelligence Orchestrator (NIO) level. We also 

devise and describe the functionalities that the NIO shall provide to support such requirements 

and how they fit the whole architecture together.  

• We complete the architectural design with the interfaces required to allow internal and external 

communication of the NIP and its components, together with the set of procedures that address 

the needs and challenges introduced in the previous item.  

• We summarize the outcomes of the comprehensive literature review carried out by the project 

and focus on the integration of machine learning and NI in mobile network management. The 

survey highlights key trends in current research and showcases the distinctive contributions made 

by the DAEMON project. The insights that originated from this analysis also support our final 

updates to the project guidelines on the limits of AI and hybrid approaches for NI and customized 

and adaptable AI for NI. 

• We provide the final updates to the project guidelines, including new ones, on the pragmatic 

design of NI covering the following three aspects: (i) by deriving general guidelines for the design 

of dedicated loss functions that are perfectly aligned with the actual performance metrics, (ii) 

designing a methodology for self-learning AI models that dynamically and automatically 

balance costs and efficiency, and (iii) developing elastic NI models capable of adapting their 

complexity to the context, trading off (computational) complexity for accuracy, responsiveness 

or energy efficiency as needed. 

The first four contributions, which are realized as a full architectural design, complete Objectives 1.1 and 

1.2. On the other hand, the last two contributions, a comprehensive literature review and a set of 

guidelines, complete Objectives 3.1, 3.2, and 3.3 of this project.  
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1.1 Connecting the second and third iterations of the DAEMON project 

To provide a clear understanding of the progress made in the DAEMON project, we situate D2.3 within 

the project's overall work plan schedule. Figure 1 presents the original Gantt diagram, illustrating the three 

iterative phases emphasized in the diagram and the scope of D2.3. Each iteration consists of specific 

phases: (i) the design of the NI framework and NI models, which is conducted in WP2, (ii) the 

implementation of NI-assisted functionalities based on the design, carried out in WP3 and WP4, and (iii) 

the evaluation of NI-assisted functionalities in dependable settings, executed in WP5. The iterative nature 

of the work plan allows each iteration to inform and build upon the preceding one. This flexible structure 

enables the identification and resolution of emerging issues in the developed solutions, ensuring a 

comprehensive approach to problem-solving throughout the project. 

 

Figure 1. Gantt diagram of the DAEMON project, with the three iterations of the work plan highlighted 

and the scope of D2.3.  

Notice that although D2.2 [1] provided a complete technical foundation towards WP2's main objective 

and DAEMON’s related sub-objective at the end of iteration 2, several research activities were still open 

or raised during the third iteration of this WP: 

• The definition and description of the functional and non-functional requirements were expected 

to undergo minor changes as they reached a high level of maturity during the second iteration. 

However, it was crucial to analyze their actual development status in order to assess the progress 

of their completion and manage the associated risks. This analysis was based on the outcomes 

of WP3, WP4, and WP5 during the second iteration, reported in deliverables D3.2 [2], D4.2 [3], 

and D5.2 [4], respectively. By doing so, WP2 could provide feedback to WP3, WP4, and WP5 if 

further actions were needed to ensure the fulfillment of all the requirements. 

• The initial design of the NIP and its requirements provided a high-level view of what the NIP can 

achieve towards an AI-native architecture for 6G. However, the challenges that raise when 

orchestrating NIFs/NISs could not be identified until the end of the second iteration when WP3 

and WP4 updated the design of their algorithms with the outcomes of D2.2 [1]. As a result, further 

progress was achieved in defining which components should be part of the Network Intelligence 

Orchestrator (NIO), determining the necessary interfaces for communication within the NIP, and 

establishing procedures to address these challenges. 

• Although the first set of practical guidelines for the design of NI algorithms that are tailored to 

mobile network environments and the ones that identify the limits of applying AI/ML in networking 

were presented in D2.2 [1] based on the outcomes of D3.1[5], D4.1[6], and D5.1[7], further 

improvements on the guidelines, including new ones, and clear identification of limitations and 

challenges of them were derived at the end of the third iteration based on the outcomes from 

D3.2 [2], D4.2 [3], and D5.2 [4]. Moreover, the final iteration of the literature review was focused 

not only on recent developments in NI functionalities but also on identifying how the guidelines 

proposed in DAEMON provided a new state of the art in this domain. 
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1.2 Role of Deliverable 2.3 across iterations  

The present deliverable acts as the connecting document between the second and third iterations of 

the project. Namely, D2.3 uses the conclusions and results of the second iteration to pave the way for the 

NI design, development and testing activities of the final iteration of the DAEMON project. The content of 

this document, therefore, describes the work carried out in WP2 during the third iteration of the project. 

As anticipated in the previous subsection, such work addressed the outgoing research activities after the 

second iteration and, more specifically, encompassed the following key aspects: 

• Final updates on functional and non-functional requirements. The document provides the 

ultimate update on the definition of the functional and non-functional requirements for the eight 

NI-assisted functionalities addressed by the DAEMON project. While no new updates were 

added to such requirements with respect to the descriptions in D2.2 [1], the final risks associated 

with meeting these requirements are re-assessed in line with their current completion status. For 

requirements that remain unresolved at this stage, the specific actions that are still needed for 

their successful finalization are outlined, indicating the future deliverable where relevant results 

will be presented. 

• Final updates of the Network Intelligence Plane (NIP). The NIP, responsible for managing NI within 

the network, has undergone significant developments beyond those reported in D2.2 [1]. This 

document presents the final version of the NIP model, which now serves as a unified framework 

encompassing the operational hierarchy and orchestration of NI components, along with the N-

MAPE-K representation of these components. This progress aligns with the vision set in D2.2 [1]. 

• Identification of specific needs and challenges when orchestrating NI. In addition to the unified 

DAEMON framework, the document thoroughly identifies and presents the specific needs that 

NI algorithms impose on the NIP. It analyzes the challenges these needs present regarding the 

NI management procedures at the level of the Network Intelligence Orchestrator (NIO). The 

functionalities required from the NIO to address these needs are described, highlighting their 

integration within the overall architecture. Moreover, the document discusses the interfaces 

necessary to facilitate communication between NIP components and external entities like the 

Radio Access Network (RAN) controller and the 5G Core systems. These interfaces enable 

designing procedures that tackle the needs and challenges introduced. 

• Comprehensive literature review and research gaps that the DAEMON project is tackling, along 

with associated novel guidelines, to achieve a pragmatic design of NI. The document offers a 

final and comprehensive overview of the literature review conducted on integrating machine 

learning and NI in mobile network management. It highlights key trends in current research, 

showcasing the distinctive contributions made by the DAEMON project. The findings from this 

analysis further support the final updates to the project guidelines, including new guidelines, for 

practical NI design. These guidelines, as previously outlined in D2.2 [1], focus on two main 

directions: i) NI design tailored to the needs of B5G network management, orchestration, and 

control, and ii) NI design that emphasizes the utilization of more traditional, simpler, or 

interpretable models to avoid overburdening the system with data-heavy models. 

This document serves as the foundation for the subsequent stages of the third iteration of the DAEMON 

project. Specifically, it will guide the updated design and implementation of NI-assisted functionalities by 

i) ensuring the fulfillment of all their requirements; ii) verifying that the proposed solutions meet the 

project's Key Performance Indicators (KPIs) in terms of performance, aligning with the functional and non-

functional requirements and NI design guidelines outlined in this deliverable (including any requirements 

not yet achieved); and, iii) delivering a final version of the NI functionalities that fully aligns with the 

detailed architecture, including interfaces, and NIP procedures presented in this document. 

1.3 Relationship to the other deliverables of DAEMON 

Based on the discussion in Section 1.2, the relationship of D2.3 with the other project deliverables of the 

second and third are described below.  

• D2.2. This document builds upon the requirements, novel NIP, and guidelines for the pragmatic 

design of NI defined in D2.2 [1]. In addition, it extends the vision for a NI orchestration framework 

by defining more detailed functional blocks, interfaces, and procedures to orchestrate 

intelligence, realizing a final version of the DAEMON’s proposal for an NI plane.  

• D3.2 and D4.2.  This document considers the outcomes of these deliverables of the project, which 

presented journaled and improved NI algorithms that adhere to the updated requirements 

presented in D2.2 [1]. Moreover, after providing a suitable representation of the NI algorithm, 

which are compatible and can be managed by the initial NI plane design, and the updates on 

how these NI algorithms operate across network functionalities after D2.2 [1], these deliverables 

also exposed the set of challenges and needs that raised when the NIP will orchestrate them.  
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• D5.2. A comprehensive performance assessment was conducted within D5.2 [4] for the updated 

NI-assisted functionalities developed in WP3 and WP4 during the second iteration of the project. 

Such an assessment established a clear connection to the project's KPIs and specifically linked 

them to the requirements specified in this document. 

• D3.3 and D4.3. According to the overall framework defined by the DAEMON project, the solutions 

related to Real-Time Control and VNF Intelligence, and Intelligent Orchestration and 

Management are developed by WP3 and WP4, respectively, always considering the 

requirements set in the context of Task 2.1 in WP2 (NI functional and performance requirements). 

As discussed below, most of the requirements set for these families are already meeting (and 

sometimes even exceeding) the requirements. However, for some of them, the necessary details 

needed to understand why such requirements are eventually met will be described in the last 

iteration of WP3 and WP4 and hence provided in D3.3 and D4.3. In these cases, we clearly 

indicate for each requirement if that is the case.  

• D5.3. A final comprehensive performance assessment will be conducted for the updated NI-

assisted functionalities developed in WP3 and WP4 in this deliverable. D5.3 will include the 

performance evaluations required to achieve the requirements that have not been validated 

at the time that D2.3 and depend on them.  For example, D5.3 will provide a set of performance 

evaluations of the initial proofs-of-concept on coordinating a pair of NI algorithms and the NIP 

components involved in them (see Section 5.3.1), which are required to finalize the set of 

requirements associated with the NIP (see Section  2).  

1.4 Structure of the document  

The high-level structure of this deliverable is summarized as follows.  

• Section 2 provides the final version of the requirements for the eight NI-assisted functionalities 

addressed by DAEMON at the end of WP2. Although no new updates were introduced in the 

description of the requirements, which reflects their maturity at this point of the project, the risks 

involved in meeting these requirements and their status of completion are assessed. For 

requirements that are not yet finalized, the document specifies what is needed for successful 

completion and indicates in which deliverable the results will be provided. 

• Section 3 presents the final architectural design of the NIP as a unified framework. It incorporates 

the operational hierarchy of NI components, their orchestration, and the N-MAPE-K 

representation of these components. This progress aligns with the envisioned complete NIP 

architecture from D2.2 [1]. 

• Section 4 and Section 5 delve into the specific needs posed by NI algorithms on the NIP and the 

required procedures to address them. Specifically, Section 5 analyzes the challenges faced in 

managing NI at the Network Intelligence Orchestrator (NIO) level and outlines the functionalities 

the NIO should provide to address these needs. The architectural design presented in Section 3 

is supported by discussing the necessary interfaces described in Section 4 for communication 

between NIP components and external entities like the RAN controller and the 5G Core systems. 

These interfaces facilitate the design of procedures that tackle the introduced needs and 

challenges. 

• Section 6 offers a final and extensive overview of the literature review on integrating machine 

learning and NI in mobile network management. It highlights key trends in current research and 

emphasizes the distinctive contributions made by the DAEMON project. The findings from this 

analysis also support the guidelines presented in the following Section.  

• Section 7 provides the final updates to the project guidelines for practical NI design. These 

guidelines, similar to D2.2 [1], focus on two main directions: i) NI design tailored to the needs of 

B5G network management, orchestration, and control; ii) NI design that prioritizes the use of 

more traditional, straightforward, or interpretable models to prevent system overload with data-

intensive models and promote the use of models that are easier to understand and interpret.  

• Section 8 summarizes and concludes the work carried out in WP2 during the third iteration.  

In addition, this deliverable includes two appendixes, which are presented next.  

• Appendix A details the full list of requirement trees for each NI-assisted functionality, as well as 

for the NI plane. These tree structures are too long to be included in the main body of the 

document, but they complement the content in Section 2.  

• Appendix B reports the complete taxonomy table of the related works studied by the project as 

part of the literature survey. Again, the table is too large to be included in the main body of the 

document, but it completes the discussion in Sections 6 and 7 of the deliverable.  
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2 Updated Network Intelligence functional requirements 
Requirements elicitation is the process of gathering and specifying the prerequisites for a software system. 

DAEMON initially identified the functional and non-functional requirements for the eight Network 

Intelligence (NI)-assisted functionalities presented in Section 3 of D2.1 [8]. The main objective of this task 

was to establish a set of requirements that the design and implementation of NI functionalities should 

comply with. The requirement elicitation involves not only the identification and collection of 

requirements, but also their analysis and refinement during the project lifecycle. Appendix A in D2.2 [1]  

includes the updated state of requirements after the first iteration. 

In this third iteration (see Table 1), only two new requirements have been included (FR-IBSSI-002 and NFR-

NIP-009). FR-MTERM-004, FR-MTERM-004.01, FR-MTERM-006 and FR-MTERM-007.00 updated their KPIs. Lastly, 

FR-AARES-000 reduces its risk after averaging the children's initial risks. Table 1 summarizes the progress 

and evolution of the functional requirements over time in WP2. It can be observed that the project is now 

in a mature stage from the requirement perspective, so only minor changes (or even no changes) are 

expected at the end of the project. 

Table 1. Evolution of the functional requirements during the three iterations in WP2. 

Iteration New Updated Reorganized Total 

Iteration 1 81 0 0 81 

Iteration 2 24 18 12 102 

Iteration 3 2 5 0 104 

An important aspect to clarify in this iteration is that in Section 2.2 of D2.2 [1], we indicated that the NIP 

covered all the KPIs of the project. The main reason for this was to indicate that since the NIP will assist 

any NI functionality in achieving their associated KPIs, then those KPIs would also be covered by the NIP. 

However, in this document, we removed the KPI field from the NIP requirements to dispel any confusion. 

Moreover, the NIP is a novel component of future AI-native 6G architectures; therefore, their associated 

KPIs are still to be defined. As part of the effort to set a set of reference performance metrics, we expect 

to deliver a set of baseline reference values in D5.3 to achieve the completeness of the NIP requirements, 

as explained in more detail in Table 3. 

According to the good practices recommended by the standard O/IEC/IEEE 29148:20181 on which we 

based our requirement elicitation documents, requirements have an associated risk level. In D2.2 [1], we 

preserved the initial risk estimations for the majority of the requirements and updated the risk 

management of a few of them after the first iteration. 

In this deliverable, we have included new data to report the progress in meeting the requirements and 

how we mitigated the initial risks to achieve them after the second iteration. Table 2 shows a complete 

requirement table showing three new fields in a new section named Current Status.  

The Percent Complete reports up to what extent a requirement has been completed and validated at 

DAEMON. In order to estimate this value, we have analyzed the previous deliverables, the content of the 

current one, and all the papers and activities that report the work made in DAEMON until now.  

The Risk Management field assesses how well the initially identified risks were tackled, taking into account 

we tried to reduce as much as possible their impact on requirements compliance. This value has been 

categorized as Successful (all identified risks were avoided or mitigated), Effective (some risks could not 

be fully canceled, but this only had a minor impact on the completion of the requirement), or Partial 

(some uncontrolled risks have impacted the requirement completion partially).  

Considering the level of requirements completeness is strongly related to how well risks were managed, 

the Percent Complete and Risk Management values are correlated. Finally, the new Rationale field 

provides a justification for the Percent Complete and Risk Management fields. Within this text, we provide 

evidence supporting the Percent Complete and Risk Management values by referencing and linking to 

previous deliverables, featured articles, or sections of this deliverable.  

 

 

 

 

 

                                                           
1 https://standards.ieee.org/standard/29148-2018.html  

https://standards.ieee.org/standard/29148-2018.html
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Table 2. New fields are included to gather information about the Current Status of the requirement. 

FR-EAWVNF-001.00 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs in terms of CPU 

usage. 

Version 001M2 

Owner UMA 

Priority High 

Risk 2 

Risk Description Calculating the cost of executing any kind of code, on specific hardware 

accurately is a complex task, since there are several factors that we need to 

quantify in order to calculate the energy footprint. The theoretical values given 

by CPU providers usually do not coincide with the real ones.  

Rationale We need to identify what are the factors that should be considered in the 

formula that calculates the global energy footprint of the VNFs instantiated for 

each application, in terms of computation. We know that the processor type of 

the device where a VNFs is running influences the energy footprint, but there 

are also other parameters that make the software provoke the hardware to 

consume more energy, like the size of VNF input. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-001 

Current Status 

Percent complete 100% 

Risk management Successful 

Rationale In the placement solution presented in D4.2 [3], the energy model used to 

estimate the energy consumption explicitly includes the energy cost of 

computation calculated from the CPU cycles and the CPU frequency along 

with other factors. In the placement and autoscaling solution presented in 

D4.2 [3], the energy consumption model calculates the energy footprint of 

VNFs in terms of CPU usage according to the node in which VNFs are going to 

be deployed. 

The new information provided in each requirement helps us understand the status of the functionalities 

assisted by NI. The information in Figure 2 and extended in Table 3 shows the completion percentage for 

the different functions. We can see that reported progress is above 70%, and some, such as NIP, CAWRS, 

or IBSSI, are almost or already completed. It is expected that there will be unfinished functionalities at this 

stage because some of them depend to a large extent on experimentation, the results of which will be 

obtained at the end of the project and will be presented in deliverables D3.3, D4.3, and D5.3, as listed 

and described in Table 3.  
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Figure 2. First-level structure of the functionalities’ requirements tree of the DAEMON project. 

Table 3. Overall progression and risk management. 

Functionality 

group 

Percent 

complete 

Risk 

management 

Explanation 

RIS control 

(RIS) 

75% Successful Reconfigurable Intelligent Surfaces (RIS) enable 

programming the wireless channel, conventionally 

considered a passive component, towards specific 

needs, e.g., focusing electromagnetic radiation 

towards specific locations. However, such a new 

dimension further complicates the intelligence in 

charge of optimizing wireless links. The ambition of 

DAEMON was to assess RIS-controlling NI empirically, 

which involved developing a complete RIS prototype. 

This involved severe risks of failing as RIS prototypes were 

nonexistent at the beginning of the project. 

Nevertheless, all the risks have been successfully 

mitigated, as will be described in D3.3 (design of NI) 

and D5.3 (empirical evaluation). 

Multi-

timescale 

Edge 

resource 

management 

(MTERM) 

90% Effective The MTERM functionality aims at automatically manage 

and orchestrate resources and services in distributed 

edges and in different timescales. The solutions 

designed throughout the project’s development fulfilled 

or are about to fulfill such a goal. For example, the 

solution presented in Section 3.1 of D3.2 [2] performs 

management and orchestration of services across 

multiple edges, as indicated by requirements FR-

MTERM-004 and FR-MTERM-020. Similarly, the solution in 

Section 3.5 of the same deliverable manages resources 

in multiple timescales, as indicated by FR-MTERM-020. 

Finally, the risks were estimated as low-risk given the 
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expertise of the consortium, which led to effective risk 

mitigation.    

Next, deliverables (D3.3 and D4.3) will present the final 

results on these solutions and a 100% completion is 

expected at the end of the project.  

In-backhaul 

support for 

service 

intelligence 

(IBSSI) 

95% Successful DAEMON developed solutions that operate in the user 

plane to support NI. Such solutions allow learning 

network policies using the user plane itself as well as 

performing inference at line-rate. All the risks were 

correctly managed during the project. For example, for 

FR-IBSSI-002, which aims at integrating Network 

Intelligence within programmable switches, risks were 

estimated as intermediate at the start of the activity, 

due to the limitation of the computing environment 

offered by programmable switch ASICs; such risks were 

avoided by using models that are relatively simple and 

mappings of such models that are tailored to the target 

hardware. Performance has been shown to achieve the 

envisioned accuracy. Similarly, for FR-IBSSI-002.01, which 

indicates that DAEMON shall handle both packet-level 

and flow-level inference, and which suffers from the 

same risks, these risks were avoided by designing novel 

approaches to feature representation that suited the 

target hardware. 

Compute-

aware radio 

scheduling 

(CAWRS) 

100% Successful This functionality takes care of embedding Computing 

Awareness in the Wireless Access Network functions 

such as the ones running in the gNB. All the 

requirements related to this group have been 

successfully fulfilled, from both the algorithmic and the 

performance perspective. The main design principles 

and results are already available in D3.2 [2] and D5.2 

[4], while further improvements are going to be 

introduced in D3.3 and D5.3. 

Energy-

aware VNF 

placement 

(EAWVNF) 

90% Effective Energy-aware VNF placement functionality aims to 

monitor and measure energy efficiency. We already 

identified the factors that significantly impact energy 

consumption (D3.1 [5], Section 5.3.2.1, D3.2 [2], Section 

3.3.3, and journal [9]) requested by requirement FR-

EAWVNF-002 and their derived ones. Those factors were 

used to estimate energy consumption (FR-EAWVNF-001 

and its derived requirements) and to monitor the 

impact of hardware resources of VNFs (solutions 

presented in D4.2 [3]; FR-EAWVNF-2). The cost in terms of 

migration (FR-EAWVNF-003, FR-EAWVNF-004 and its 

derived requirements) and scaling (FR-EAWVNF-006 and 

its derived requirements) are partially solved, as 

presented in the energy-aware placement solution for 

VNFs (section D4.2 [3]). Next deliverable D3.3 will extend 

the empirical evaluation of SAVRUS, demonstrating that 

SAVRUS generates meaningful results sufficiently fast by 

analyzing SAVRUS validity and SAVRUS scalability. It will 

also update the SAVRUS algorithm with Inductive 

Transfer Learning and Scoring Functions to improve the 

creation and updating of the energy-aware rankings of 

features. Also, it will describe changes in the algorithm 

to reduce the Curse of Dimensionality and the Negative 

Transfer, two drawbacks of the algorithm. In the 

following deliverable, D4.3, the iTarea algorithm will be 

updated to incorporate the energy consumption 

prediction provided by a Gradient Boosted Regression 

Trees algorithm. 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

19 

Self-learning 

MANO 

(SLMANO) 

80% Effective DAEMON designed autonomous and self-learning 

orchestrators and controllers that operate with minimal 

human intervention. In particular, the set-up and life 

cycle management we investigated via learning 

placement/routing algorithms and self-tuning control 

loop respectively. While the design principles are 

introduced in D4.1 [6], updated in D4.2 [3] and will be 

completed in D4.3, the performance results have been 

reported in D5.1 [7] and D5.2 [4] and will be 

complemented in D5.3. All proposed tools were 

evaluated on artificially generated data, which was 

constructed to be as close to realistic data as possible 

(e.g., exposing diurnal patterns, random noise, flash 

crowd). Nevertheless, testing them on actual data 

(once they become available) is reserved for future 

work. 

Capacity 

forecasting 

(CFORE) 

90% Effective DAEMON designed Capacity Forecasting models 

capable of anticipating the amount of resources 

needed to accommodate future mobile service 

demands, so as to support Network Intelligence (NI) 

algorithms across the mobile network architecture. This 

largely achieved the targets set at the beginning of the 

action, including aspects such as the capability to 

operate at different timescales (FR-CFORE-001) and on 

streaming data (FR-CFORE-003), the awareness of 

monetary costs for decision-making FR-CFORE-002), or 

the possibility to self-learn the objective loss function (FR-

CFORE-005). Details on the design and evaluation of the 

models are provided in D2.2 [1], D4.2 [3] and D5.2 [4], in 

addition to refinements that are developed in the last 

iteration of the project, as presented in Section 7.1.3 of 

the present document and later complemented in D4.3 

and D5.3. 

Automated 

anomaly 

response 

(AARES) 

90% Successful DAEMON implements three different activities for real-

time anomaly detection and automated anomaly 

response, namely, A9, A19 and A25, as reported in D5.2 

[4]. We provide details on the solution and its 

implementation in D4.2 [3] and D3.2 [2], which we will 

complement with their final status in D4.3 and D3.3, 

respectively. The reported status in D5.2 [4] shows an 

average completion of approximately 70% towards 

collecting the corresponding KPIs, which we will further 

update in D5.3. 

Network 

Intelligence 

Plane (NIP) 

95% Successful The DAEMON’s NIP shall manage, coordinate, and 

orchestrate network intelligence with a closed control 

loop to meet service KPIs in different micro-domains. All 

the risks were correctly managed during the project by 

ensuring that each iteration (first in D2.1, second in D2.2 

[1], and final in D2.3) of the architectural design added 

or improved the required functionalities, thus avoiding 

the initially foreseen risks. An example is FR-NIP-002, 

which aims to define internal and external interfaces. 

This deliverable provides the functional blocks and 

procedures necessary to realize it. This is also confirmed 

by the percentage of completion of the set of 

requirements at this point, which is expected to achieve 

100% by the end of the project once we provide a set 

of measurements of the NIP’s performance in D5.3. 

These performance measurements are intended to be 

used as reference values for future implementations of 

the NIP beyond the lifetime of the project (see FR-NIP-

003 and FR-NIP-005 for more details). 
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Some factors may affect a completion percentage. The first is the priority. A requirement with low priority 

will receive fewer resources to be completed than others with high priority. That factor can be controlled 

since more resources can be allocated. However, other factors, such as risk can affect the completion 

rate as some of them cannot be completely avoided or mitigated. Figure 3 shows the relation between 

the risk level (estimated during the elicitation) and its management (reported during the execution after 

two iterations). As expected, requirements with lower risk level estimates (1 or 2) have had better risk 

management (75% successful, 23% effective, 2% partial). Conversely, the requirements with an estimation 

of high-risk levels (4 or 5) reported difficulties during risk management (38% successful, 43% effective, 19% 

partial). Overall, it can be observed that risk management has been successful in DAEMON: 65% 

successful, 28% effective, and 7% Partial. 

 

Figure 3. Initial risks and their management. 

This success in identifying and managing risks has positively impacted the completion percentage. Figure 

4 shows how requirements’ risk levels (estimated in advance) are related to the completion percentage 

(reported currently). It can be observed that every requirement has some degree of completion, even 

the ones with the highest risk level, meaning that risk management has been greatly successful. It also 

shows that the risk level estimation was properly assessed during the requirements elicitation. Finally, the 

requirements with risk identified as low are all nearly complete, regardless of their priorities. 

 

Figure 4. Estimated risk versus percent completed. 

Notice also that although some KPIs were only covered by single NI functionality during the requirement 

definition phase (e.g., AARES - Automated anomaly response and RIS - Reconfigurable Intelligent 

Surfaces), most of them have achieved a high completion status at this point and it is expected that they 

continue its progress to achieve its 100% by the end of the project. This is also a result of the DAEMON’s 

strategy of having multiple partners working on different algorithms under the same NI functionality (see 

Table 17 D5.2 [4]) or exceeding the expectations of some functionalities that were able to provide results 

to a KPI that was initially not planned as a requirement (see Table 24 in D5.2 [4] where K7 was evaluated 

IBSSI - In-backhaul support for service intelligence). 
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3 Network Intelligence Plane: Final architectural design 
B5G and 6G networks set forth a vision for end-to-end NI coordination aimed at ensuring a conflict-free 

and synergic operation of the many NI algorithms running across schedulers, controllers, and 

orchestrators in the network. As a first step in the rigorous design of a complete framework for the joint 

operation of NI instances, we have identified a set of gaps in the current frameworks for network 

management that the main Standard-Defining Organization (SDO) entities, such as 3rd Generation 

Partnership Project (3GPP) and the European Telecommunications Standards Institute (ETSI), as well as by 

global industrial initiatives like O-RAN, are not currently delivering to support the native integration of NI 

and, subsequently, its practical adoption within 6G networks. These gaps can be the following: they do 

not provide (i) mechanisms to coordinate intelligence across different network micro-domains or (ii) 

solutions for decentralized and unified data management across NI instances. Also, their (iii) support for 

managing the NI lifecycle is minimal, and there is only an early consideration for (iv) methodologies for 

the defining and representing of NI models. Table 4 summarizes the main gaps, based on the detailed 

analysis presented in Section 10, Appendix B in D2.1 [8], and how the NIP contributes to fill such gaps. 

Table 4. Main gaps in SDOs and networking-related frameworks with respect to NI functionalities. 

Framework Methodology 

to define NI 

Mechanisms to manage 

the lifecycle of NI 

Mechanisms to 

coordinate NI across 

different network 

segments 

Decentralized 

and unified 

data 

management 

for NI 

instances 

ETSI MEC No No No No 

ETSI NFV No No No No 

ETSI ENI Yes No No No 

O-RAN Yes Partially No No 

Open Source 

MANO (OSM) 

No No No No 

3GPP No No No No 

ONAP No No No No 

Network 

Intelligence 

Plane 

Yes 

[Addressed 

in D2.2 [1], 

Section 3.1.2] 

Yes [Initially addressed in 

D2.2 [1], Sections 2.1, 

3.1.3 and 3.1.4, and 

extended in D2.3, 

Sections 2 and 3] 

Yes [Initially addressed 

in D2.2 [1], Sections 2.1, 

3.1.3 and 3.1.4, and 

extended in D2.3, 

Sections 2 and 3] 

Yes 

[Addressed in 

D2.1, Section 

5.1 and 6.2] 

To tackle the gaps mentioned above and remove the current barriers to fully support the aspects not 

necessarily covered by existing frameworks, DAEMON has outlined a clear set of functional and non-

functional requirements, targeting the coordination of NI instances in an end-to-end fashion (see D2.2 

[1], Section 2.2 and Section A in this document). This set of requirements includes developing synergies in 

terms of data management and handling the interaction with Machine Learning Operations (MLOps) 

platforms, managing the complete lifecycle of both complex NI instances and atomic NI functions, the 

maintenance of catalogs of NI models that ease de-composition and orchestration. Based on those 

requirements, The DAEMON project has proposed in D2.2 [1] a novel NI Framework for 6G networks and 

proposed the Network Intelligence Plane (NIP), a collection of modules and interfaces responsible for 

managing NI within the network, as shown in Figure 5. However, this document introduces a refined 

architecture that has been adopted by the 5G Infrastructure Public Private Partnership (5GPPP) 

Architecture Working Group as the Network Intelligence Stratum [10], [11]. This term has been embraced 

as part of the comprehensive architectural framework that has been developed by the WG, as illustrated 

in Figure 6 and reported in the whitepaper “6G Architecture Landscape – European perspective” [11], 

released by the 5G Architecture Working Group in the 5GPP.  
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Figure 5.  A NI framework for 6G network (left) and the NIP functional blocks (right). 

The motivation behind this terminology shift is to align with the established usage in 3GPP, where the term 

"stratum" typically denotes a collection of elements that span various network domains. For example, the 

term "network access stratum" encompasses all the elements involved in user registration and 

authentication across the RAN and the Core. Considering that network intelligence components are 

distributed across multiple domains such as access, core, infrastructure, management, and 

orchestration, it was only natural to adopt this terminology in line with 3GPP standards. Moreover, this 

approach also moves the NIP design from a purely separate plane to a more orthogonal approach where 

NIFs and NISs can effectively be integrated into the traditional planes (data, control and management) 

for easy adoption in the industry.  In order to maintain consistency and coherence with D2.2 [1], in this 

and future deliverables of the project, we will continue to use the term NIP. 

 

 

Figure 6. The architectural framework proposed by the 5GPPP Arch WG [11]. 

In the project effort to define the NIP organization and operations, we already introduced a reference 

representation of complex NI algorithms as a hierarchy of Network Intelligence Services (NISs) that can 

be broken down into one or more Network Intelligence Functions (NIFs), which, in turn, are composed of 

atomic NIF Components (NIF-Cs) [12], as represented in Figure 7. We also specified how NISs and NIFs 

can be managed by a Network Intelligence Orchestration (NIO) with a precise internal structure of 

fundamental building blocks. 
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Figure 7. The high-level hierarchical taxonomy of Network Intelligence algorithms. A NIF corresponds to 

an individual NI instance that assists a specific functionality: for example, it could capture the 

implementation of a capacity forecasting task, assisting an NI edge orchestration functionality. 

In addition, in a separate work, we defined a suitable reference representation to be adopted by the 

NIO to model any NI algorithm [13]. To that end, we adopted and adapted a popular model widely 

adopted for autonomous and self-adaptive systems, i.e., the Monitor-Analyze-Plan-Execute over a 

shared Knowledge (MAPE-K) feedback loop [14]. Building on top of the MAPE-K representation, we 

dissected NI algorithms into common elements that have different characteristics (e.g., a data-gathering 

probe or a Neural Network model) and introduced original training and closed control loops that a NIF 

may implement, which resulted in an extended Network MAPE-K (N-MAPE-K) model tailored to the NI 

environment, which is shown in Figure 8. The N-MAPE-K model allows capturing (i) the inference loop, (ii) 

a traditional supervised training loop, and (iii) a second training loop dedicated to online learning. 

Mapping NI algorithm components into the N-MAPE-K representation allows highlighting the following 

fundamental classes of atomic NIF-Cs.  

• Sensor NIF-Cs specify all the probes needed to gather the input measurement data. 

• Monitors NIF-Cs specify how each NIF interacts with the Sensor NIF-Cs and gathers raw data from 

them. 

• Analyze NIF-Cs include any pre-processing, summary, or data preparation for the specific NI 

algorithm implemented in the plan NIF-Cs. 

• Plan NIF-Cs constitute the specific NI algorithm implemented by the NIF.  

• Execute NIF-Cs specify how the algorithm is going to interact with the managed system and how 

to possibly change its configuration parameters. 

• Effector NIF-Cs specify the configuration parameters updated in the Network Function (NF), and 

the Application Programming Interfaces (APIs) to be used to that end. 

 
Figure 8. Extended N-MAPE-K abstractions for NI algorithms. 

DAEMON’s NIP is a unified framework that brings together our earlier proposals for (i) the operational 

hierarchy of NI components in the NIP and (ii) the N-MAPE-K representation of NIF-Cs. By doing so, we 

make a step forward toward the vision of a complete NIP anticipated above. An illustrative example of 
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the resulting integration is provided in Figure 9. There, each circle depicts a NIF-C and a double circle 

captures a NIF-C shared among multiple NI-assisted functionalities. For example, the circle in the O-Cloud 

rectangle captures the Forward Error Correction (FEC) decoder. Multiple united NIF-Cs constitute a NIF, 

e.g., Nuberu [15] or Henna [16], to mention two solutions developed in the project itself. Finally, by 

combining NIFs we get a NIS: as an example, the integration of different RAN-related algorithms can 

realize an overall reliable virtualized RAN (vRAN) service. Table 5 presents several examples of NIS and 

their respective NIF based on some NI-assisted functionalities developed in the DAEMON project [2], [3]. 

Table 5. Examples of several NISs, their NIFs, and their associated KPIs. 

NIS KPIs NIF 

Reliable 

Virtualized RAN 

 Reliable distributed unit (DU) for virtualized RAN [15] 

Orchestration of radio and computing resources in vRANs [17] 

Sustainable 

network 

operation 

VNF Energy 

Savings 

Cloud Acceleration for virtualized RAN[18], [19] 

Compute Aware scheduling analytics [20] 

AI-enhanced edge orchestration [21] 

Compute 

Resource Savings 

Data-driven resource orchestration [22] 

OPEX Savings Multi-timescale network slice reservation [23] 

Network 

capacity 

management 

Wireless Capacity 

Increase 

Reconfigurable Intelligent Surfaces Control [24] 

Accurate WLAN performance prediction in dense 

environments [25] 

Edge 

orchestration 

OPEX Savings Network Service Auto-scaling [26], [27] 

Capacity forecasting [28] 

The variety of NIF and NIS that can be deployed at the network generates new challenges in the way 

they should be managed that are not presented in current management frameworks. In the rest of 

Section 3, we will present the final DAEMON architecture. We will first identify and present in detail the 

specific needs that NI algorithms pose on the NIP and understand their specificity in terms of challenges 

in the procedures for NI management at the Network Intelligence Orchestrator (NIO) level. Then, we will 

devise and describe the functionalities that the NIO shall provide to support such requirements (Section 

3.1) and how they fit the whole architecture together (Section 3.2). The architectural design will be later 

complemented i) in Section 4 by presenting and discussing the interfaces that are required to allow 

communication between NIP components, and the NIP components with external entities such as the 

RAN controller, Core system, and local and end-to-end management systems, and ii) in Section 5 by 

designing the set of procedures that address the needs and challenges introduced in Section 3.1 and 

that motivate the functionalities presented in Section 3.2, together with some reference implementations 

as Proof of Concepts (PoC) in Section 5.3. 

3.1 The need for specific NIP Procedures 

The concurrent instantiation of many different NIFs/NISs raises challenges that the architecture we 

propose allows addressing. Next, we detail the management needs that such challenges create, and 

exemplify them with representative NI-assisted functionalities developed in the DAEMON project [2], [3]. 

3.1.1 Conflict resolution 

DAEMON’s NIO allows to efficiently re-use and combine different elements that can be shared across 

NIFs, by representing their split into atomic NIF-Cs that abide by the N-MAPE- K framework [14]. This 

eventually enables building in an effective way a NIS, analogously to the approach used by 3GPP SA5 

to build the Network Slicing data model –where a Network Slice is decomposed into Network Slice 

subnets. However, while composing NIFs to build a NIS, through the sharing of different NIF-Cs, possible 

conflicts on operations and/or resources may arise. It is hence a task of the NIO to arbitrate the operation 

of such components, guaranteeing that the overall goal of the NIS is met. 

Let us illustrate this issue by detailing the arrangement of Nuberu and Athena, two NIFs described in D3.2 

[2] (Sections 2.1 and 2.5, respectively), that aim at improving the resiliency of a virtualized radio access 

network (vRAN) system by acting on the Medium Access Control (MAC) scheduling decision at the 

Distributed Unit (DU) of base stations. Nuberu [15] proposed a re-design of the full stack to be cloud-

native and resilient, while Athena introduced a model that learns the limits of the infrastructure and takes 

scheduling decisions. Thus, both algorithms support the Radio MAC scheduler acquiring knowledge from 

similar input data (e.g., the information about the channel) and enforcing radio scheduling decisions, 
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optimizing the reliability of the system, at different timescales. This results in the sharing of two NIF-C, the 

sources and the sinks between these two NIFs, as also shown by the N-MAPE-K representation depicted 

in Figure 9. 

A similar consideration applies when dealing with mixed user and control intelligence, as in the case of 

the algorithms in Section 5.1 of D3.2 [2], whose goal is (i) performing in-switch inference at line rate 

[16]and (ii) achieving optimal configuration of circuit switching by using real-time traffic demands. The 

NIF implementing in-switch inference, i.e., NIF1 in Figure 9, acts almost entirely in the user plane, directly 

classifying IP traffic and directly enforcing decisions into the NF that is classifying the traffic, the switch 

controller in this case. NIF2 in the figure generates the circuit switching configuration in the control plane 

instead and enacts it in the user plane. The configuration decision is taken based on information about 

traffic volume, which is available at each switch. 

The previous two examples, in which different NIFs share sources and sinks, motivate the need for 

monitoring and coordination of policy enforcement. Here, different conflicts may arise, as follows. 

• Conflicts when monitoring data. Algorithms may need data from the same source but with 

different granularity. Hence, the NIF Manager shall guarantee that the required information 

arrives from the Sources to the specific Plan/Analyze modules with the necessary granularity 

(e.g., at subframe or packet level) in an automated manner to, e.g., avoid duplicating the 

monitoring over IP packets.  

• Conflicts in the policy enforcement. Different NI algorithms may act on the same network 

functions (in the proposed example, the DU MAC scheduler), configuring different parameters. 

Thus, the NIO shall deploy conflict resolution policies with the NIF-C of each NIF to guarantee 

that, e.g., the scheduled MAC frame never exceeds the available capacity or contrasting 

selected users. 

Therefore, the NIO shall oversee and amend any suboptimal decision taken by individual NIFs by closely 

monitoring the access to data sources and the policies determined by decision-making algorithms. 

 

Figure 9. NI-native architectural concept proposed by the DAEMON project for the NIP. The diagram 

portrays the interactions between many different NIFs that implement two NI-assisted functionalities, or 

NIS, also developed in the project. The NIF-Cs that compose each NIF are categorized using our original 

N-MAPE-K representation. The hierarchies of NISs, NIFs, and NIF-Cs are managed all at once by the NIO 

framework, by avoiding conflicts and leveraging synergies among them. 

3.1.2 Knowledge sharing among NIFs 

Figure 9 also illustrates the shared representation of two NIFs detailed in D4.2 [3] (Sections 2.3 and Sections 

2.1, respectively): energy-driven vRAN orchestration, i.e., NIF5, and energy-aware VNF placement, i.e., 

NIF6. In the case of these two NIFs, energy consumption measurements from an edge cloud platform are 

required and a source node component is shared. Moreover, NIF5 generates knowledge about high-

performing RAN control policies given a context and once virtualized instances of RAN components have 

been deployed. On the other hand, NIF6 is in charge of VNFs placement, which in this case, implements 

virtualized RAN functions. In this context, the NIO shall provide centralized coordination among multiple 

NIFs. Such centralized coordination would allow sharing of knowledge that fostered synergetic 

performance improvements between both NIFs. For instance, part of the knowledge learned by NIF6 can 

be used by NIF5 to make better placement decisions and, vice versa, NIF6 can use some knowledge 

learned by NIF5 to enforce informed (placement aware) RAN control policies.  

Knowledge-sharing aspects should also be available cross-domain. For instance, in Section 4.2 of D4.2 

[3], we describe an anomaly detection solution for IoT platforms. In that scenario, the user plane traverses 

multiple domains, bringing new challenges in running root-cause analysis of anomalies. Hence, the 

parties involved in building the user plane for the IoT devices suffering from anomalies should be 

integrated into the anomaly detection scheme, and such synchronization shall happen at the NI 

Orchestration. 
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3.1.3 Model selection, catalog, and re-training  

Although this is not a condition directly stemming from the NI algorithms' design, NISs may need to build 

on the knowledge of the underlying environment. This calls for awareness of the software/hardware 

environment (e.g., as the performance of a specific FEC implementation depends on the target 

hardware [17]) or of the location of the device where they are executed (e.g., as reconfigurable 

intelligent surfaces may have different behaviors according to their geographical position and 

surrounding environment [29]). When executed in the context of a pure ML environment, these tasks are 

natively tackled by several MLOps frameworks such as Kubeflow2 and MLflow3. In the context of an NI-

native architecture, however, this requires tight interaction with the underlying orchestration 

environment. To guarantee that the deployed NIF can operate in the right context, NI models must 

match the specific hardware-software-environmental characteristics of the network functions deployed 

in a network service. Thus, the NIO shall exchange execution context information with the sibling 

Management and Orchestration (MANO) operating in the network to select the proper model to be 

used for inference within a NIF. This incidentally calls for the need for a model catalog from which the 

NIO can select the most appropriate model depending on the specific infrastructural status operated by 

the network at a certain point in time. If no model is available for the specific execution environment, 

the NIO shall be able to invoke the training of a new model, fetching the required data as required by 

the target algorithm. 

3.2 NI Orchestrator functionalities to enable NI-Native architectures 

As described in the previous section, several considerations and challenges emerge while concurrently 

deploying multiple NIFs providing the same or different NISs. Building on the NIO organization and N-

MAPE-K representation of NIF-Cs, we next define processes that answer such needs. 

 

Figure 10.  The NIP and the functional blocks of the Network Intelligence Orchestrator and ML pipelines. 

3.2.1 Rationale 

When used outside the network domain, the set of solutions that deal with the lifecycle management of 

intelligent algorithms is usually referred to as MLOps [30]. Items such as Feature Engineering, Model 

Training, Model Engineering, as well as their integration in a Continuous Integration (CI)/Continuous 

Deployment (CD) system are usually encompassed in this definition. When transferring this view into the 

mobile network realm, however, these items cannot be transferred as is, mostly because of the very 

different timescales that are usually involved in network environments, which may go down to sub-ms 

levels. Therefore, we split the items into elements that are only related to pure ML tasks and are commonly 

                                                           
2 https://www.kubeflow.org/  
3 https://mlflow.org/  

https://www.kubeflow.org/
https://mlflow.org/
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executed offline, either only once or very rarely. We mark them as Machine Learning Pipeline in Figure 

10. Instead, other elements need to directly interact with the NIFs in the network, continuously evaluating 

the quality of the NIS and performing fine-grained lifecycle management of the NIF-Cs, including their 

coordination. These are the most interesting in the context of the NIP, and we discuss them next. 

3.2.2 Overall description 

As mentioned in the previous section, the NIO should incorporate multiple functionalities to support the 

described challenges and beyond. Some key functionalities are shown in Figure 10. Their main purposes 

are as follows.  

• Data analytics. This block includes any pre-processing or preparation of the data (e.g., averages, 

autoencoders, filtering, or clustering algorithms).  

• Knowledge management. A critical component of the NIO, the knowledge management block 

provides all the mechanisms required to plan, organize, act, and control the knowledge across 

all the deployed NIS. 

• Monitoring. This block processes the NIS’s information. As NIS can be composed of both non-ML 

(e.g., traditional VNFs) and ML-based functionalities, the monitoring information can also be of 

both types: ML-related (e.g., model-specific metrics and detection of data drift for essential 

features), and non-ML-related (e.g., QoE, QoS, etc.). In addition, this block will monitor NIs in both 

training and inference deployments. 

• NIS lifecycle management. This functional block handles the deployment and maintenance of 

working ML models, aligned with MLOps practices. This includes the creation of new ML pipelines 

to re-train ML models. 

• NIS creation/selection, optimization, and instantiation. Before any deployment, the NIO has to 

select (e.g., based on hardware constraints), optimize (e.g., compress a Neural Network (NN)-

based NIS to achieve a given tradeoff between model size and performance), and instantiate 

the selected NIS. If a given NIS is unavailable in the catalog, the NIO should be able to create it 

based on the available data and execution context information. 

• Model explainability. This block provides the methods that help human experts understand NIS 

composed of black-box (e.g., deep neural network) ML algorithms. This is a fundamental 

capability to understand the cause of a decision from a NIS such that a human can consistently 

review/correct its results.  

• Policy interpreter and configuration. This functional block interprets high-level user intent 

objectives, e.g., high-level QoE targets and business KPIs, that are associated with different NIS. 

If needed, it also performs changes in the policy. 

• NIS workflow configuration. This block puts together data engineering, ML, and DevOps in a more 

straightforward, efficient, and effective fashion. In a general perspective, the NIO uses NIS 

workflow configuration to operationalize the deployment, monitoring, and lifecycle 

management in a modular and flexible way. 

• Network MANO framework. This functional block manages the lifecycle management of the 

traditional Virtual Network Functions (VNF) that communicate with a NIS/NIF. In addition, it 

provides the context execution information from the network. Notice that in Figure 10, there are 

two MANO functional blocks, one internal and one external. The main reason is to show that 

MANO functional block can be an external or internal block of the NIO, depending on its 

implementation. We will discuss more details about the interactions between NIO and MANO 

functional blocks in Section 3.2.3. 

• Conflict detection and resolution. This block provides a mechanism to solve trade-offs that may 

emerge from conflicting objectives in the control and user planes, e.g., in establishing policies 

(at small timescales) versus enforcing such policies (at large timescales). This functionality allows 

the NIO to compare policies among different NIS to detect conflicts and perform conflict 

resolution based on comparison and resolution rules. 

3.2.3 MANO and its interaction with the NIO 

The NIO is crucial in coordinating and managing network intelligence. To fulfill its responsibilities 

effectively, DAEMON must seamlessly interact with the MANO framework in key areas. 

Firstly, the NIO requires the synchronization of network slices and functions within the MANO framework. 

The NIO exchanges information with MANO components to track the state and health of network slices 

and the operational status of functions. This real-time synchronization enables the NIO to dynamically 

adapt decisions and optimize network operations. Secondly, the NIO relies on up-to-date information 

about available resources as available in the MANO framework, including computing power, storage, 
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and network characteristics (both in the wired and wireless parts). By maintaining a synchronized view of 

resource availability, the NIO can efficiently orchestrate the network resources that may allocate 

resources to network slices, functions, or specific vertical service requirements. This dynamic resource 

management optimizes resource utilization and enhances performance. 

Additionally, the NIO may interact with vertical service providers, who have unique requirements for the 

network infrastructure. Effective communication channels should be established to exchange 

information, feedback, and service-specific instructions. This ensures that NIO aligns the orchestrated 

network intelligence with the objectives and needs of vertical service domains, enhancing overall service 

delivery and user's QoE. 

In summary, the NIO collaborates with the MANO framework through various means. It can establish 

connections using an eastbound-westbound interface to enable seamless communication and 

integration. Alternatively, the NIO can directly extend modules within the MANO framework if applicable. 

For example, when paired with the ETSI Network Function Virtualization (NFV) MANO framework, specific 

mappings can be established between the NIO and corresponding MANO components. The NIO can 

align with the NFV Orchestrator (NFV-O) within the ETSI NFV MANO framework, ensuring coordination and 

cooperation between the two. Similarly, the NIF Manager of the NIO can be mapped with the Virtual 

Network Function Manager (VNFM) in the MANO framework, facilitating the management and control 

of virtual network functions. Additionally, the NIF-C Manager of the NIO can correspond to the Virtual 

Infrastructure Manager (VIM) within the MANO framework, enabling efficient management of the 

underlying virtualized infrastructure. 

In the following sections, we will describe the internal and external interfaces that must be defined to 

allow communication between internal and external components and how the combination of some 

functional blocks in the architecture can help to address the challenges described in Section 3.1. 
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4 NIP Interfaces 
As shown in Figure 10, the NIP is a composition of different functional blocks that aims for the native 

integration of NI in the network by providing the management and orchestration capabilities for NIF and 

NIS. Similar to other well-known frameworks for management and orchestration on specific domains, e.g., 

NFV-MANO [31] and O-RAN [32], the functional blocks of the NIP have their own set of internal interfaces. 

In the following sub-sections, we will provide a high-level definition of such interfaces and what is 

expected from them.  

4.1 Internal Interfaces 

To successfully orchestrate and manage NI, it is essential to establish seamless communication and 

coordination among the various functionalities of the NIP. In the subsequent section, we will outline and 

elaborate on the specific set of internal interfaces that are presented in Figure 11. These interfaces are 

the foundation for enabling effective communication and coordination among the different blocks 

within the NIP, ensuring a harmonized and cohesive NI management framework.  

 

Figure 11. Interfaces between functional block in the NIP. 

In the following, we present them according to their functional definition, although from an 

implementation perspective, they could be provided in a service-based fashion. 

• Nio-Nifm. This interface allows communication between the NIO and the NIF Manager to 

effectively manage and orchestrate NIF instances within the NIP framework. It promotes efficient 

utilization of network resources, optimized network service delivery, and enhanced scalability 

and flexibility of virtualized NIF. Among life-cycle management, the NIO relies on the NIF 

Manager to perform operations related to NIF instances, including instantiation, scaling, healing, 

and termination.  

Via this interface, the NIF Manager can also provide monitoring information about the 

performance (reporting metrics related to both the learning process, e.g., the loss function when 

trained, or network performance indicators) and health, and trigger healing actions in case of 

failures, degradations, or conflicts. Moreover, the NIO can gather information related to the 

status of the NIFs so it can derive analytics to proactively optimize the NIFs (e.g., by changing the 

learning model data feeding speed/timescale to mitigate limitation on available computing 

resources) or control it (e.g., by adding a new input representation of the data or ML model to 

couple it with other NIF when instantiating a new NIS). Finally, the NIO can also gather information 

from the NIFs related to explainable capabilities and use it to take better orchestration and 

coordination actions among NIFs. Finally, this interface will allow the NIO to perform ML workload 

management. 

• Nio-Nifcm. This interface allows the NIO to request the NIF-C for the allocation, placement, and 

lifecycle management of virtualized infrastructure resources. These resources include computing 

(GPU, FPGA, CPU, memory), storage, and networking components required to host and run NIF 

instances. It will also allow for gathering information about the utilization and performance of 

virtualized infrastructure resources. This includes monitoring the availability, capacity, and 

performance metrics of the allocated resources, providing visibility into resource usage and 

potential bottlenecks. In case of the need for infrastructure policy enforcement, this interface 

allows the NIO to enforce policies and constraints on the virtualized infrastructure resources such 

as security policies, learning and QoE/QoS requirements, or specific compliance regulations that 
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need to be applied to the infrastructure hosting the NIFs (e.g., data privacy, data anonymity, 

model isolation/federation, etc.).  

• Nifm-Nifnis. This interface enables the NIF Manager to manage the lifecycle of NIF instances. It 

allows the NIF manager to perform operations such as NIF instantiation, scaling, healing, 

termination, and update. In the case of configuration and monitoring, this interface allows the 

NIF Manager to provide configuration parameters and policies to the NIF through the interface. 

Additionally, it can collect monitoring data and performance metrics from the NIF instances to 

ensure their proper functioning and adherence to Service-Level Agreements (SLAs) in terms of 

both networking (e.g., QoS and QoE) and learning (e.g., accuracy). This NIF Manager can also 

perform fault and performance management. The NIF Manager receives fault notifications and 

performance data from the NIFs through the interface, allowing it to detect and handle any 

issues that may arise based on policies defined by the NIO. This includes fault localization, fault 

resolution, performance optimization, and ensuring the desired performance of the NIF. Finally, 

the NIF Manager can manage the state and context of the NIF instances. It allows the NIF 

Manager to retrieve and update the state information of the NIF Manager, including their 

operational status, configuration parameters, and runtime data. This information is crucial for 

maintaining the consistency and continuity of the NIF operations. 

This interface can also provide the capabilities to monitor, manage and orchestrate NIS based 

on abstract data information such as model knowledge (e.g., Neural Network weights, expert 

knowledge encapsulated in rule-based systems) and explainable model data.  Moreover, it will 

gather information about the NIF composition in NIS to detect possible conflicts in NIS before 

deployment, given its topological structure, or after re-orchestration of the NIS when NIF are 

added/removed/changed. Through this interface, the NIO can also configure the NIS (e.g., 

adding a new NIF in the NIS). In some implementations, the interaction between NIO and NIS 

can be done via a specific interface, e.g., a Nio-Nis interface.  

• Nifcm-Nivi. This interface allows the NIFs to interact with the NI virtualized infrastructure, which 

includes virtual machines, containers, storage resources, and networking components. This 

interface allows NIFs to utilize the underlying infrastructure to perform their designated functions 

efficiently. For example, allowing an ML model to switch among different computing hardware 

(e.g., CPU/GPU/TPU/FPGA) and modes (training vs. inference).  

• Nio-MLp. This interface enables the NIO to provide ML model (re-)training features.  

• MLo-Ncat. Via this interface, the ML pipeline framework in the NIP can access the model register, 

which serves as a critical connection point in managing and organizing ML models empowering 

NIF/NIS within the pipeline framework. This interface enables seamless integration and 

coordination between the pipeline framework and the model register, facilitating efficient 

model versioning, storage, retrieval, and tracking. This interface streamlines the integration of ML 

models within the pipeline, enabling seamless collaboration, reusability, and scalability of models 

across the ML workflow. 

• Nio-Ncat. This interface allows the NIO to access the catalog of NIF/NIS available to deploy in 

the network. By accessing the catalog, the NIO can effectively discover, select, compose, 

onboard, and manage the lifecycle of NIF/NIS within the NIP. The interface enhances the agility, 

flexibility, and automation capabilities of the NI orchestration system, enabling seamless 

deployment and efficient management of NIS/NIF within the NI virtual infrastructure. 

• Nio-Mano. When the MANO is deployed as an external functional block of the NIO, this interface 

provides the communication mechanism to exchange real-time information to track network 

slices, function states, and resource availability. This synchronization allows the NIO to 

dynamically adapt decisions and efficiently allocate resources based on the current network 

characteristics. By maintaining an up-to-date view of available resources, including computing 

power, storage, and network capabilities, the NIO can orchestrate network resources effectively 

and optimize resource utilization, thereby improving performance.  

• Nio-Ext. This interface provides communication between the NIO and external 

orchestrators/controllers in the network in the same or across multiple domains. This interface 

enables resource coordination, NIF/NIS orchestration/coordination, policy management, event 

handling, and information exchange. Firstly, it allows for efficient coordination of resources by 

exchanging information about available resources and their utilization across different domains. 

This promotes optimal resource allocation and utilization. Secondly, the interface enables 

collaboration in NIF/NIS deployments across multiple domains by facilitating the exchange of 

NIF/NIS-level information and dependencies between the NIO and external 

orchestrators/controllers. This enables the instantiation, management, and scaling of complex 

NIS across multi-domain and heterogeneous environments. Additionally, the interface supports 

policy management by facilitating the exchange of policy information between the NIO and 
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external orchestrators/controllers. This ensures consistent policy implementation and 

governance across different domain systems. Moreover, the interface enables the exchange of 

event and alarm information, allowing for proactive event handling, correlation, and 

remediation across domains. Finally, the interface facilitates information exchange and 

federation by enabling the sharing of network topologies, hardware capabilities, NIS/NIF 

catalogs, and other relevant data (e.g., monitoring information, model weighs, etc.), improving 

decision-making and coordination capabilities among different orchestration systems. 

In order to promote industry deployment, validation, and widespread adoption of standardized APIs, it is 

recommended that in the future, an OpenAPI4 representation in YAML5 and JSON6 is available (e.g., via 

ETSI or IEEE). An example of it is NFV-MANO core APIs7. Moreover, tools to navigate the specifications and 

report bugs should also be provided to enhance the usability and effectiveness of the OpenAPI 

representation.  

4.2 External Interfaces 

The NIO-Ext interface will allow the NIO to communicate with external orchestrators/controllers to 

achieve efficient collaboration, resource coordination, and NIF/NIS orchestration across heterogeneous 

network environments (far edge, edge, RAN, Transport, core, cloud, etc.). The interface enhances 

interoperability, scalability, and flexibility, allowing for the effective management and orchestration of 

resources and NIF/NIS in complex network ecosystem. In this section, we will describe two specific cases 

of such interfaces.  

4.2.1 O-RAN 

The O-RAN Alliance (Open Radio Access Network Alliance) is a global community of mobile network 

operators, vendors, and research institutions, established in February 2018. Its primary goal is to drive the 

development of open, intelligent, and interoperable RAN technologies. Founded by AT&T, Orange, 

Deutsche Telekom, Docomo, and China Mobile, O-RAN now has the support of over 300 organizations, 

including major operators and vendors. Analysts predict that open vRANs could surpass the conventional 

RAN market by 2028,8 generating revenues close to $20 billion.  

The O-RAN architecture is a new approach to building mobile networks that aims to increase flexibility, 

interoperability, and innovation. It is designed to enable multi-vendor deployments, reduce costs, and 

improve network performance. Key aspects of the O-RAN architecture are presented in D2.1 [8], Section 

10.4. A very important aspect of O-RAN is the integration of AI/ML workflows, i.e., Network Intelligence 

that may be managed by DAEMON’s NIP, with the following principles [33]: 

• Offline Learning: In O-RAN, even for reinforcement learning scenarios, some amount of offline 

learning (where a model is trained with offline data before deployment) is always 

recommended. 

• Pre-training and Testing: Any model deployed within the network needs to be trained and tested 

beforehand. No completely untrained model should be deployed in the network. 

• Modularity in ML Applications: As a best practice, ML applications should be designed in a 

modular fashion, with the capability to share data without knowledge of each other’s data 

requirements. They should not be bound by the location or nature of a data source. 

• Service Provider’s Deployment Choice: The criteria for determining where an ML application 

should be deployed (Non-RT RIC or Near-RT RIC) may vary between service providers. Therefore, 

it should be the service provider's choice to decide the deployment scenario for a given ML 

application. 

• Optimization of ML Model for Efficiency and Performance: To improve execution efficiency and 

inference performance, the ML model should be optimized and compiled considering the 

hardware capabilities of the inference host. There should be a balance between efficiency and 

inference accuracy, with acceptable accuracy loss as one of the optimization goals. The 

optimization parameters should be determined based on this threshold. 

Figure 12 illustrates the general framework of AI/ML procedures and interfaces and its integration into 

DAEMON’s NIP, including the potential mapping between ML components and O-RAN components. 

                                                           
4 https://www.openapis.org/  
5 https://yaml.org/  
6 https://www.json.org/json-en.html  
7 https://nfvwiki.etsi.org/index.php?title=API_specifications  
8 ABI Research. 2020. Open RAN. Market Data Report. 

https://www.openapis.org/
https://yaml.org/
https://www.json.org/json-en.html
https://nfvwiki.etsi.org/index.php?title=API_specifications
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Figure 12. Integration of DAEMON NIP and O-RAN AI/ML Lifecycle Procedures and Interface Frameworks.  

Relevant to DAEMON’s NIP are the AI/ML deployment scenarios of O-RAN, summarized as follows: 

• Deployment Scenario 1.1: In this case, AI/ML Continuous Operation, AI/ML Model Management, 

Data Preparation, AI/ML Training, and AI/ML Inference all take place within the Non-RT RIC (Non-

Real-Time Radio Intelligent Controller). 

• Deployment Scenario 1.2: Here, AI/ML Continuous Operation, Data Preparation for training, and 

AI/ML Training are located in non-RT RIC. However, AI/ML Model Management is outside non-RT 

RIC (either within or outside the SMO, Service Management and Orchestration). Data Collection 

for inference, Data Preparation for inference, and AI/ML Inference are in the Near-RT RIC (Near-

Real-Time Radio Intelligent Controller). 

• Deployment Scenario 1.3: AI/ML Continuous Operation and AI/ML Inference are within non-RT 

RIC. Data Preparation, AI/ML Training, and AI/ML Model Management are located outside the 

non-RT RIC (either within or outside SMO). 

• Deployment Scenario 1.4: In this scenario, the non-RT RIC acts as the ML training host for offline 

model training, and the Near-RT RIC acts as the ML training host for online learning and also as 

the ML inference host. 

• Deployment Scenario 1.5: Continuous Operation, Model Management, Data Preparation, and 

ML Training Host are in non-RT RIC. However, the O-CU/O-DU (Open Central Unit/Open 

Distributed Unit) acts as the ML inference host. 

Please note that the deployment of "AI/ML Continuous Operation" outside of non-RT RIC is still under study. 

Table 6. O-RAN AI/ML deployment models. 
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internal 

1.2 Non-RT 

RIC and 
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Non-RT 
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internal 
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1.3 Out of 

Non-RT 

RIC 

Out of 

Non-RT 

RIC 

Non-RT 

RIC 

Out of 

Non-RT 

RIC 

Non-RT 

RIC 

Near RT-

RIC 

Near-RT RIC 

internal 

Near-RT RIC 

internal 

A1 

O-CU, O-

DU, O-RU 

Not defined Not defined Not 

defined 

1.4 Non-RT 

RIC and 

Near-RT 

RIC 

SMO/No

n-RT RIC 

for offline 

training 

or Near 

RT RIC for 

online 

learning 

Near RT 

RIC 

Non-RT 

RIC and 

Near RT 

RIC 

Near RT 

RIC 

Near RT 

RIC 

Near-RT RIC 

internal 

Near-RT RIC 

internal 

A1 

O-CU, O-

DU, O-RU 

N/A E2 (control / 

policy) 

E2 (if 

relevant) 

1.5 Non-RT 

RIC 

Non-RT 

RIC 

O-CU / 

O-DU 

Non-RT 

RIC 

Non-RT 

RIC 

O-CU, O-

DU, O-RU 

Not defined Not defined Not 

defined 

4.2.2 5G Core 

The 5G Core (5GC) is one of the most important domains in a 3GPP mobile system, hence it is part of the 

DAEMON framework. 

The imperative of network automation drove the design of the 3GPP system in R15, marking a significant 

departure from previous releases. In earlier iterations, data generation and analytics in the network 

primarily relied on proprietary interfaces for exchanges between network elements and their respective 

managers. However, with R15 and subsequent consolidations, the architecture underwent a 

comprehensive overhaul to incorporate native support for collecting analytics. These analytics can be 

effectively utilized, as explained below, to establish feedback loops through standardized or proprietary 

solutions. At the heart of this system lies the Network Data Analytics Function (NWDAF), which performs 

three key functions: (i) aggregating data, encompassing metrics that reflect the current state of the 

network, sourced from other producer network functions (NFs); (ii) conducting analytics, involving the 

computation of refined statistics based on the gathered data; and (iii) sharing the computed analytics 

with other consumer functions across the network. 

The generated analytic reports serve as outputs that either present statistics based on historical data or 

provide predictions for specific metrics, depending on whether the requested timeframe is in the past or 

future, respectively. These outputs play a crucial role in optimizing the operation of NFs. Additionally, the 

output may include a confidence parameter, ranging from 0 to 100, which conveys information about 

the reliability of the prediction made. Factors determining this confidence parameter may include the 

volume of data utilized in generating the prediction, the age of the AI model employed, and other 

relevant considerations. 

 

Figure 13. The architectural framework proposed by the 5GPPP Arch WG [11]. 

In the context of this framework, the NIP is depicted in Figure 13 above. The Figure presents the 

interconnections among various components. The framework is divided into three distinct domains and 

shows where the DAEMON NIP takes a role. 

The first domain, referred to as 5GC, is where the Network Data Analytics Function (NWDAF) resides. Within 

this domain, other network functions (NFs) of the core act as the primary producers and consumers of 
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data and analytics. These NFs utilize the data and analytics to drive network operations in a data-driven 

manner. Thanks to the NWDAF, consumer NFs no longer need to directly communicate with every 

potential producer to compute analytics, as they can efficiently leverage the shared information. 

NWDAF is a specific (and very important) NIF, that can leverage on a number of NIF-C according to the 

analytics that are served. 

The second domain encompasses Operations, Administration, and Maintenance (OAM) activities, which 

involve modules such as Element Managers or Network Elements in pre-5G networks. Starting from R15, 

OAM effectively enforces network slicing through the service-based management architecture. The 

OAM domain can also supply the NWDAF with data from the RAN and 5G NFs, such as resource 

consumption. Unlike the pre-5G 3GPP RAN architecture, which lacks an analytics hub like the NWDAF, 

alternative architectures like O-RAN feature dedicated analytics modules. The Management Data 

Analytics Function (MDAF) serves as the module responsible for interacting with the NWDAF and provides 

Management Data Analytics Services (MDAS). As discussed, the MDAF collaborates with the NWDAF and 

other core NFs to generate management analytics information, which is subsequently consumed by 

other NFs or management procedures like the self-organizing network. For the DAEMON NIP, the MDAF is 

a NIF, that in turn, can be further split into a number of NIF-C which i) interact with the NWDAF, effectively 

closing the loop with the core and ii) allows the internal interaction within the management domain. 

The third domain encompasses the service domain, facilitated through the Application Function (AF). 

These functions, residing outside the 3GPP trust domain, play a crucial role in facilitating close interaction 

between service providers and network operators. This interaction is achieved through enriched service 

layers, which aid in commoditizing the network and enhancing the interplay between the service and 

network intelligence. Given the criticality of authorization and security, it becomes essential to verify 

whether AFs are appropriately authorized to interact with the NWDAF and engage in data exchange 

with third parties. Authentication can be managed in three different ways, such as basic user-password 

authentication, where the configuration of credentials is done via a configuration file. Support of 

Transport Layer Security (TLS) protocol where there is a server-side authentication or mutual TLS (mTLS) 

authentication, where both server-side and client-side authentication is required. In this case, the AF can 

be seen as a specific NIF-C (either Sink or Source, depending on the context). Overall, any NF deployed 

within the 5GC, the OAM system, or any AF can contribute input to the NWDAF and request analytic 

reports from it. This establishes a feedback loop where any NF, OAM component or AF can provide input 

data to the NWDAF and receive analytic reports generated from the collective data obtained by the 

NWDAF. Through these feedback loops, the majority of automated network operations can be 

executed, as exemplified by the ones already provided by the NWDAF in the standard and by the 

solutions proposed by DAEMON in WP3 and WP4. 

  



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

35 

5 NI Orchestration procedures 
In this section, we show how the architectural building blocks described in Section 3.2 will interact with 

the blocks external to the Network Intelligence Orchestrator (NIO) and with the blocks inside the NIO. We 

will explore how the different components work together to create a cohesive system that can effectively 

orchestrate intelligence across multiple domains. Through these interactions, the NIO will be able to 

address the challenges that can emerge when NISs are deployed across different network domains and 

operating in multiple timescales, as described in Section 3.1.  

Notice that all the procedures mentioned below are depicted using a process view. This view answers 

how the system behaves addressing concurrency and synchronization aspects. Unified Modeling 

Language sequence diagrams9 were selected as the most appropriate form. Next, we briefly describe 

how the combination of some functional blocks can help to address the challenges described in the 

previous section. 

5.1 Inter NIO Procedures 

One of the most essential management and orchestration capabilities is to handle the lifecycle of each 

of its entities. The NIO is not an exception. Regarding networking functionalities, NFV MANO [31] is the 

referent architectural framework to look up to. In general, lifecycle management is responsible for the 

following operations: creation, instantiation or deployment, management (e.g., model selection and 

optimization), and termination. However, given the intelligent nature of the functionalities proposed by 

DAEMON, there are several factors that must be considered while addressing their lifecycle 

management. In the following subsections, we will discuss the procedures required to perform lifecycle 

management with the NIO in detail.  

5.1.1 Creation 

When creating a new NIS, the Network Intelligence Orchestrator (NIO) should verify that all the NIFs from 

that NIS are available in the catalog. If a NIF is unavailable, new NIF training should be started, e.g., based 

on user-defined NIF/ NIS Descriptor (NIFD or NISD) as described in the next paragraph. This training is 

represented by triggering a new MLOps pipeline. The data ingestion for training this new NIF should be 

coordinated between the NIO and the MLOps pipeline. Notice that this procedure only contemplates 

the creation of the NIF and not its usage. 

 

Figure 14. NIS creation process flow. 

 

                                                           
9 https://developer.ibm.com/articles/the-sequence-diagram/  

https://developer.ibm.com/articles/the-sequence-diagram/
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Figure 14 shows the required interactions to create a NIS/NIF. The main steps for NIS/NIF creation are:  

• Through its API, the NIO should process a NIS/NIF creation request. A sender can submit this 

request, which could be a human, an AI, or another process with administration rights to trigger 

orchestration operations in the NIO. The sender identifies that a new NIS/NIF is needed to perform 

a given network operation and submits this request to the NIO. As input for this process, the NIO 

should receive a NIF/ NIS Descriptor (NIFD or NISD) which includes, but is not limited to: 

o Learning mode, if the ML model supports online learning or if the training is made offline.  

o Data on which the model is trained (whether the learning is online or offline). This field 

also specifies the format in which the input data is expected.  

o Learning metrics. This typically includes accuracy, cross-entropy, or a known loss 

function, e.g., Mean Squared Error (MSE).  

o Model performance upper and lower thresholds. Values on which the training can be 

concluded (upper threshold). It is assumed that once the upper threshold is met, the ML 

model is ready to be deployed in production. On the contrary, if the lower threshold is 

met, the ML model deployed in production should be updated. The definition of these 

thresholds could be different for different NI functionalities and should reflect a good 

performance.  

o Output format. This field specifies in which format the ML will communicate its output. 

For instance, a classification problem can produce a vector with the probability of a 

given sample belonging to a class or the class itself.  

o Last modification time. This field will indicate the age of the ML model. Given the 

constant evolution of network state and data, having an up-to-date ML model is crucial 

for network operation.  

o Dependencies required for operation. ML models are created using specific libraries 

(e.g., NumPy, pandas, etc.). The right versions of such libraries must be available when 

instantiating the ML model in production.  

• NIO processes the NIFD/NISD, including but not limited to:   

o Checking for the existence of mandatory elements (network operation, data 

requirements, output format, accuracy).  

o Validating integrity and authenticity of the NIFD/NISD.  

• For every NIF in the NIS, NIO verifies if the NIF model exists in the catalog.   

o If the NIF model is not present in the catalog, NIO triggers a train operation from ML 

pipelines.   

▪ ML pipeline model triggers a new pipeline (Data ingestion - Model training - 

Model Testing - Model packaging - Model registering) using the NIFD.  

▪ Once the NIF model is trained, the model is registered in the NIF catalog.  

o If the model is trained, it should be registered in the catalog and can be used in 

inference.  

• NIO makes NIS/NIF images available to each applicable NIF Component Manager (NIF-C 

Manager).  

• The NIF-C Manager acknowledges the successful uploading of the image.  

• Finally, NIO acknowledges the NIS/NIF creation to the sender.  

5.1.2 Instantiation or Deployment 

Figure 15 shows the interactions required for instantiating or deploying a NIS/NIF. As in the previous step, 

NIO receives a request to instantiate a new NIS/NIF. Then, several variants might be possible:  

• None of the NIFs belonging to the NIS is instantiated or deployed. Then, the NIS instantiation will 

include the instantiation of all the needed NIF instances.  

• All the needed NIF instances have already been created. In this case, NIS instantiation would 

only deal with the interconnection of the corresponding NIF instances.  

• A combination of the above where some NIF instances might exist, some might need to be 

created, and instantiated, and some network connectivity between the NIFs may already exist.  

It is important to notice that if a NIF instance is already created, it can be shared between different NIS. 

In this case, the NIO should trigger the conflict resolution mechanism, because they may be deployed 

on the same node and/or accessing the same resources. If no conflict is produced, the same NIF can be 
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used to instantiate the current NIS. If a potential conflict is detected, the NIO should proactively address 

it by deploying specific policies implementing rules or priorities (c.f. Section 5.2.1) to effectively solve the 

aforementioned conflict. 

 

Figure 15. NIS instantiation process flow. 

The main steps for NIS/NIF instantiation are:  

• NIO receives a request to instantiate a new NIS/NIF.  

• NIO validates the request, both validity of the request (including validating that the sender is 

authorized to issue this request) and validation of the parameters passed for technical 

correctness and policy conformance.  

• For each NIF instance needed in the NIS, the NIO checks with the NIF Manager if an instance 

matching the requirements already exists. If such a NIF instance exists, it will be used as part of 

the NIS. If the NIF instance does not exist, the NIO triggers the Create NIF procedure. 

• NIO runs a feasibility check of the NIF interconnection setup.   

o NIO requests to the NIF-C Manager the availability of resources needed for the NIF 

Interconnection and reservation of those resources.  

o The NIF-C Manager checks the availability of resources needed for the NIF 

Interconnection and reserves them.  

o The NIF-C Manager returns the result of the reservation back to NIO.  

o If the resources are not available, the NIS might not be instantiated. The result is given 

back to the Sender.  

• Once the list of NIF instances to be provisioned is known, NIO requests the NIF-C Manager to 

allocate and interconnect the NIF instances.   

o The NIF-C Manager instantiates the connectivity network needed for the NIS.  

o The NIF-C Manager acknowledges completion.  

• Finally, the NIO acknowledges the completion of the NIS instantiation. 

5.1.3 Management 

Several operations can be considered as management procedures, such as NIS/NIF update, 

optimization, scaling or migrating. NI solutions stored in the NIS/NIF catalog are inherently trained on 

hardware and software platforms that may not match the ones available in the new environment where 
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they need to be deployed. In such cases, the NIS creation/selection, optimization, and instantiation block 

will obtain networking and execution context information from its MANO block operating in the network 

and select the proper model to be used in inference within a NIF. Suppose a mismatch between trained 

and targeted hardware/software appears. In that case, the same block should perform the 

optimization/adaptation (e.g., compression of a neural network, change of inference library from GPU 

to CPU) to match the new environment. In case no model is available for the specific execution 

environment, the NIS creation/selection, optimization, and instantiation block will create a new NIS and 

then notify the NIS workflow configuration block to trigger a new training phase. Here we depict the 

NIS/NIF update with model selection as the most relevant and generic procedure that may involve 

optimization, re-train or selection. 

 

Figure 16. NIS update process flow. 

Figure 16 shows the main steps for NIS/NIF updates. This procedure includes updating the parameters of 

the NIS/NIF. It is important to notice that the update process has similarities with the NIS/NIF creation:  

• A request for NIS/NIF update is submitted from the sender, which could be a human, an AI, 

another process in the architecture (e.g., Data Analytics detecting a mismatch between the 

statistics of the input data), or the monitoring block from the NIO (e.g., current accuracy is lower 

than expected, the model is old, etc.). The sender identifies that a new NIS/NIF needs to be 

updated and submits its request to the NIO through the NIO API.  

• NIO processes the NIFD/NISD, including, but not limited to:   

o Checking for the existence of mandatory elements (network operation, data 

requirements, output format, accuracy).  

o Validating the integrity and authenticity of the descriptor. 

• For every NIF in the NIS, NIO verifies that an updated NIF model exists in the catalog.   

o If an updated model is needed but not in the catalog, NIO triggers a re-train operation 

from ML pipelines.  

▪ ML pipelines model triggers a new pipeline (Data ingestion - Model training - 

Model Testing - Model packaging - Model registering).  

▪ Once the NIF model is re-trained, the model can be registered in the NIF 

catalog. Update NIFD with new version and requirements (data format, 

hardware, software dependencies, etc.)  
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o If a model (or more than one model) is available, then the NIO verifies that the available 

models satisfy the deployment requirements in terms of data (e.g., input rate and 

format), computation runtime (e.g., CPU, GPU, or FPGA), dependencies (e.g., 

TensorFlow, PyTorch), and performance level. This process might return an empty list, 

meaning that there is no model that satisfies the deployment requirement and the 

creation of a new NIF is needed. 

o In case the filtered list is not empty, and more than one model satisfies the deployment 

requirements, model selection should be carried out. In this phase, the component will 

compute an ML test score, and depending on arbitration policies, the best-performing 

model is selected to update the NIF image. The ML test score can contain learning-

related metrics (e.g., loss/reward function) and non-learning-related metrics (e.g., QoE, 

QoS, stability in deployment, etc.). The arbitration policies are decision factors that the 

NIO considers primordial for model deployment, for instance, if model precision is 

preferred over energy consumption. 

o If the model is updated, it should be registered in the catalog and can be used in 

inference.  

• NIO makes NIS/NIF images available to each applicable NIF-C Manager.  

• NIF-C Manager acknowledges the successful uploading of the image.  

• NIO acknowledges the NIS/NIF update to the sender.  

Other management operations include optimization, scaling in/out or migrating. The workflows are similar 

to those of NFV MANO, requiring an extra step to update the NIS/NIF, which was shown above.  

• NIO receives a Manage NIS/NIF request. This could come even from the same NIO (e.g., 

forecasting model -in Data Analytics module- to scale because it expects an increase of 

demand, or migration of a NIS because the associated requester is moving).  

• NIO validates this request, identifying if the management operation requires updating the 

NIS/NIF. If an update is needed (e.g., NIS/NIF optimization), NIO triggers the Update NIS/NIF 

procedure.  

• NIO runs a feasibility check of the NIF interconnection setup.  

o NIO requests the NIF-C Manager the availability of resources needed for the NIF 

interconnection and reservation of those resources.  

o NIF-C Manager checks the availability of resources needed for the NIF Interconnection 

and reserves them.  

o NIF-C Manager returns the result of the reservation back to NIO.  

o If resources are not available, the NIS might not be managed. The result is given back to 

the Sender.  

• Once the list of NIF instances to be provisioned is known, NIO requests the NIF-C Manager to 

allocate and interconnect the NIF instances. This can be done through:   

o Triggering the creation of a new NIS/NIF instance for scaling out the operation.  

o Triggering the deletion of a NIS/NIF for scaling in operation.  

o Triggering both the creation and the deletion of the NIS/NIF to migrate it.  

• NIO acknowledges the completion of the NIS/NIF management.  

5.1.4 Termination 

The NIO receives a request to terminate a NIS/NIF instance. This request might come from a human, an 

AI process, or another process in the architecture. When terminating a NIS/NIF instance, several variants 

might be possible:  

• All affected NIF instances contributing to the NIS that need to be terminated and were created 

when initiating the NIS. In this case, all these NIF instances need to be terminated, and the 

interconnectivity between these NIF instances must be removed.  

• Some NIF instances are contributing to other NIS instances. In this case, only those NIF instances 

that do not contribute to other NIS instances must be terminated. The interconnectivity between 

them must be removed, leaving the other NIF instances in place and the interconnectivity 

between them intact.  

The main steps for the termination of a NIS/NIF instance are:  
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• NIO receives a request to terminate a NIS/NIF instance using the NIS/NIF Lifecycle Management 

interface.  

• NIO validates the request. It verifies the validity of the request (including the sender's 

authorization) and verifies that the NIS/NIF instance exists.  

• NIO requests NIF Manager to terminate any NIF instances that were instantiated along with the 

NIS instantiation, provided they are not used by another NIS. This is done by calling the 1.3 Delete 

NIS/NIF (pending) request.   

o NIF Manager terminates the required NIF and sends a confirmation to the NIO that the 

NIFs are terminated.  

• NIO requests the deletion (release) of resources for this NIS instance to the NIF-C Manager. 

o NIF-C Manager deletes (releases) the resources for this NIS instance.  

o NIF-C Manager acknowledges the completion of resource deletion back to NIO.  

• NIO acknowledges the completion of the NIS instance termination.   

5.1.5 Other operations 

In addition to the operations presented above, operations such as deleting, querying, enabling, or 

disabling a NIS/NIF are also considered within the architecture defined by DAEMON. However, such 

operations are not different than those proposed in NFV MANO as they do not involve or require any 

interaction with blocks that are related to Network Intelligence (NI) and the MANO block can perform it. 

The implementation of such procedures is shown in [31].  

5.2 Intra NIO Procedures 

As introduced above, a NIS is usually composed of different NIFs and hence, some of the NIS 

management functionalities take place only within the NIO itself. These Intra NIO functionalities address 

the challenges that may emerge when NISs are deployed across different network domains and 

operating in multiple timescales, including conflict resolution and knowledge sharing among NIS. 

5.2.1 Conflict Resolution 

We introduced two specific conflict cases in Section 3.1.1: (i) when conflicts emerge when monitoring 

data, e.g., algorithms may need data from the same source but with different granularity, and (ii) when 

conflicts in the policy enforcement of different NI algorithms may act on the same network functions but 

configuring different values for the target parameters. In such situations, the policy interpreter and 

configuration block will gather information about the policy guiding the different NIS and pass their 

interpretation to the conflict detection and resolution module. In both cases, a conflict will be detected, 

and the NIO will identify and apply the conflict resolution rules associated with (i) multi-timescale 

coordination and (ii) parameter constraints and execution priority. After applying the rules, the outcome 

should provide a plan that will trigger a configuration modification of the NIS policies. In the case of NIS 

empowered by black-box ML algorithms, the Model Explainability block will interpret policies associated 

with such algorithms. 

 

Figure 17. NIS Conflict Resolution process flow. 

Figure 17 shows the main steps for the case of NIS Conflict Resolution. This procedure includes checking 

the parameters of the NIS against the Policy Interpreter and Configuration (PolicyIC) to arbitrate the 
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deployment of the NIS (e.g., if the NIS has different monitoring granularity in a shared source with other 

NIS, or requires controlling a network function that another NIS is already controlling with a different AI 

algorithm):  

• A request for deploying a NIS is submitted from the sender (it could also be a NIS update), which 

could be a human, an AI, or another process in the architecture. The sender identifies that a new 

NIS needs to be deployed and submits its request to the NIO through the NIO API. It will be the 

NIS Creation Selection Optimization and Instantiation (CSOI) component that will receive the 

request and will validate the NIS internally, indicating if there is a conflict and updating and 

resolving in case any exists. Please note the validation command executed in the NIO for the 

creation, instantiation, and update processes described in Sections 5.1.1, 5.1.2, and 5.1.3 

respectively, includes this procedure internally.  

• NIO CSOI processes the NISD, including, but not limited to:   

o Checking for the existence of mandatory elements (network operation, data 

requirements, output format, accuracy).  

o Validating the integrity and authenticity of the descriptor. 

• If the NIS request is correct and sound, the NIO CSOI verifies through the PolicyIC if there is any 

conflict by gathering information about the policy guiding the different NIS and passing their 

interpretation to the Conflict Resolution module.   

• The Conflict Resolution component checks if the NIS to be deployed has any conflict with the 

existing NIS. 

• The Conflict Resolution component globally solves trade-offs that may emerge from conflicting 

objectives in the control and user planes, e.g., in establishing policies (at small timescales) versus 

enforcing such policies (at large timescales). For the case of this NIS: 

o The Conflict Resolution component compares policies among different NIS to detect 

conflicts that may appear with the new/updated NIS. 

o It performs conflict resolution based on comparison and resolution rules, providing a NIS 

configuration. This configuration will result from a trade-off or priority mechanism that the 

Conflict Resolution component will execute to harmonize the NIS's coexistence. The 

resolution will contain the last valid configuration if no feasible solution exists. 

• Once the PolicyIC receives the resolution, the new policy is built and applied to the specific NIS. 

• The PolicyIC returns the NIS descriptor to the NIO CSOI. Consequently, the NIO CSOI further 

proceeds with the required NIS operation (i.e., creation, deployment, update, etc.). 

• Eventually, the NIO acknowledges the NIS deployment to the sender.  

5.2.2 Knowledge Sharing 

 

Figure 18. NIS Knowledge Sharing process flow. 
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NISs deployed in the same or across different domains use their knowledge to derive their execution 

plans. The knowledge management block will allow the NIO to understand the knowledge of each NISs, 

via the interaction with the Model Explainability block and derive new policies that represent the shared 

knowledge among NISs, by interacting with the PolicyIC block. 

Figure 18 shows the main steps for the case of NIS Knowledge Sharing. This procedure includes checking 

the parameters of the NIS against the PolicyIC initially (and consequently also with the Conflict Resolution 

component internally). However, for the cases in which a NIS requires the use of knowledge coming from 

an external domain, the NIS CSOI will first translate such knowledge in the Model Explainability block 

before building and applying the shared knowledge policies: 

• A request for deploying a NIS is submitted from the sender (it could also be a NIS update), which 

could be a human, an AI, or another process in the architecture. The sender identifies that a new 

NIS needs to be deployed and submits its request to the NIO through the NIO API. It will be the 

NIO CSOI component that will receive the request and proceed with the Conflict Resolution and 

Knowledge Sharing phases. Please note the validation command executed in the NIO for the 

creation, instantiation, and update processes described in Sections 5.1.1, 5.1.2, and 5.1.3 

respectively includes this procedure internally. 

• NIO CSOI processes the NISD, including, but not limited to:   

o Checking for the existence of mandatory elements (network operation, data 

requirements, output format, accuracy).  

o Validating the integrity and authenticity of the descriptor. 

• If the NIS request is correct and sound, the NIO CSOI verifies against the PolicyIC if there is any 

conflict.   As previously described in Section 5.2.1, the PolicyIC itself internally requests the Conflict 

Resolution component to check if the NIS has any conflict with the existing NIS. 

• Once the PolicyIC receives the resolution, the new NIS domain-specific policies are built, and 

applied. 

• With the updated NIS descriptor, the NIS CSOI requests the translation of the external domain 

knowledge to the Model Explainability block. As a result, the NIS CSOI receives the additional 

Knowledge rules. 

• The NIS CSOI sends the NIS descriptor again to the PolicyIC but this time together with Knowledge 

rules in order to build and apply the shared knowledge policies: 

o The PolicyIC block builds the shared knowledge policies taking in account possible 

existing conflicts.  

o The PolicyIC block applies the shared knowledge policies and returns the NIS descriptor 

to the NIS CSOI. 

• Eventually, the NIO acknowledges the NIS deployment to the sender.  

5.2.3 Intra NIO Instantiation and deployment 

The previously described intra NIO Conflict Resolution and Knowledge Sharing mechanisms are inherent 

to the NIS CSOI and Life Cycle Management components interacting with external components such as 

the NIS Catalog, the NIF Manager, or the NIF-C Manager. In order to illustrate how the external processes 

would occur inside the NIO, Figure 19 details the deployment interactions between the NIS CSOI with 

both the internal and external components. 

As shown in Figure 19, the procedure includes the steps required to validate the NIS descriptor and 

identify and solve possible conflicts before deployment.  Also, domain-specific policies are built and 

applied, followed by training new models in case there are no instances of them already in the catalog. 

Finally, the NIS Workflow Configuration block combines them to build the NIS and starts the instantiation 

and deployment. The detailed sequence of steps is described below: 

• A request for deploying a NIS is submitted from the sender (it could also be a NIS update), which 

could be a human, an AI, or another process in the architecture. The sender identifies that a new 

NIS needs to be deployed and submits its request to the NIO through the NIO API. It will be the 

NIO CSOI component that will receive the request. 

• NIO CSOI processes the NISD, including, but not limited to:   
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o Checking for mandatory elements (network operation, data requirements, output 

format, accuracy).  

o Validating the integrity and authenticity of the descriptor. 

• If the NIS request is correct and sound, the NIO CSOI will proceed with the validation of the NIS.  

Please note the validation command executed in the NIO for the creation, instantiation and 

update processes described in Sections 5.1.1, 5.1.2, and 5.1.3 respectively includes the following 

procedures of Conflict Resolution and Knowledge Sharing. 

• First, the NIO CSOI verifies against the PolicyIC if there is any conflict.   As described in Section 

5.2.1, the PolicyIC internally requests the Conflict Resolution component to further check if the 

NIS has any conflict with the existing NIS. 

• Once the PolicyIC receives the resolution, the new NIS domain-specific policies are built, applied, 

and an updated NIS descriptor is returned to the NIO CSOI.  

• With the updated NIS descriptor, the NIS CSOI requests the translation of the external domain 

knowledge to the Model Explainability block. As a result, the NIS CSOI receives the additional 

Knowledge rules. 

• The NIS CSOI sends the NIS descriptor again to the PolicyIC but this time together with Knowledge 

rules. Hence, shared knowledge policies are built and applied as described in Section 5.2.2.  

• The NIS CSOI now iterates for every NIF in the NIS, and checks if an instance of the given NIF 

already exists in the NIF Manager, as described in more detail in Section 5.1.3. If no instance 

exists, a new model will be trained for that NIF in the MLOps Pipeline. 

• Next, the NIS CSOI proceeds with the interconnection of all NIFs in the NIS (nif_interconnection 

as described in Section 5.1.3). This mechanism involves requesting the NIS Workflow Configuration 

block (NIS WConf) to virtually link the NIFs and define their interactions. 

• Finally, the NIS CSOI starts the instantiation of every NIF in the NIS in the NIF Component. As 

previously described in Section 5.1.3, this involves: 

o Check the resource availability for that NIF in the NIF Component. 

o If resources are available, allocate the resources for that NIF and interconnect with the 

other NIFs instances through the NIF Component. 

o If resources are not available, notify accordingly to the entry point. 

• Eventually, the NIO acknowledges the NIS deployment to the sender.  

 

Figure 19. Intra NIO NIS instantiation and deployment process flow. 

The following table summarizes the functionalities proposed in Section 3.2.1 for the NIO and which 

procedures are using them. 
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Table 7. Summary of the procedures proposed to address the challenges described in Section 3.1 and 

the functionalities of the NIO that can be used to achieve it. 

Procedure Procedure type Functional blocks 

Creation 
Inter NIO 

Procedures 
NIO, NIS Catalog, ML Pipelines, NIF Manager 

Instantiation or 

Deployment 

Inter NIO 

Procedures 
NIO, ML Pipelines, NIF Manager, NIF-C Manager 

Management 
Inter NIO 

Procedures 
NIO, NIS Catalog, ML Pipelines, NIF Manager, MANO 

Termination. 
Inter NIO 

Procedures 
NIO, NIF Manager, NIF-C Manager 

Other operations 
Inter NIO 

Procedures 
As in NFV-MANO 

Conflict Resolution 
Intra NIO 

Procedures 

Policy Interpreter and Configuration, NIS Creation 

Selection Optimization and Instantiation, Conflict 

Detection and Resolution 

Knowledge Sharing 
Intra NIO 

Procedures 

Policy Interpreter and Configuration, Explainability, 

Knowledge management 

Intra NIO Instantiation 

and deployment 

Intra NIO 

Procedures 

Policy Interpreter and Configuration, Explainability, ML 

Pipelines, NIF Manager, NIF-C Manager 

Notice that the procedures described in the previous sections are based on the challenges described in 

Section 3.1. However, further procedures can be defined based on other use cases, e.g., orchestration 

of NI in federated domains or intelligent orchestration of NI, where the decisions of the NIO are 

empowered by AI-based decision-making models). We expect that these procedures can be further 

extended to more complex cases or used as a reference to define new ones.  

5.3 Reference Implementations 

The DAEMON project has developed two reference implementations as its architecture's Proof of 

Concepts (PoC). In the following sub-sections, we will describe them.  

5.3.1 DAEMON Orchestration of NIFs to build a NIS 

One of the key features of the DAEMON NIP is to allow the creation, management, and deployment of 

NISs. This first proof of concept combines two network intelligence functions (NIF) to create a Network 

Intelligence Service (NS). The first NIF utilizes a federated learning algorithm, enabling anomaly detection 

at the edge (c.f. Section 5.1 of D4.1[6]). This means that the AI model for detecting anomalies is trained 

locally on individual devices, preserving data privacy while still benefiting from a collaborative learning 

process. The second NIF employs a service reallocation algorithm that leverages monitoring information 

from the edge [21]. This algorithm, based on a multi-criteria decision-making algorithm, dynamically 

reallocates services based on real-time data, ensuring optimal resource utilization and performance. 

 
Figure 20. A federated learning powered anomaly detection and service relocation NIS. 
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Following the DAEMON’s framework based on the N-MAPE-K to define NIS, we effectively combined the 

federated learning-powered anomaly detection with service relocation capabilities to realize Network 

Intelligence Service (NS). Figure 20 shows the N-MAPE-K based diagram of the resulting NIS. By integrating 

the federated learning approach, the NS ensures that the detection of anomalies is performed securely 

and efficiently across the network's edge devices. The NS also leverages the monitoring information 

collected from the edge to make informed decisions about service reallocation, maximizing the 

network's overall performance and responsiveness. 

The proof of concept relies on the Eclipse Zenoh data communication framework, which provides a 

reliable and scalable solution for exchanging data between devices and components within the 

network. Additionally, the implementation utilizes Kubernetes functionalities to realize the NIF component 

manager and NIF manager. Kubernetes helps manage the deployment, scaling, and orchestration of 

the NIF components, ensuring smooth operation and efficient resource allocation. The Smart HighWay10 

testbed located on top of the E313 highway in Belgium served as the edge environment for testing and 

validating the effectiveness of the proposed NIS, providing a real-world scenario to assess its 

performance and potential benefits. Figure 21 shows a high-level representation of the deployment and 

how the components were deployed at the cloud11 (centralized server) and edge (road-side units at the 

Smart Highway).  

 

Figure 21. Cloud-to-edge deployment of the proposed NIS and its different components. 

5.3.2 DAEMON Orchestration of NIS with support of ML pipelines 

Our second implementation of NI-native architecture is presented above as a PoC using Kubernetes12 

as the main deployment environment. In addition, Kubeflow13 is used to perform MLOps and as the 

baseline for developing some of the NIO functionalities. Furthermore, selected functionalities of the NIO 

are developed from scratch. The Eclipse Zenoh framework14 is used for data flow programming among 

the NIF-Cs and for metric collection and aggregation, such as the ones coming from the sources NIF-Cs. 

A visual representation of the prototype implementation is in Figure 22. In the prototype, Kubernetes 

serves as the main deployment environment taking care of the MANO functionalities on top of a 

virtualized infrastructure. The Kubeflow deployment is realized as a Kubeflow cluster with one controller 

and 3 worker nodes, in which the NIF-C components are deployed as pods. The management of NIF-Cs 

is realized by the NIF component manager in Figure 10 through the Kubernetes API. As described in 

previous sections, a set of interconnected NIF-Cs following the N-MAPE-K representation compose a NIF. 

This is realized by a pipeline of pods managed by the NIF Manager utilizing the Kubeflow Pipelines 

Software Development Kit (SDK). The generated pipeline of NIF-Cs is defined in Python, translated in YAML 

and then deployed in Kubernetes (both pods and connectivity) using the developed service which 

utilizes the Kubeflow pipeline service. In the same fashion, the NI Orchestrator manages the NISs (using 

Kubeflow) at a higher hierarchical level. 

Following the described approach, we can provide a set of NIO functionalities including (i) NIS 

composition, (ii) NIS lifecycle management, (iii) NIS workflow configuration, (iv) NIS selection, and (v) 

                                                           
10 https://www.uantwerpen.be/en/research-groups/idlab/infrastructure/smart-highway/  
11 https://doc.ilabt.imec.be/ilabt/virtualwall/  
12 https://kubernetes.io/ 
13 https://www.kubeflow.org/ 
14 https://zenoh.io/ 

https://www.uantwerpen.be/en/research-groups/idlab/infrastructure/smart-highway/
https://doc.ilabt.imec.be/ilabt/virtualwall/
https://kubernetes.io/
https://www.kubeflow.org/
https://zenoh.io/
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Monitoring, which are realized by building on the functionality already available in the Kubeflow 

framework. The developed monitoring service of the NIO provides monitoring of (i) NIF-C/NIF/NIS 

deployment status, (ii) NIF/NIS pipeline progress, (iii) MLOps progress, (iv) resource utilization, and (v) 

performance KPIs. The MLOps operations responsible for the model retraining, at the top-left corner of 

Figure 22, are realized as ML pipelines in the Kubeflow environment, while the NIF/NIS catalog is created 

using a Docker repository linked to the Kubernetes environment. Finally, it is important to stress that the 

NIF-C taxonomy (i.e., Analyze, Plan), as well as the adopted communication paradigm (Eclipse Zenoh) 

were adopted in all components of the architecture including NIF/NIS Catalogs (Dockers with different 

prebuilt libraries per NIF-C type) and during the NIF/NIS creation process (different preconfigured 

attributes per NIF-C type). Notice also that this PoC is also a realization of (part of) the procedures 

described in Sections 5.1 and 5.2. 

 

Figure 22. Prototype demonstrating NIS/NIF/NIF-C pipeline generation, deployment and monitoring. 
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6 Updated state-of-the-art and final taxonomy of intelligent 

network management 
In Section 5 of D2.2 [1], we presented the initial results of the literature review carried out in DAEMON. This 

literature review was guided through a protocol explained in D2.2 [1]. Following the protocol, we 

identified major trends in current research work. Through the analysis of the state-of-the-art research, we 

were able to identify areas where the research done in DAEMON stands out from the rest. Here, we 

present a final report including the updated numbers and concluding results. 

6.1 Updated literature analysis 

In Section 5.2 of D2.2 [1], we proposed a methodology for surveying the current state of the art on the 

research topics we are interested. Following this approach, we were able to review 39 papers in total. 

The results of that analysis were presented in Section 5.3 of the same deliverable. However, for this 

deliverable, we made slight modifications to the methodology. We came to the realization that some of 

the tasks we accomplished in DAEMON represent the cutting-edge in various subjects, including meta-

learning, RAN virtualization, resource allocation, online learning, and more. Therefore, in this report we 

also include our own works and complement them with related works and in the cases that are 

applicable, works that improve our solutions and functionalities. The detailed results from the complete 

literature review can be found in the Annex B of this document.  

In total, we reviewed 78 papers, adding 39 new papers with respect to D2.2 [1], from which 12 belong to 

the research made in DAEMON. Table 8 shows that most of the reviewed papers focus on the area of 

network optimization and control. Naturally, there is a bias due to the modification of the methodology. 

Most of our own works focus on this area, which explains the increase in reviewed works in such an area. 

Also, the preferred location for such algorithms is in the control and orchestration plane, as per Table 9. 

Table 8. Count of publications per Network Micro-Domain and Application Areas. 

 Network Application Areas 

Network  

Micro-Domain 

Network Diagnostics 

and Security 

Network Optimization 

and Control 

Network 

Planning 

Network 

slicing 

Grand 

Total 

Transport 7 3 0 0 10 

Subscriber 1 0 1 0 2 

Edge/core 0 10 0 0 10 

Edge/Client 0 1 0 0 1 

Edge 1 15 0 0 16 

Cross-domain 1 13 1 4 19 

Core, Transport 0 2 0 0 2 

Core 1 5 0 0 6 

Access 2 9 1 0 12 

Grand Total 13 58 3 4 78 

 

Table 9. Algorithm Location. 

Algorithm Location NI Solutions 

Control Plane 40 

Control and 

Orchestration Plane 
18 

Orchestration Plane 11 

Data Plane 9 

Grand Total 78 
 

 

Figure 23. Resource-awareness of reviewed works. 
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A NI solution tackling the resource optimization problem is a good example of a cross-domain approach. 

The solution can be applicable at the edge, at the core or at the network access. The same applies to 

anomaly detection. Therefore, classifying such papers in absence of explicit indication is complicated. 

However, unlike D2.2 [1], the most used ML method is Supervised Learning, followed by Reinforcement 

Learning, as shown in Figure 24. Supervised learning is powerful in predicting future network states and 

resource usage, which can be used later to take decisions, hence, its popularity. Nevertheless, most of 

the algorithms are not resource-aware, which hinders the applicability of such models, considering that 

most of them are deployed at the network access and edge (cf. Table 8). ML quantization and pruning 

are relatively new techniques; they are not often applied in published papers. However, recent efforts 

from Xilinx [34] are inspiring in achieving ML training and inference in resource-constrained devices. 

Exploiting this research line, DAEMON proposes the design of a standardized methodology to determine 

the correct level of quantization of Deep Learning (DL) models for each specific NI functionality, as it will 

be shown in Section 7.1.8.  

 
Figure 24. Most common ML methods in the literature review. 

Finally, real and synthetic datasets are equally used in the reviewed papers. As shown in Figure 25, most 

of the published papers use real and synthetic datasets. Alternatively, the authors are using a 

combination of both or do not provide enough information regarding the dataset they are using. 

However, the real dataset setup is limited to a few nodes, which might not be representative of the 

expected density of B5G networks. We are aware of the difficulties of obtaining a real dataset, though 

we emphasize the importance of training and testing ML models on real, high-quality, and large data 

since it will facilitate the adoption of ML models in the field. As an alternative, researchers should focus 

on the creation of ML models that are robust yet generalized so that they can be trained in synthetic 

data and perform well when deployed on production. 

 

Figure 25. Dataset generation of the reviewed works. 
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6.2 Concluding remarks literature review 

The previous section analyzed over 90 works that proposed ML and hybrid techniques to solve several 

known problems in network management. Given the approach we follow for surveying the current state 

of the art, we recognize that the surveyed papers are biased towards certain topics, such as resource 

management and network optimization and control. However, DAEMON functionalities cover several 

network microdomains, and therefore, the conclusions that we draw from the previous analysis are 

equally valuable.  

Something that we cannot deny is how the AI/ML hype has vastly penetrated the networking community. 

Proof of that, beyond the papers that we surveyed, is the creation of the brand-new IEEE Transactions on 

Machine Learning in Communications and Networking15 journal, focusing on high-quality manuscripts on 

advances in ML and AI methods and their application to problems across all areas of communications 

and networking. Another effort from IEEE is the first International Conference on Machine Learning for 

Communication and Networking16, aiming at promoting fundamental and applied research of ML for 

designing, analyzing and optimizing communication systems. These efforts mentioned above are the 

response to the ever-increasing interest of researchers in applying ML in networking and we are sure that 

they will foster more endeavors in the field. 

AI and ML bring benefits to the telecommunications industry in two dominant fields, namely, data 

processing and automation. Given the amount of information it is produced on current networks, ML 

excels at finding hidden patterns in such data and meaningful features. Those patterns can be leveraged 

later by controllers and orchestrators, optimizing other network processes, which emulate human 

intelligence. In this setup, ML models look for correlations in multi-dimensional data to gain insights into, 

e.g., resource utilization, to forecast future system states and adapt accordingly. Regarding adaptivity, 

thanks to the generalization properties of supervised learning methods, online learning, or adapting a 

model during runtime as in the case of reinforcement learning, ML will allow communication systems to 

change dynamically accordingly to the system dynamics. This is not possible with current methods since 

the operational parameters are valid for a given network configuration and traffic load. Once they 

change, the operational points must be calculated again, which implies an interruption of the service or 

manual configuration. 

During the literature review, we could find evidence of one of the statements we advocate in DAEMON, 

i.e., that most ML models for networking are designed to work in isolation. That is, they do not interact 

with other ML methods, and if they do, the solution is designed in such a way that the data pipeline and 

the interactions between the ML models are fixed to work in the conditions given. In principle, this goes 

against future workflows where: 1) the outputs of different ML models could be aggregated to take 

better-informed decisions and share knowledge among themselves; 2) the input data to such algorithms 

can come from different sources and in different formats; and 3) ML models belonging to different 

administrative domains can act over the same infrastructure which can cause conflicts.  

Undoubtedly, data is a big part of the ML workflow. However, data is often overlooked in the networking 

community. Most of the reviewed papers do not pay much attention to the data they are using for 

training and validation. Synthetic datasets are generated under some specific conditions that, if not 

shared, other scientists cannot reproduce. On the other hand, real datasets may be subject to privacy 

regulations, which make them hard to replicate. As a result, two models that solve the same networking 

problem, e.g., traffic classification, are not comparable because they were trained using different data 

or in different network conditions. This will obstruct, enormously, the adoption of ML in networking. Ideally, 

the networking community should push towards high-quality, large, open datasets, hopefully 

standardized, so ML models can be trained on the same data and the same network conditions, so a 

fair model comparison is possible. Think for instance how the computer vision community has several 

open-source datasets, e.g., ImageNet17, CIFAR18 and COCO19, and how that promoted the creation of 

powerful models [35], which were the stepping stones of computer vision as we know it today. Or in the 

reinforcement learning community where they have Gym20, a standard API with a diverse collection of 

reference environments. In gym, multiple RL algorithms can be trained and tested, solving the same 

environment. Having a common networking environment and common data generation would facilitate 

the comparison between intelligent and non-intelligent models, which is a weak point spotted during the 

literature review.  

                                                           
15 https://www.comsoc.org/publications/journals/ieee-tmlcn  
16 https://icmlcn2024.ieee-icmlcn.org/  
17 https://www.image-net.org/  
18 https://www.cs.toronto.edu/~kriz/cifar.html  
19 https://cocodataset.org/  
20 https://www.gymlibrary.dev/  

https://www.comsoc.org/publications/journals/ieee-tmlcn
https://icmlcn2024.ieee-icmlcn.org/
https://www.image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html
https://cocodataset.org/
https://www.gymlibrary.dev/
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Finally, we noticed that most of the proposed ML models are not tailored for networking. The loss and the 

reward function are defined in terms of known error functions, e.g., MSE, cross-entropy, or 

minimization/maximization functions. Notice that the loss and reward functions optimize the algorithm’s 

learning, e.g., minimizing the cross-entropy, according to the learning problem, e.g., classification. 

However, the learning problem is not necessarily related to the optimal solution of the networking 

problem, e.g., selecting the best modulation scheme to minimize interference. The same is valid for RL 

approaches, where two different models will produce different learning metrics, e.g., cumulated reward, 

but their behavior in terms of the network metrics, e.g., minimizing the latency, needs to be evaluated. 

Therefore, we need to better understand how a model will impact the network stability and reliability, 

not only by improving their learning metrics.  
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7 Final guidelines on the pragmatic design of Network 

Intelligence and Limits of AI 
We have presented the evolved architectural design of the project, which has been designed to support 

a native integration of NI in the network, and where DAEMON has focused on eight groups of such NI 

functionalities (see Section 2 of this document). In this section, we present an updated version of the 

guidelines proposed by DAEMON for incorporating machine-learning-based functions in the design and 

implementation of each of these NI functionalities. These guidelines are based on the experimental results 

and outcomes obtained from the project's research. We provide two sets of guidelines: The first focuses 

on the modifications required to adapt AI/ML solutions into specific networking applications (i.e., on 

Tailored AI), whereas the second set comprises insights on whether AI/ML solutions are the best choice 

for different network use cases (i.e., on Limits of AI). We build upon the preliminary guidelines provided in 

Section 4 of D2.2 [1]. For that, we recall the guidelines provided in [1], while adding new guidelines and 

additions to already existing guidelines generated from last year’s development. A comprehensive 

description of the evolution of each guideline is provided in Table 10, where we show, for each guideline, 

(i) the related functionalities, (ii) its evolution during the last year’s iteration of the project (stable, 

updated, or new), and (iii) its category (whether it relates to tailored AI or to the limits of AI). 

Table 10. Evolution of the DAEMON project’s guidelines from the previous deliverable. 

Guideline Related Functionality Evolution 

from D2.2 

Category 
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Incorporating prior knowledge 

in decision making schemes 

               Stable Tailored AI 

  

Avoiding the loss-metric 

mismatch 

               Updated 

Loss function meta-learning                Updated 

Self-learning models based on 

dataflow programming 

               Stable 

Adapting a known reward 

function to networking 

              Updated 

Low inference time and 

energy consumption 
             Updated 

Explainable NI               New 

No “one-size-fits-all” in Neural 

Network Quantization 
             New 

Traffic classification               Updated Limits of AI 

  Wireless Network performance 

inference 
              Stable 

Self-learning MANO               Stable 

Forecasting in mobile 

networks 
              Stable 

In-backhaul inference               Updated 

Federated learning powered 

NI functionalities 
             Stable 

Predictive HARQ               Stable 

Hard constraints               New 

Anticipatory decision-making 

in mobile networks 
            New 

After illustrating the evolution of the guidelines from previous documents, we describe in detail all newly 

added guidelines, as well as the new content for the ones that have been updated. We keep a brief 

description of the stable guidelines for the sake of completeness, while the detailed description can be 

found in Section 4 of D2.2 [1]. We separate the guidelines in two main categories, as previously 

mentioned, depending on whether they are related to tailoring AI design for NI or to the limits of AI.  
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For each of these guidelines (stable, updated, and new), we provide a critic view of the provided 

solutions by briefly describing the future challenges and the potential limitations of the proposed 

guidelines, so as to offer a complete picture of the State of the Art and the current NI situation for future 

research projects.  

7.1 Tailored AI design for NI 

One of the main goals of DAEMON is to define methodologies to adapt legacy modern deep-learning-

based AI models to the particularities of real-world NI problems. This objective is crucial because 

networking operation, optimization, and management conform to create a complex and singular 

framework that greatly differs from other fields. Because of that, top-level solutions with unmatched 

performance in other less constrained fields may fail to achieve a similar operability in networking 

applications.  

In light of these considerations, the DAEMON project challenges the current practice of addressing NI 

problems by directly adopting general-purpose AI models or models that have been successfully 

employed in other domains, without significant modifications. Instead, a sensible integration of AI models 

into NI calls for substantial customization and contextualization. In this section, we provide a detailed list 

of the research outcomes obtained within the DAEMON project and aimed at adapting and tailoring 

AI/ML solutions for network intelligence. We link these adaptations to the requirements of the target 

functionalities described in Section 2 of D2.2 [1] and in Section 2 of the current document. These 

guidelines are connected to those requirements in a twofold manner: on the one hand, the derived 

solutions build on the constraints and the goals set by those functional requirements; on the other hand, 

the developed solutions allow us to unveil the limitations of the requirements from the outcomes of the 

research work, thus triggering requirements updates. This last interconnection has been crucial to steer, 

improve and evolve each project year iteration. Table 11 summarizes all the guidelines related to tailoring 

AI for NI that have been produced by DAEMON. We indicate which requirements are related to each 

guideline, and we also describe the main take-away message for each guideline. The guidelines that 

were already presented in D2.2 [1] are briefly commented in the remainder of this section, 

complemented with a further detail or follow-up guideline formulated during the last project’s iteration, 

while fully new guidelines are described in detail. For all these guidelines, we provide the main current 

limitations and future challenges that have been identified during the project development, such that 

future research can extract meaningful guidelines for future steps and open problems.  Note that the 

focus there is on the extrapolation of the design guidelines of AI for NI, guidelines that arise from the 

activities carried out during the DAEMON project. Therefore, when applicable, we also link guidelines to 

their implementation for some specific NI-assisted functionality that are presented in other deliverables 

of the project. 

Table 11. Summary of the DAEMON project’s guidelines on tailoring AI for NI. 

Guideline Requirements Description DAEMON 

related 

work 

Incorporating prior 

knowledge in 

decision-making 

schemes 

FR-SLMANO-002 

FR-SLMANO-005 

AI models for NI shall incorporate prior 

knowledge about the network system by 

design, e.g., as restrictions on the 

coefficients of the neural network, or as 

simplifications to the training data. This 

reduces the amount of data needed for 

training without impairing AI performance. 

[36] 

Avoiding the loss-

metric mismatch 

FR-CFORE-002 

FR-CFORE-005 

AI models for NI shall be trained using 

customized loss functions that are carefully 

developed based on expert system 

knowledge. Unlike legacy loss functions 

that are designed to be generic enough to 

work well in a wide range of scenarios, 

task-tailored losses can capture the 

specific performance targets and 

dramatically improve results. 

Update: When it is not feasible to obtain or 

design a customized loss function, the 

DAEMON project advocates the use of loss 

function meta-learning, which enables the 

customization of loss functions for unknown 

[37] [38] 
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relationships between 

decisions/predictions and the system 

performance. 

Loss function 

meta-learning 

FR-CFORE-002 

FR-CFORE-005 

FR-CFORE-006 

FR-CFORE-007 

AI models for NI may adopt when relevant 

a design that meta-learns the loss function 

that best suits the network management 

objective at hand. This is the case, e.g., 

when the performance metric to be 

optimized by anticipatory MANO actions is 

not known a priori by the network 

operator. 

Update: Anticipatory MANO must take into 

account intertwined forecasts. The 

structure and configuration of the AI/ML 

methods designed for loss meta-learning 

and anticipatory MANO must incorporate 

the characteristics needed to handle such 

complex problems to facilitate scalability 

and modularity. 

[37] [38] 

Self-learning 

models based on 

dataflow 

programming 

FR-MTERM-004 

 

AI models for NI shall be informed by 

tailored data feeds. The input to AI models 

for NI requires decentralized and 

distributed data management, unification 

of data patterns, support for 

heterogeneous devices, support for 

eventual consistency models, or support 

for different timescales and real-time 

communications. In turn, these call for both 

decentralized data pipelines as well as the 

ability to declare deadlines for real-time 

operations and the reusability of 

components. 

[39]–[42] 

Adapting a known 

reward function to 

networking 

FR-SLMANO-003 

FR-MTERM-007.00 

AI models for NI that are based on RL may 

adapt known rewards instead of defining 

new ones. Contrary to most of the RL 

applications in networking, where the 

states, actions, and reward function are 

defined using a networking rationale, the 

DAEMON project commends that the 

many different reward expressions used in 

well-known applications of RL can be 

leveraged and adapted to suitable 

rewards that drive NI decisions in specific 

network functionalities. 

Update: The AI solutions for networking shall 

be integrated into control frameworks such 

as the MAPE-K. Furthermore, those general-

use frameworks shall be adapted to the 

particular structure of the network. We 

defined a new reward function that 

optimizes a multi-objective function 

regarding the number of replicas and a 

target delay. Additionally, we framed the 

solution into the N-MAPE-K framework, 

going beyond the state-of-the-art, where 

several scaling solutions can be swiftly 

integrated as NIFs in future network 

infrastructures. 

[26], [43] 

Low inference time 

and energy 

consumption 

NFR-RIS-001 

 

AI models of NI may be designed for 

extremely low inference latency and 

energy consumption. This requirement 

[17], [44], 

[45] 
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NFR-RIS-002 

NFR-EAWVNF-003 

NFR-EAWVNF-004 

NFR-CAWRS-000 

NFR-CAWRS-001 

NFR-CAWRS-003 

applies to a number of mobile network 

applications such as traffic classifiers or 

load balancers in multi-gigabit-per-second 

backhaul segments, or in baseband 

processing operations in the radio 

interfaces, where the processing latency 

budget for inference is well below 100 

microseconds. Techniques for AI design 

that meet such specifications include (i) 

distribution of complexity across simple 

and fast models, e.g., via multi-actor-critic 

RL, (ii) in-subsystem inference that avoids 

time-consuming communication with a 

GPU, e.g., by running AI directly in the 

network interface card (NIC), or (iii) use of 

low-complexity AI models, e.g., Binarized 

Neural Networks (BNN). 

Update: The usage of Digital Twins (DT) shall 

be fostered to obtain faster and more 

resilient models, while avoiding the need to 

deploy in real hardware and take real 

measurements. DTs can speed up the 

design phase and at the same time 

reduce design costs. 

Explainable NI 

(New guideline) 

NFR-CAWRS-000 

NFR-CAWRS-001 

NFR-CAWRS-003 

FR-CFORE-000 

Network management and orchestration 

require accountability and verification, but 

most of learning-based solutions are 

opaque blocks that are not designed with 

the objective of transparency. DAEMON 

advocates for the use of explainable AI for 

developing intelligent solutions in the 

network’s core, since this conflict may 

preclude the ubiquitous use of AI for 

networking. To generalize explainability for 

any network problem, DAEMON proposes 

the use of the classification of explanations 

developed by the Machine Reasoning 

community: attributive, contrastive, and 

actionable explanations. 

Furthermore, in order to extract the most 

from the system-independent standard 

explainable AI methods, DAEMON 

proposes the use of specific explainable 

blocks that provide a compact, human-

friendly, network-aware representation of 

the otherwise verbose complex 

explanations that Explainable AI (XAI) 

techniques provide. 

 [46] 

No “one-size-fits-

all” in Neural 

Network 

Quantization 

(New guideline) 

NFR-EAWVNF-004  

NFR-CAWRS-002 

Next-generation communication systems 

will face new challenges related to 

efficiently managing the available 

resources. DL is one of the optimization 

approaches to address and solve these 

challenges. However, there is a gap 

between research and industry. Most AI 

models that solve communication 

problems cannot be implemented in 

current communication devices due to 

their high computational capacity 

requirements. New approaches seek to 

reduce the size of DL models through 

quantization techniques, which provides 

[47] 
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the means to change the traditional 

method of using operations with 32 (or 64) 

floating-point representation to a fixed 

point (usually small) one. However, the 

recent works using quantization techniques 

apply the one-size-fits-all approach: all 

layers are quantized equally. DAEMON 

proposes a methodology to determine the 

level of quantification that is required to 

obtain the best trade-off between the 

reduction of computational costs and an 

acceptable accuracy in a specific 

problem. 

This set of guidelines, as a whole, addresses all the items related to the tailored design of AI for NI as 

presented in the Description of the Action (DoA) of the DAEMON project. We make these links explicit as 

follows. 

• The guidelines on (i) incorporating prior knowledge in decision-making schemes, (ii) avoiding the 

loss-metric mismatch, and (iii) adapting a known reward function to networking address the issue 

of “closing the loss-metric mismatch, by deriving general guidelines for the design of dedicated 

loss functions that are perfectly aligned with the actual performance metrics of interest”. 

• The guidelines on (i) loss function meta-learning and (ii) self-learning models based on dataflow 

programming address the problem of “designing a methodology for self-learning AI models that 

dynamically and automatically balance costs and efficiency, by learning the loss function 

indirectly from the feedback of the end-customers, without requiring them to explicitly identify 

their objectives”. 

• The guideline on (i) low inference time and energy consumption address the problem of 

“developing elastic NI models capable of adapting their own complexity to the context, trading 

off (computational) complexity for accuracy, responsiveness or energy efficiency as needed”. 

7.1.1 Incorporating prior knowledge in decision-making schemes  

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1[8], updated in Section 2 of D2.2 [1], and which are reported in full in 

Appendix A of this same document: 

• FR-SLMANO-002, FR-SLMANO-005 for Self-learning MANO.  

In many networking problems tackled via ML, the probability of taking an action 𝑎 when a certain 

observation 𝜔 is made, i.e., the policy 𝜋(𝜔, 𝑎), is modeled as a neural network. In such problems, there 

often exists some prior knowledge inherent to the problem that constrains the action space; for instance, 

it may be known a priori that, for two observations 𝜔1, 𝜔2 in different regions of the observation space, a 

certain action 𝑎 should be more likely for observation 𝜔1 than for observation 𝜔2. The simplest example 

of this feature is a monotonicity constraint:  𝜋(𝜔1, 𝑎) >  𝜋(𝜔2, 𝑎) if 𝜔1 > 𝜔2. Plain vanilla neural networks do 

not possess such a property; however, they can only learn this property after being trained on a 

sufficiently large set of data. Incorporating this prior knowledge in the neural network modeling can be 

achieved in various ways: (i) by putting adequate restrictions on the coefficients of the neural network; 

(ii) by preprocessing the training data such that pairs of data that do not expose the desired behavior 

are suitably altered or removed. In both cases, by incorporating prior knowledge, less data is needed to 

train the neural network to achieve a reasonable performance. In Section 4.1.1 of D2.2 [1] we have 

demonstrated how the inclusion of prior knowledge in a model, which estimates the acceptance 

probability of a network service, enhances the performance of the said model.  

Limitations and future challenges 

The incorporation of prior knowledge, in the form of unfeasible subspaces, structure of the data or the 

solution, etc., is a complex task that requires a lot of tailoring and must be tackled differently for each 

problem. The related techniques developed in the DAEMON project, which were described in D2.2 [1], 

all are restricted by the fact that the prior knowledge is under the form of monotonicity constraints. At 

the same time, the techniques can be readily used in all problems where such a (set of) monotonicity 

constraints can be identified. Some other ad hoc techniques will have to be developed to cope with 

problems where the prior knowledge is presented in a different form. 
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7.1.2 Avoiding the loss-metric mismatch in network intelligence 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this document:  

• FR-CFORE-002, FR-CFORE-005 for Capacity Forecasting NI. 

Loss functions drive the training process of supervised machine learning models. In most cases, loss 

functions are designed to be generic enough to work well in a wide range of scenarios. In regression 

problems, including forecasting tasks, Mean Absolute Error (MAE), Mean Square Error (MSE), or Mean 

Squared Logarithmic Error (MSLE) are common choices for expressing the loss. 

However, in many practical cases in network management, such traditional losses do not characterize 

well the target performance metric of forecasting tasks. For instance, in anticipatory resource allocation 

problems, the goal is anticipating a capacity that is sufficient to accommodate future traffic demand. 

Indeed, underprovisioning of capacity leads to the disruption of the offered service and violations of the 

Service-Level Agreements (SLAs) with the service providers. There, it is critical that the predictor learns to 

forecast a minimum quantity that is always above the demand. 

Using a traditional loss function to perform forecasts in cases such as those outlined above results in a so-

called loss-metric mismatch, where the regression objective (i.e., the loss to be minimized) does not 

correspond to the optimization of the actual performance metric. As a result, the AI model’s predictions 

are not aligned with the expected network management objective. 

As part of its guidelines for the tailored design of AI for networking, the DAEMON project supports the use 

of customized loss functions that are carefully developed based on expert system knowledge, i.e., a 

deep understanding of the network engineering or management task at hand, as well as of the variables 

that affect it and how they do so. Figure 26 illustrates how the tailored design of loss functions for NI shall 

occur. In the left plot (a), a pure traffic predictor is trained using a legacy loss, e.g., MAE or MSE for 

regression. The resulting forecast serves as an input to the actual decision block, which is manually 

designed by human experts. In the right plot (b), the novel approach proposed by the DAEMON project 

is outlined: expert knowledge is used to directly design a dedicated loss that encodes the relationship 

between the prediction and the performance objective. As a result, the predictor directly forecasts the 

management decision to drive the MANO actions. Importantly, the action decision is now aware of the 

unavoidable prediction error (e.g., lower accuracy in predicting small traffic volumes), and automatedly 

compensates for it. More details about the techniques that implement this guideline can be found in 

D2.2 [1]. 

Limitations and future challenges 

Tailoring the loss functions to the networking metric of interest will be crucial to achieve many of the 

envisioned applications of AI for networking and will be necessary to accomplish a general network 

intelligence. However, the sheer number of different problems with completely diverse characteristics 

that can be found in the network makes unfeasible a detailed tailoring of the loss functions for each task 

that we desire to implement by means of NI. It would require enormous resources of expert knowledge, 

and it would probably require a continuous adaptation. An alternative to solve this problem and being 

able to generalize NI for any network-related task is to substitute the human-designed, manually tailored 

implementation by autonomous learning that allows the network to self-adapt to new/unknown 

problems, as we will describe in the following guideline. 

              

(a)                                                                                          (b) 

Figure 26. Different approaches for solving the loss-metric mismatch. 

7.1.3 Enhanced Loss meta-learning for network intelligence 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document:  

• FR-CFORE-002, FR-CFORE-005, FR-CFORE-006, FR-CFORE-007 for Capacity Forecasting NI. 

The performance metric to be optimized by anticipatory MANO actions is not always known a priori by 

the network operator. This is the case, for instance, when the performance must be measured at the 
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application layer (i.e., in the service provider domain), or when it concerns end user satisfaction (e.g., if 

it relates to mean opinion scores or quality of experience). In these situations, designing tailored loss 

functions as presented in Section 7.1.2 is not possible, since the human expert (e.g., network manager or 

system engineer) does not know the exact relationship between the forecast and target performance. 

DAEMON sets forth innovative guidelines to deal with NI design in the complex situations described 

above. Specifically, instead of imposing a predefined expression of the loss function used to train the 

predictor, the DAEMON project advocates a design of forecasting models that is free to meta-learn the 

loss function that best suits the network management objective at hand. In practice, this is realized by 

combining a loss-learning block with the actual predictor, as shown in Figure 27. This block is responsible 

for learning the loss function or, equivalently, capturing the relationship between the forecast produced 

by the predictor and the target management objective. Once ready, the loss-learning block can 

operate as a tailored loss function: it receives the output of the predictor and determines its quality for 

the precise management task. Therefore, it can be employed to train the predictor so as to steer the 

optimization of its parameters toward minimizing the actual MANO objective. 

 

Figure 27. Loss meta-learning for NI. The network management objective is learned and encoded into a 

loss-learning block. This block then serves as the loss function to train the predictor, so that it directly 

outputs the anticipatory action. 

This model, coined Loss-Learning Predictor, solves a regression problem and outputs a continuous-valued 

action, but does so by learning from experience, similarly to Reinforcement Learning (RL) approaches. It 

is worth noting that such loss training can use performance measurements collected in the target system 

as a direct representation of the objective, without any need to formalize it as a mathematical function. 

Previous guidelines in D2.2 [1] advocated for an implementation based on two Deep Neural Networks 

(DNN), one for the decision-making in cascade with a second DNN that implements the loss learning 

block. However, such a structure is limited and cannot operate in scenarios with intertwined variables.  

Unfortunately, networking problems usually depend on intertwined variables that need all to be forecast 

in order to deliver the anticipatory MANO decision. Based on the knowledge and expertise acquired 

during the last year of the project, we propose a new structure, which is generic, can be applied to any 

general problem with multiple intertwined variables, is scalable, and modular. From this knowledge, 

DAEMON advocates the use of modular and scalable structures that are jointly trained but structurally 

independent, such that the neural network structure mimics the logical shape of the problem.  

This vision is realized in the DAEMON project through a specific and simple solution. The crucial aspect is 

to split the previously mentioned predictor/decision-making block (cf. Figure 27) into two different blocks. 

A first part is composed of separate parallel neural networks, each one receiving as input one of the 

variables. All these parallel blocks are fed into an Assembler block, which finally outputs the decision,  as 

shown in Figure 28. The main guideline and idea is to logically separate the learning of the temporal 

correlation of each variable (carried out by the first block) and the inter-variable relationship (carried out 

by the aggregator). This allows for much faster and stable training, and it facilitates transfer learning as 

each sub-block can be extracted and applied to different scenarios. 

 

Figure 28. Proposed architecture of the predictor for loss meta-learning model set forth by DAEMON.  
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This design has several key advantages: 

• The loss-learning DNN can learn the relationships between the prediction and the objective from 

measurement data, without the need for human intervention. 

• Without any need for prior knowledge of the system, the loss-learning DNN can model tangled 

non-linear and multivariate objectives that may characterize practical MANO decisions. 

Full details on the design and operation are available in [37] and [38], and a preliminary performance 

evaluation showing the advantages of loss meta-learning over legacy DNNs is presented in Section 4.6.2 

and Section 4.6.3 of D5.1[7] of the DAEMON project. Overall, this guideline paves the road to the design 

of more adapted and automated NI models for MANO operations. 

Limitations and future challenges 

The development of loss meta-learning solutions is still in its infancy, and there are many open questions 

with respect to its limitations. One of the main limits is the need to scale the complexity of the neural 

network depending on the complexity of the problem, which would be unknown for the problems here 

considered. This could be solved through some controlled iteration, with the inherent increase in the 

required time for correct training. Moreover, the fact that these solutions are intended for complex 

environments with unknown performances implies that it is difficult to verify the optimality or correction 

of the offered solutions. These approaches would require a strong and well-defined AI lifecycle 

management to correct and adapt the developed algorithms. 

7.1.4 Self-learning models based on dataflow programming. 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• FR-MTERM-004 on Multi-timescale edge resource management. 

Designing an NI-native architecture for B5G systems requires clear requirements and specifications, 

related to data-driven features such as: decentralized and distributed data management, unification of 

data patterns, support for heterogeneous devices, support for eventual consistency models, or support 

for different timescales and real-time communications. Based on these considerations, the DAEMON 

project advises that we need both decentralized data pipelines as well as the ability for declaring 

deadlines for real-time operations and the reusability of components. 

Eclipse Zenoh-Flow21 provides the mechanism for simplifying and structuring (i) the declaration, (ii) 

the deployment, and (iii) the writing of complex applications that can span from the Cloud to the Edge 

or beyond the edge, offering flexibility and extensibility for data flow programming structures. The main 

benefit of this approach is that it enables us to decorrelate applications from the underlying 

infrastructure: data are published and subscribed to without the need to know where they are actually 

located, e.g., cloud, edge, or beyond edge. 

We tackled the challenge of integrating NI algorithms into the overall DAEMON’s architecture presented 

in the previous sections. We adopted the mentioned N-MAPE-K feedback loop methodology (Network 

Monitor-Analyze-Plan-Execute over a shared Knowledge) to handle the fundamental point of 

understanding which are the needed interfaces. With N-MAPE-K, the algorithms that run at NI instances 

can be classified in a unified manner, according to how they interact with the other network elements. 

Based on these activities, DAEMON advocates the adaptation of standard methodologies to the specific 

characteristics of the network. More details are presented in the other deliverables of the project.  

Limitations and future challenges 

There exist several methodologies that are widely adopted or generally known to enact the feedback 

loop control. It is yet not analyzed the particular advantages that each of them may offer, or if some of 

them are equally valid for their application in network and NI lifecycle management. This study requires 

a detailed analysis that is expected to be done in the future.  

7.1.5 Adapting a known reward function to networking 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• FR-SLMANO-003 for Self-learning MANO, and FR-MTERM-007.00 for Multi-timescale resource 

allocation.  

                                                           
21 https://github.com/eclipse-zenoh/zenoh-flow  

https://github.com/eclipse-zenoh/zenoh-flow
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In D2.2 [1], the DAEMON project commended that the many different reward expressions used in known 

applications of Reinforcement Learning can be leveraged to identify suitable rewards that drive NI 

decisions in specific network functionalities, contrary to most of the RL applications in networking where 

the states, actions, and reward function are defined using a networking rationale. We exemplified this 

guideline for autonomous service scaling, which was mapped to the well-known Cart-pole environment, 

showing how adapting a reward function from one domain (e.g., Cart-Pole environment) to another 

(e.g., networking environment) can be leveraged to identify suitable rewards that drive NI decisions in 

specific network functionalities.  

Yet, the standard reward functions and environments cannot often be directly applied to networking 

problems, and they may require different levels of adaptation. In this regard, DAEMON commends the 

adaptation of standard reward functions and methods to networking and orchestration frameworks, such 

that the N-MAPE-K framework. In order to realize this guideline, in [43] we defined a new reward function 

that optimizes a multi-objective function regarding the number of replicas and a target delay. 

Additionally, we framed the solution into the N-MAPE-K framework, going beyond the state-of-the-art, 

where several scaling solutions can be swiftly integrated as NIFs in future network infrastructures.  

More specifically, in every time step, the agent pays an immediate cost depending on how good or bad 

the action it took is. The cost of taking action when the environment moves from one state to another 

can be defined as a weighted function, including the following contributions.  

• If the agent cannot fulfill the SLA, it incurs a performance cost, 𝑐𝑝𝑒𝑟𝑓 with an associated 𝑤𝑝𝑒𝑟𝑓, 

which is paid every time the perceived peak latency (𝑑) exceeds a predefined threshold (𝑑𝑚𝑎𝑥). 

The cost is zero otherwise. 

• If the agent must deploy a new replica, a resource cost 𝑐𝑟𝑒𝑠 is paid, with an associated 𝑤𝑟𝑒𝑠; this 

can be seen as a rental cost in cloud environments or the consumed energy of the replica while 

it is running.  

These two contributions are combined into a weighted function, where the respective non-negative 

weights define an optimization profile, 𝑤𝑝𝑒𝑟𝑓 +𝑤𝑟𝑒𝑠 = 1. The weights (𝑤𝑝𝑒𝑟𝑓and 𝑤𝑟𝑒𝑠) multiply an indicator 

function (𝟙{⋅}) that varies between 1 and −1 depending on whether a condition is met. For instance, if 

the perceived peak latency is above a threshold, the indicator function is 1 or 0 otherwise; if a new 

replica is instantiated, the indicator function is 1, or −1 if the replica is removed. Finally, the reward 

function is defined as the negative cost function, since the main objective is to minimize the total cost. 

𝑟 = −𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑝𝑒𝑟𝑓 + 𝑐𝑟𝑒𝑠 = 𝑤𝑝𝑒𝑟𝑓 ⋅ 𝟙𝑝𝑒𝑟𝑓 + 𝑤𝑟𝑒𝑠 ⋅ 𝟙𝑟𝑒𝑠 

𝟙𝑝𝑒𝑟𝑓 = {
1 𝑖𝑓  𝑑 ≤ 𝑑𝑚𝑎𝑥
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝟙𝑟𝑒𝑠 = {    

−1       𝑖𝑓 𝑟𝑒𝑚𝑜𝑣𝑒 𝑟𝑒𝑝𝑙𝑖𝑐𝑎
0    𝑖𝑓 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 𝑟𝑒𝑝𝑙𝑖𝑐𝑎 
1              𝑖𝑓 𝑎𝑑𝑑 𝑟𝑒𝑝𝑙𝑖𝑐𝑎 

 

With this reward function we trained a Proximal Policy Optimization (PPO) agent, which showed very 

different behavior depending on the optimization objective. When optimizing the resources over the 

performance, the average amount of replicas is always low; however, there is no guarantee of the 

achievement of the SLA. On the contrary, when the scaler is trained with a reward function that optimizes 

the performance over the resources the violations are reduced to their minimum at the expense of 

creating more replicas. For more details, please refer to [43].  

Limitations and future challenges 

RL-based algorithms in general are non-deterministic, meaning that different outputs can be obtained 

for the same parameter configuration due to the random initialization of the neural network’s weights 

used in the state-action approximation. Therefore, since the learning behavior of an RL-based scaler 

heavily depends on the reward function definition, the reward function must be carefully designed, and 

its effects on the stability of the RL algorithm and its impact on network reliability must be studied. The 

orchestration frameworks will play an important role in controlling such reliability. 

7.1.6 Low inference time and low energy-consuming NI 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• NFR-RIS-001 and NFR-RIS-002 for Reconfigurable Intelligent Surfaces Control NI; 

• NFR-EAWVNF-003 and NFR-EAWVNF-004 for Energy-aware VNF Orchestration NI; 

• NFR-CAWRS-000, NFR-CAWRS-001, and NFR-CAWRS-003 for Compute-aware Radio Scheduling 

NI. 
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Extremely low inference latency and energy consumption is a requirement for NI models in a number of 

mobile network applications such as traffic classifiers or load balancers in multi-gigabit-per-second 

backhaul segments, or in baseband processing operations in the radio interfaces, where the processing 

latency budget for inference is well below 100 microseconds. Most of the existing AI/ML solutions are 

resource-demanding and do not consider so stringent constraints for the inference task. In DAEMON, we 

advocate for the development of tailored highly efficient ML solutions that focus on the said limiting 

processing latency while minimizing the loss of performance.   

In D2.2 [1], we provided three different approaches to meet such tight requirements: Low complexity 

(also by means of distributed and multi-agent learning)[48]; In-subsystem inference (directly in the CPU 

or Network Interface Card (NIC) that collects the input data); and Binarized Neural Networks (BNN) (i.e., 

quantized weights and activations)[49].   

The design of solutions that fulfill these tight constraints are costly, since we need to evaluate the 

performance in the real hardware and obtain the results via measurements. In order to avoid long design 

processes, with difficult design loops, DAEMON advocates for the use of Digital Twins (DT) of the actual 

systems, which allows us to speed up the design and verification phases, reduce costs, and improve the 

transferability of the solutions.  

Limitations and future challenges 

The different approaches suggested above are not the ultimate solution for the problem of low inference 

time and low energy consumption, and each one suffers from different problems: “Low complexity” 

approach suffers from the loss in performance due to the reduced complexity, while distributed learning 

approaches require great efforts to avoid stability or fairness issues; “In-subsystem inference” leads to the 

need of simple models due to the reduced capabilities of NIC and CPU with respect to GPU, and 

“binarized neural networks” reduce precision and require special tools for training (since usual stochastic 

gradient descent does not generally work for them). However, there are very promising results for the 

three approaches, which motivates the research in these fields to advance in the achievement of the 

envisioned goals. For example, [48] has demonstrated an 18x increase in latency performance when 

using a common pipeline of NIC+CPU for data collection and ML inference, compared to performing 

both steps directly on the NIC; and, compared to an equivalent 8-bit quantized network, BNNs require 8 

times smaller memory size and 8 times fewer memory accesses, with drastic gains on optimized hardware, 

e.g., exploiting SIMD extensions on intel or AMD CPUs. 

7.1.7 Explainable NI 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document:  

• NFR-CAWRS-000, NFR-CAWRS-002, NFR-CAWRS-003, for Computation Aware RAN. 

• FR-SLMANO-004 for self-learning MANO. 

Network management and orchestration are based on reliability and fast response time. It is crucial for 

network operators and any involved stakeholder to be able to obtain a clear explanation and 

justification of any of the processes applied in the network. Unfortunately, most of the top-performing 

learning-based solutions (e.g., deep neural networks) are opaque blocks that offer little explainability 

and which are not designed with the objective of transparency. This conflict may preclude the ubiquitous 

use of AI for networking as stakeholders will not support losing accountability capabilities. Based on 

different activities within the project, DAEMON advocates for the use of explainable AI for developing 

intelligent solutions in the core functionalities of the network. This can be achieved by considering 

explainability as one of the objectives during the design phase.  

In order to ensure a comprehensive and transparent system, it is very important to incorporate 

interpretability and explainability features. Significant enhancements to address the issue of explainability 

within the model were explained in Section 2.5 of [2], drawing upon machine reasoning techniques from 

existing literature in the field, in a solution called ATHENA. Within ATHENA, Section 2.5 of D3.2 [2], the 

Machine Reasoning component comprises the second block, which plays a crucial role in interpreting 

the outputs of the machine learning (ML) module and generating actionable decisions for the network, 

albeit at a slower pace. To achieve this, our model needs to offer insights into its internal functionality and 

decision-making process, which we refer to as explanations. 

A relevant guideline for NI is the need for providing explanations falling into three distinct categories 

coming from the research in Machine Reasoning: attributive, contrastive, and actionable explanations, 

as defined by [50]. Attributive explanations aim to provide an understanding of the attributes and 

features that contribute to a particular decision. Contrastive explanations highlight the factors that 

differentiate one decision from another. Lastly, actionable explanations offer insights into the steps or 

actions that can be taken based on the model's output. These three types of explanations shall be 
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adapted according to the specific context of the model, in the case of ATHENA, to the neural network-

based actor-critic architecture. By doing so, the system not only produces accurate results but also 

provides meaningful explanations that enable the expert running the system to comprehend the 

reasoning behind its decisions and take appropriate actions based on those insights. 

Besides this, we also encountered that many of the well-known X-AI techniques natively provide a 

verbose explanation, which is not human-friendly and is based on the fields they are based on (usually 

an image or natural language processing). Based on this fact, DAEMON proposes the use of specific 

explainable blocks that provide a compact, human-friendly, network-aware representation of the 

otherwise verbose complex explanations that Explainable AI (XAI) techniques provide. The proposed 

architecture is shown in Figure 29. 

This guideline was implemented in a project activity that analyzed the explainability of anomaly 

detection for traffic forecasting [46]. Generally, the state-of-the-art only considers stealthy perturbation 

techniques applicable to all the input to assess model vulnerabilities. We contribute a new way of 

assessing vulnerabilities that is specific to the problem of spatio-temporal mobile traffic forecasting. We 

first pinpoint with Explainable AI the most relevant gNBs to the forecast from a spatial perspective at each 

point in time. Next, we show that traffic injected only in those gNBs (perturbation) causes the model to 

under-estimate the prediction while SotA techniques lead to overestimation. 

 

Figure 29. Proposed comprehensible explainable AI set forth by DAEMON. 

Limitations and future challenges 

Explainable AI methods have not yet been deployed and implemented in networks. These methods, 

although they provide some sort of explainable answer to the question of why the output of the algorithm 

has happened, they do not offer human-friendly outputs, neither network-related nor network-based 

outputs that understand the inherent structure and concept of the network. There are a lot of open 

problems in this topic, and the fundamental limits of explainability are still to be discovered. The project 

is still advancing this topic in different directions, i.e., defining a vulnerability score that is a combination 

of XAI scores and statistics, or quantify the damage to the predictor of newly defined traffic injection 

techniques based on the vulnerability score.  

7.1.8 No “one size fits all” in Neural Network Quantization 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• NFR-EAWVNF-004 for Energy-aware VNF Orchestration NI 

• NFR-CAWRS-002 for Compute-aware Radio Scheduling NI. 

As seen in several NI solutions, large Deep Learning (DL) models are typically used to solve complex 

problems. Nevertheless, due to the size/complexity of such models, the inference must be performed in 

machines with high computational power, which is not characteristic of the devices composing the radio 

access, edge, or far-edge networks. Neural Network Quantization [51] helps to reduce the 

computational cost of implementing and deploying such DL models. However, the recent works that 

apply quantization to reduce the complexity of the DL models apply the “one-size-fits-all” approach, 

where all the layers are quantized using the same value [52]–[54]. Although it may work in some cases, 

this approach does not allow for finding quantization configurations that provide a desired trade-off level 

between model learning performance, e.g., accuracy, and the model’s complexity. 

Based on the previous problem, DAEMON advocates for the design of a standardized methodology to 

determine the correct level of quantization of DL models for each specific NI functionality. The objective 

is to automate the selection of the models and quantization in a zero-touch manner, such that the system 

can select the appropriate quantization choice in an automated manner, which can be integrated into 

the generic NI lifecycle management presented in the previous sections.  
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To describe the proposed methodology, let us consider an experiment with three design factors, where 

each element has three possible levels. Then, using a complete factorial design, we would need to run 

the same experiment 33−1=26 times to determine which design factor impacts the response variable (i.e., 

the outcome) the most. Translating this small example to the field of DL model quantization, if we have 

three quantifiable parameters (e.g., the input, the activation layers, and the weights), each in the range 

of 1 to 32 bits, it gives 323−1=32,767 possible combinations. Evaluating the impact of each parameter’s 

quantization level regarding the accuracy and inference cost is prohibitively time- and resource-

consuming. 

Based on a fractional factorial design, our methodology allows for reducing the number of experiments 

concerning quantifiable parameters. We divide the methodology into four stages. After each stage, we 

measure the trade-off between the model’s performance metric (e.g., accuracy) and its inference cost 

(e.g., space in memory, number of operations) regarding the unquantized model. It is worth mentioning 

that it is possible to include a preprocessing of the input signals to reduce their size before applying this 

methodology, such as dimensionality-reduction methods or averaged filters. Figure 30 illustrates a 

detailed block diagram of the developed methodology. 

 

Figure 30. Proposed methodology based on fractional factorial design. 

This methodology is proposed in [47] and applied to the Automatic Modulation Classification and 

Recognition (AMR/AMC) problem, as an example. However, this approach can be applied to any other 

problem. During the first stage, we identify the dominant parameter in the quantization. To perform this, 

we select a subset of representative levels and evaluate all the possible combinations over that subset 

(i.e., screening). That evaluation is made regarding the model accuracy and the Normalized Inference 

Cost Score (NICS), i.e., the outputs. Accuracy is the ratio between the number of correct and the total 

number of predictions in all classes. The NICS calculation is obtained by comparing the weight bits, total 

activation bits, and Bits Operations (BOPS) against the reference model, as per the following equation. 

𝑁𝐼𝐶𝑆 = 0.5 ∗ (
𝑏𝑜𝑝𝑠

𝑏𝑜𝑝𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) + 0.5 ∗ (

𝑤𝑏𝑖𝑡𝑠
𝑤𝑏𝑖𝑡_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

) 

Where 𝑏𝑜𝑝𝑠 and 𝑏𝑜𝑝𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 are BOPS of the evaluated (quantized) and the reference (non-quantized) 

model, respectively. Similarly, 𝑤𝑏𝑖𝑡𝑠 and 𝑤𝑏𝑖𝑡𝑠_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 are the total bits used by the weights in the evaluated 

and the reference models, respectively. Note that previous information can help refine the selection of 

subsets. For instance, [55], [56] showed that an 8-bit quantized Convolutional Neural Network (CNN) 

model achieves an accuracy close to that of an unquantized model for AMR. Then, a reduced subset 

of quantization levels can be used (i.e., from 1-bit to 8-bit quantization). Once we obtain the 

performance and the inference cost for each combination of the subset, we apply Spearman’s 

correlation coefficient (see following equation) to identify which quantized parameter (i.e., input, 

activations, and weights) has the highest impact on the output, i.e., the dominant parameter. We use 

Spearman’s correlation, where n is the number of observations and D is the variable of interest, since it 

allows for correlation variables that bear a nonlinear relationship. If, during the screening, a combination 

that meets the expected trade-off is found, e.g., by creating the Pareto front using the resulting accuracy 
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and NICS metrics from the quantized models, then we can conclude our search. Otherwise, we can 

move to the second stage.  

𝜌 = 1 −
6∑ 𝐷2𝑛

𝑖=1

𝑛(𝑛2 − 1)
 

Since modern DL models are composed of several layers, if the dominant parameters are activation or 

weights, we can evaluate in a layered way which layer has the highest effect on the trade-off (stage 2). 

Notice that the weights are more likely to significantly impact the accuracy and inference cost outputs 

than activations and inputs since there are more hidden units and connections among them than layers. 

During the second stage, we measure the degree of quantization per layer required to meet a given 

trade-off. In addition, notice that if the input is the parameter that most impacts the outputs, then the 

second stage is the same, but the only layer to alter is the input one. A good starting point is to take the 

same quantization subset as in stage one. In this stage, we vary the quantization level of a given layer 

while keeping the quantization level of the non-dominant parameters and the remaining layers the same. 

Our second stage differs from previous works such as [52]–[54] since they typically apply the same 

quantization level to all the model’s layers. Suppose the trade-off between the model performance 

metric and the inference cost is met, then we conclude our search by obtaining an architecture in which 

we have identified which layer of the model has the highest impact. Otherwise, we can continue with 

the third stage.  

So far, we have analyzed the impact of only one layer in the trade-off. However, we may obtain a better 

model configuration by quantizing different layers using different quantization levels. Using the results 

from the previous stage, we analyze the data dispersion using the mean, the median, and the main 

quartiles per layer per variable of interest (i.e., model performance metric and inference cost). At this 

point, the layer with higher dispersion is the layer that influences the trade-off the most. This allows us to 

analyze the behavior of each layer, but we still need to determine its quantization level. To answer this 

question, we must correlate the information using Spearman. Since Spearman’s correlation ranges from 

1 to −1, we can obtain an equivalent scale for the quantization level. During the search, we identify the 

quantization level that, in general terms, offers a better trade-off. This quantization level is regarded as 

the highest Spearman’s correlation coefficient. Then, it is possible to obtain the quantization level and 

the direction, e.g., a 1 as correlation coefficient means that the layer must be quantized at the highest 

quantization level possible. In contrast, a −1 correlation coefficient means the layer must be quantized 

with the lowest possible level. 

In the last stage (stage four), we can select the level of quantization that every model layer should have. 

Thus, having Spearman’s correlation results per layer, we map the correlation coefficient with the 

quantization level described above and apply the following equation, where M is the median and D is 

the variable of interest. Suppose there is more than one variable of interest. In that case, the equation 

should be applied per variable, and the quantization level of each model layer can be selected as a 

weighted sum of the quantization levels per variable of interest. In this way, the experimenter can choose 

which variable of interest to care for the most. 

𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑦𝑒𝑟

{
 
 

 
 
4 +

(4 ∗ 𝑀) + 4

2
𝑖𝑓 𝜌 ≥ 1 −

6∑ 𝐷2𝑛
𝑖=1

𝑛(𝑛2 − 1)

−4 +
(4 ∗ 𝑀) + 4

2
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

When validating with a concrete set of experiments on a well-known DNN architecture for AMR, the 

results demonstrate that our methodology finds quantized architectures (red dots in Figure 31) better 

than the “one-fit-all” approach.  The solutions obtained in phases 1 and 2 are also shown. Notice that by 

varying the weight of the two objective functions 𝛼1 (accuracy) and 𝛼2 (inference cost), different 

configurations can be obtained that were not found in the initial experimentation analyzed with the 

Pareto optimum. 
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Figure 31. Solutions that were obtained using the proposed methodology for a DL model solving the AMR 

problem.  

If we select the solution that balances the two objectives, Figure 32 shows the same accuracy as the 

models quantized with 10 and 8 bits while providing the lowest inference cost. 

 

  

Figure 32. Modulation classification accuracy of the original (unquantized) model and the quantized 

versions with different Signal-to-Noise Ratio(SNR) values (left) and the comparison of the quantized 

VGG10 1D-CNN model versus the non-quantized model in inference cost (right).  

Limitations and future challenges 

Although the proposed methodology is very generic, it has only been tested on one NI problem type of 

architecture. Therefore, applying this methodology to find the appropriate quantization level using other 

DNN architectures for AMR and extending it to other NI problems (e.g., traffic classification) is essential. 

In addition, quantization is not the only method to reduce the model size. Therefore, further 

experimentation with our methodology with other quantization techniques or in combination with 

pruning remains to be performed, which could provide an even more significant reduction in the 

inference cost and validation of the generality of the proposed approach. Finally, performance 

evaluations of some of the resulting models as a part of a wireless communication system running on an 

FPGA have to be done to provide further quantitative results of the trade-off between model accuracy 

and other metrics related to the model size, such as energy consumption and processing speed. 

7.2 Limits of AI for NI 

One of the cornerstones of the DAEMON project is its critical approach toward AI, intended as complex 

data-hungry black-box models based on deep learning and as a sliver bullet to solve any task in network 

management. Following this stance, the project is exploring the limits of AI in the case of the eight NI-
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assisted network functionalities targeted in the DoA, so as to identify potential limitations of AI in such 

practical tasks. At the same time, we are investigating alternative methods that allow to broaden the 

spectrum of learning and optimization tools that are best suited to concrete networking problems, 

including classical statistical models, simple ML techniques, optimization tools, or heuristics. Such tools 

can be employed in stand-alone approaches or jointly in hybrid approaches if the latter are found to 

work better for the functionality at hand. 

In this section, we summarize the results of the activities in the project that aim at responding to the 

question: “When should AI be preferred to (or combined with) other approaches in order to maximize 

the efficiency and performance of NI?” We therefore provide the insights and conclusions that outcome 

from the research derived in the context of DAEMON about whether/when AI is the most appropriate 

solution to network management problems. Next, we provide a list of the current outcomes of the 

research conducted within the DAEMON project and aimed at understanding the limitations of AI/ML 

solutions by demonstrating that other classes of models are better suited to empower the NI-assisted 

network functionalities we target. We link these adaptations to the requirements of the target 

functionalities proposed in DAEMON. As in the case of the guidelines for a tailored design of AI for NI, the 

connection between requirements and these new guidelines is bidirectional, as (i) the functional 

requirements set the constraints that the guidelines fulfill, and (ii) the evaluation of solutions built on the 

guidelines allows for revealing limitations of the requirements, which shall be updated accordingly. 

Table 12 summarizes the seven guidelines produced by the project to date, indicating the requirements 

they relate to and providing a brief description of their key message. Full details on each guideline are 

then presented in the remainder of this section. Note that the focus there is on the extrapolation of the 

design guidelines of AI for NI, which arises from the activities carried out during the first iteration of the 

DAEMON project. Therefore, when applicable, we also link guidelines to their implementation for some 

specific NI-assisted functionality that are presented in other deliverables of the project. 

Table 12. Summary of the DAEMON project’s guidelines on the limits of AI for NI. 

Guideline for Requirements Description DAEMON 

related 

work 

Models for Traffic 

classification 

FR-MTERM-006 

 

For unencrypted traffic, in DAEMON we propose 

the use of simple statistical algorithms for traffic 

classification of unencrypted data, as we have 

shown that they perform as well as complex AI/ML 

approaches. In such situations, the statistical 

approaches are preferred due to the huge 

difference in complexity. 

Update: When performing traffic classification at 

spectral-level packets (i.e., physical layer packets 

represented as a time series using IQ samples or 

any other spectrum-level representation), 

DAEMON proposes to use DL models over statistical 

ML models, as the former outperforms the latter. 

Moreover, CNN is more suitable than RNN in terms 

of input size (CNN can manage larger times-series 

sequences), accuracy, and faster inference time. 

[57], [58] 

Wireless Network 

performance 

inference 

FR-MTERM-006 

 

While ML approaches outperform classic 

mathematical approaches that rely on simplified 

assumptions, the former suffers from the limitations 

on the fixed size of input and scalability. It has 

been shown that hybrid approaches based on 

machine learning algorithms that make use of 

graph theory clearly improve the performance 

over both standard ML and mathematical 

solutions. 

 [25] 

Self-learning 

MANO 

FR-SLMANO-000 In auto-scaling of virtual resources, it has been 

proven that classical control theory approaches 

outperform RL-based controllers in terms of the 

trade-off between resource requirements and 

QoE. It turns out that the flexibility that the RL 

approach brings incurs the cost of having a lower 

performance. 

[26], [43] 

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en-us&rs=en-us&wopisrc=https%3A%2F%2Ftelefonicacorp.sharepoint.com%2Fsites%2FDAEMON.TMEHI-WP2%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F605632c7791c44f6ae788f23062f26d1&wdenableroaming=1&mscc=1&hid=2ec884f4-f9b2-fb24-d71a-57789be1d466-729&uiembed=1&uih=teams&uihit=files&hhdr=1&dchat=1&sc=%7B%22pmo%22%3A%22https%3A%2F%2Fteams.microsoft.com%22%2C%22pmshare%22%3Atrue%2C%22surl%22%3A%22%22%2C%22curl%22%3A%22%22%2C%22vurl%22%3A%22%22%2C%22eurl%22%3A%22https%3A%2F%2Fteams.microsoft.com%2Ffiles%2Fapps%2Fcom.microsoft.teams.files%2Ffiles%2F3949490975%2Fopen%3Fagent%3Dpostmessage%26objectUrl%3Dhttps%253A%252F%252Ftelefonicacorp.sharepoint.com%252Fsites%252FDAEMON.TMEHI-WP2%252FShared%2520Documents%252FWP2%252FDeliverables%252FD2.2%252Fict52-daemon-deliverable-2.2.docx%26fileId%3D605632c7-791c-44f6-ae78-8f23062f26d1%26fileType%3Ddocx%26ctx%3DopenFilePreview%26scenarioId%3D729%26locale%3Den-us%26theme%3Ddefault%26version%3D21120606800%26setting%3Dring.id%3Ageneral%26setting%3DcreatedTime%3A1655133942882%22%7D&wdorigin=TEAMS-ELECTRON.teamsSdk.openFilePreview&wdhostclicktime=1655133942747&jsapi=1&jsapiver=v1&newsession=1&corrid=04beaa36-8d8b-4a27-ba2c-75955c90bc7f&usid=04beaa36-8d8b-4a27-ba2c-75955c90bc7f&sftc=1&sams=1&accloop=1&sdr=6&scnd=1&sat=1&hbcv=1&htv=1&hodflp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Medium&ctp=LeastProtected#FRSLMANO000


Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

66 

Forecasting in 

mobile networks 

FR-CFORE-000 

 

While there has been extensive research on ML 

approaches for forecasting, showing that such 

approaches usually outperform more classical 

statistical solutions, in DAEMON we have proposed 

a truly hybrid approach that takes the best from 

both paradigms, and which improves the results of 

state-of-the-art predictors. The concept is simple: 

instead of applying a global normalization of the 

traffic time series before it is input to the DNN 

predictor, a dynamic normalization is performed at 

each time step; the level used for such a dynamic 

normalization is decided by a statistical model. 

Both the DNN and the statistical model’s 

parameters are trained through the same gradient 

descent mechanism. From this and the second 

point of this table, DAEMON advocates for the use 

of hybrid solutions that provide synergistic gains. 

[28] 

[59], [60] 

 

Not yet 

published 

results 

appearing 

in D4.3 

In-backhaul 

inference 

FR-IBSSI-002 

NFR-IBSSI-000 

NFR-IBSSI-001 

The feasibility of realizing inference in 

programmable user planes at line rate is a 

challenging network environment for NI, because 

of the strong limitations of the programmable 

switch’s hardware. 

In such applications, highly-elaborated, complex 

non-interpretable deep learning models for the 

user-plane tasks analyzed provide a similar 

performance as much simpler and interpretable 

tree-based approaches.  The DAEMON project 

advocates the use of Random Forest models 

instead of other approaches, including those 

based on deep learning, for in-backhaul inference. 

Indeed, apart from not achieving a better 

performance, neuron-based approaches are 

challenging to implement in resource-constrained 

programmable switches. 

Update: The DAEMON project advocates the use 

of hierarchical inference models for in-switch/in-

line classification, which is a resource-constrained 

scenario. Hierarchical inference leads to better 

accuracy while reducing the required resources. 

[16] 

 

Federated 

learning powered 

NI functionalities 

FR-SLMANO-000 

FR-SLMANO-003 

FR-AARES-000 

FR-AARES-001 

While the main question is whether ML should be 

preferred to non-ML-based approaches for some 

NI applications, another related question is which 

ML framework should be considered, which also 

falls within the questions about the best practices 

and limits of each of the AI frameworks. For 

example, in DAEMON we recommend the use of 

Federated Learning (FL) over centralized or 

distributed learning for applications that require 

several intelligent agents acting cooperatively, in 

cases where the decisions taken at distant parts of 

the network are intertangled and impact each 

other.  FL allows for a low response time due to the 

existence of the local module, and a high 

scalability due to the exchange of limited traffic 

between FL clients and the FL controller. 

[61] 

Predictive HARQ NFR-CAWRS-000 

NFR-CAWRS-001 

NFR-CAWRS-003 

Predictive HARQ is a network application that 

requires extremely low latency, while maintaining 

both ultra-high accuracy and low false positive 

rate. Complex ML-based algorithms fail to provide 

performance guarantees, and they consume 

excessive time in the inference task. In DAEMON, 

[15] 
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we have found clearly identifiable patterns that 

distinguish decodable and non-decodable code 

blocks, which can be detected through simple 

algorithms with minimum computation delay. 

Hence, in DAEMON we suggest the use of simple 

statistical or control-theory approaches to 

implement predictive HARQ and other ultra-low-

latency-inference applications. 

Hard constraints 

(New guideline) 

NFR-EAWVNF-005 

NFR-EAWVNF-006 

Conventional AI models based on neural networks 

struggle to satisfy hard constraints. The usual 

approach is to build solutions that guarantee 

constraint satisfaction only on average. DAEMON 

advocates the use of Bayesian learning and 

expansive safe sets to overcome this limitation. 

[18] 

[62]–[64] 

 

Anticipatory 

decision-making 

in mobile 

networks 

(New guideline) 

FR-SLMANO-000 

FR-CFORE-001 

FR-MTERM-000 

Taking anticipatory decisions in network 

management requires solutions that are able to 

operate at different time-scales and require the 

fulfillment of hard constraints. Based on these 

conditions and characteristics, DAEMON proposes 

the use of cascaded hybrid methods that include 

both ML-based elements and optimization-based 

block, and the use of replicated similar-but-not-

equal methods for different time-scales, which 

update and operate the same function at different 

timescale and with different accuracy 

requirements. 

Based on different activities within the project, 

DAEMON also advocates for the use of yield 

management strategies such as overbooking of 

services, which can be exploited thanks to the 

bursty and non-stable nature of mobile traffic. 

[65], [66] 

 

Not yet 

published 

results 

appearing 

in D4.3 

7.2.1 Traffic classification 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• FR-MTERM-006 for Multi-timescale resource allocation. 

Initial guidelines about NI for Traffic Classification (TC) have been presented in Section 4.2.1 of D2.2 [1], 

where we indicated that when dealing with encrypted traffic at packet-level (byte) representation [58], 

the automatic feature extraction procedure of DL models can help in the TC task, given that the features 

used in simple ML models based on statistical ML are not enough to properly identify among traffic 

classes. On the contrary, in unencrypted traffic, DL models behave as simple statistical IP/port-based 

architecture and can be replaced by simpler ML models.  

However, traffic classification is traditionally performed at packet-level (byte) representation. This is 

based on the assumption that the traffic flows on a wired network under the same network management 

domain. This assumption limits the capabilities of TC systems in wireless networks since users’ traffic on one 

network domain can be negatively impacted by undetected users’ traffic from other network domains 

or detected ones but with no traffic context in a shared spectrum. To solve this problem, we introduce a 

novel framework to achieve TC at any layer in the radio network stack [57], which uses a DL-based 

classifier that can process L1 (physical) layer packets as input, represented as a time series of In-Phase 

and Quadrature (IQ) samples, and provide as output a label representing the type of traffic that is 

transported by the L1 packet at a given layer. Therefore, DAEMON proposes to perform traffic 

classification at L1 using Deep Neural networks (DNN) architectures such as CNN and Recurrent Neural 

Network (RNN), where CNN are preferred as they can manage large time-series data (more than 3K IQ 

samples) with lower computational complexity compared to RNN. Moreover, it was demonstrated that 

statical ML models were not suitable for dealing with limited number of features due to the encrypted 

nature of wireless transmissions.  

Limitations and future challenges 

Traffic Classification (TC) systems allow inferring the application that is generating the traffic being 

analyzed. State-of-the-art TC algorithms are based on Deep Learning (DL) and have outperformed 
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traditional methods in complex and modern scenarios, even if traffic is encrypted. Nowadays, internet 

traffic that is generated by regular users is being encrypted for privacy and security reasons. In such 

cases, DL models are required to outperform the limitations of feature-based statistical ML models. 

However, other type of networks, e.g., industrial/sensor networks, can still take advantage of simpler 

models since its traffic can be encrypted in the access link (e.g., to avoid transmitting in plain text) but its 

gateway can decode it.   

With respect to TC at the spectrum level, the proposed models are complex and require a high-end 

hardware accelerator to run them, making their deployment unfeasible on constraint environments like 

the edge/far-edge. Further research on energy efficiency and reduction of the model complexity must 

be carried on allowing them to run in traditional wireless environments.  It is important to also recognize 

that there is a lack of understanding of what the models are learning when using DL models, which 

requires further research on representation learning and explainability for this kind of classification tasks. 

Finally, there is a big need for the creation of new datasets (synthetic but even more important with real 

data) and make them open and available for further benchmarking and validation of the research as 

done in this research22.  

7.2.2 Inferring wireless networks performance using Graph Neural Networks 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• FR-MTERM-006 for Multi-timescale resource allocation. 

The limits of ML models for wireless performance prediction were explored in Section 4.4.2 of D2.2 [1], 

where it was shown that traditional ML models face challenges when learning from structured data 

represented as graphs, as the relationships among nodes are not captured or must be represented 

differently. To overcome this limitation, DAEMON commends the use of Graph Neural Networks (GNNs). 

We refer to D2.2 [1] for further details. 

Limitations and future challenges 

GNNs are promising ML models for solving networking problems, especially because there is a 1:1 

mapping of the network infrastructure with the graph definition. However, as shown in [67], they lack 

generalization capabilities to operate with large graphs. Ideally, we should be able to produce ML 

models that can be trained in small-size testbeds and make sure that the ML model is able to operate 

with guarantees in real-size networks.  

Moreover, besides contextual and structural information, temporal information (e.g., dynamically 

changing parameters such as location or channel allocation) can increase the prediction performance 

of GNNs as shown in [68]. 

7.2.3 Self-learning MANO – reinforcement learning 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• FR-SLMANO-000 for Self-learning MANO. 

For autonomous service scaling (a key component of self-learning MANO), the number of VNFs needs to 

be scaled according to the work that is offered. The decision to add or remove a VNF often needs to be 

made based on the observed QoE, e.g., the latency incurred in processing the work. Scaling algorithms 

can rely on Reinforcement Learning (RL) or on Control Theory (CT). In contrast to the Deep Reinforcement 

Learning (DRL) approach, which has a neural network at its core with as many parameters as there are 

synapses, the CT approach has only a few parameters to tune.  

As explained in D2.2 [1], it turns out that the CT approach outperforms an RL-based controller in terms of 

the trade-off resource requirements versus QoE but needs to be tuned manually. In other words, the 

flexibility that the RL approach brings comes at the cost of having a lower performance. 

In the third project year, we have improved the CT controller in the following way: it reacts in a different 

way when the KPI is above an upper threshold than when the KPI is below a lower threshold. This doubles 

the number of parameters (which makes it more cumbersome to tune) but increases the performance 

drastically. The details of this new contribution, algorithm and results, will be presented in the deliverables 

D3.3-D4.3 and D5.3, respectively. 

   

                                                           
22 https://github.com/miguelhdo/tc_spectrum  

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en-us&rs=en-us&wopisrc=https%3A%2F%2Ftelefonicacorp.sharepoint.com%2Fsites%2FDAEMON.TMEHI-WP2%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F605632c7791c44f6ae788f23062f26d1&wdenableroaming=1&mscc=1&hid=2ec884f4-f9b2-fb24-d71a-57789be1d466-729&uiembed=1&uih=teams&uihit=files&hhdr=1&dchat=1&sc=%7B%22pmo%22%3A%22https%3A%2F%2Fteams.microsoft.com%22%2C%22pmshare%22%3Atrue%2C%22surl%22%3A%22%22%2C%22curl%22%3A%22%22%2C%22vurl%22%3A%22%22%2C%22eurl%22%3A%22https%3A%2F%2Fteams.microsoft.com%2Ffiles%2Fapps%2Fcom.microsoft.teams.files%2Ffiles%2F3949490975%2Fopen%3Fagent%3Dpostmessage%26objectUrl%3Dhttps%253A%252F%252Ftelefonicacorp.sharepoint.com%252Fsites%252FDAEMON.TMEHI-WP2%252FShared%2520Documents%252FWP2%252FDeliverables%252FD2.2%252Fict52-daemon-deliverable-2.2.docx%26fileId%3D605632c7-791c-44f6-ae78-8f23062f26d1%26fileType%3Ddocx%26ctx%3DopenFilePreview%26scenarioId%3D729%26locale%3Den-us%26theme%3Ddefault%26version%3D21120606800%26setting%3Dring.id%3Ageneral%26setting%3DcreatedTime%3A1655133942882%22%7D&wdorigin=TEAMS-ELECTRON.teamsSdk.openFilePreview&wdhostclicktime=1655133942747&jsapi=1&jsapiver=v1&newsession=1&corrid=04beaa36-8d8b-4a27-ba2c-75955c90bc7f&usid=04beaa36-8d8b-4a27-ba2c-75955c90bc7f&sftc=1&sams=1&accloop=1&sdr=6&scnd=1&sat=1&hbcv=1&htv=1&hodflp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Medium&ctp=LeastProtected#FRSLMANO000
https://github.com/miguelhdo/tc_spectrum
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Limitations and future challenges 

Automatic tuning of the CT algorithm remains challenging, while for tuning of the parameters of an RL 

algorithm, a well-known technique (relying on the theory of Markov decision processes) exists. If the 

statistics of the workloads do not change drastically over time, it is worth spending enough computation 

resources to tune a CT algorithm, while in case there are frequent statistical changes in the workloads 

one has the rely on the plasticity of an RL based approach.   

7.2.4 Forecasting in mobile networks 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• FR-CFORE-000 for Capacity Forecasting NI. 

In deliverable D2.2 [1], we introduced a guideline for forecasting in mobile networks. This guideline is 

related to the current trends in forecasting for anticipatory networking, which lean towards the 

systematic adoption of models that are purely based on deep learning approaches (see Section 4.2.4 in 

D2.2 [1] for a detailed description of the different approaches and the corresponding references). 

However, very recent results from the machine learning community suggest that hybrid engines 

integrating statistical modelling and DNN can, in fact, substantially outperform pure DNN approaches in 

time series forecasting tasks [69]. Based on the demonstrated superior performance over pure DNN 

solutions, in DAEMON, we advocate for a hybrid statistical-learning paradigm to the problem of 

forecasting for Network Intelligence (NI). This superiority is also demonstrated over state-of-the-art 

dedicated DNN-based predictors from the literature. The specific architecture proposed, named 

Thresholded Exponential Smoothing with Recurrent Neural Network (TES-RNN), is a general-purpose 

network traffic forecasting technique that can be tailored to perform predictions for different NI 

functions. The concept behind TES-RNN is simple: instead of applying a global normalization of the traffic 

time series before it is input to the DNN predictor, a dynamic normalization is performed at each time 

step; the level used for such a dynamic normalization is decided by a statistical model, whose parameters 

are optimized jointly with those of the DNN during training. The architecture incorporates Auto-ML 

mechanisms for the selection of hyperparameters. Further details on the proposed structure can be 

found in Section 4.2.4. in D2.2 [1]. Overall, by proposing this very first hybrid approach to forecasting for 

NI, DAEMON paves the way for a different strategy for the design of predictors for mobile network 

environments. This guideline motivated further studies that led to the guideline presented in Section 7.2.9 

for anticipatory decision-making. 

Limitations and future challenges 

Fully hybrid approaches, where the parameters of the statistical model are jointly trained with the weights 

of the neural networks, are a novel approach that still has many open questions and challenges. One of 

the main challenges is understanding the dependency of one model (statistical or learning-based) with 

the other since the performance one the first may be intertwined with the updates of the other. Achieving 

a correct convergence is key in such models. Integrating both approaches is expected to be the by-

default strategy for many complex problems, since in this way we can take advantage of the strengths 

of the two approaches. However, we need a better understanding of the fundamental limits of statistical 

and learning-based models in order to prevent us from suffering the disadvantages of both approaches.  

7.2.5 In-backhaul inference 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• FR-IBSSI-002, NFR-IBSSI-000, NFR-IBSSI-001 for In-backhaul Support for Service Intelligence NI. 

As part of the project activities, we investigate the feasibility of realizing inference in programmable user 

planes at line rate. This is a challenging network environment for NI, given the strong limitations of the 

programmable switch hardware, as detailed in Section 7.1 of D3.1 [5] of DAEMON. 

Based on the results of extensive tests with multiple real-world use cases for network traffic classification 

and anomaly detection, and as already mentioned in Section 4.2.5 of D2.2 [1], the DAEMON project 

advocates the use of Random Forest models instead of other approaches, including those based on 

deep learning, for in-backhaul inference. Indeed, we did not identify any significant advantage in relying 

on complex non-interpretable deep learning models for the user-plane tasks analyzed: simpler 

approaches based on multiple decision trees achieve an accuracy that is similar or even superior in such 

tasks. Instead, we found that deep learning models are much more challenging to implement in 

resource-constrained programmable switches, which dramatically limits their internal complexity (e.g., in 
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terms of layer depth or number of neurons per layer) and thus an inference potential that is classically 

largely dependent on their architectural complexity. 

Results supporting the guideline above are available in Section 4.7.1 of D5.2 [4] of the DAEMON project. 

 

Figure 33. Proposed framework for in-backhaul inference. 

Furthermore, the DAEMON project advocates the use of hierarchical paradigms for in-switch inference. 

In this scenario, the amount of available resources in the switch is one of the limiting dimensions for 

implementing inference algorithms in-line. Here is where hierarchical paradigms come to the rescue by 

splitting the overall target task into simpler ones that are themselves easier to handle; then, smaller 

classifiers can be trained to solve the sub-tasks, collectively yielding a better accuracy while being able 

to fit within the limited switch capabilities. In this manner, we are able to both improve performance in 

terms of accuracy but also in terms of resources. The results showcasing the benefit of applying this 

guideline will be reported in D3.3 and D5.3. The general hierarchical framework is illustrated in Figure 34. 

 

Figure 34. Proposed framework for hierarchical in-backhaul inference. 

Limitations and future challenges 

In-switch inference is a very demanding scenario, due to strongly limited capabilities of the hardware 

and the stringent delays to be satisfied to maintain line rates. The guidelines proposed by DAEMON prove 

that it is feasible to implement this approach while improving the performance of the functions and 

satisfying all the required constraints. Yet, these initial results are just a first step towards comprehending 

the full potential of in-backhaul inference. In the future, the community would need to extend the analysis 

to other applications, as well as measuring how the inclusion of inference in the switch impacts any other 

simultaneous task that is run in the switch. This functionality requires resource- and hardware-aware 

inference algorithms, and thus is very related to the fundamental limits of resource-limited AI; because of 

that we will require tailored algorithms that are able to extract the most from the few available resources.   
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7.2.6 Federated learning powered NI functionalities 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• FR-SLMANO-000 and FR-SLMANO-003 for Federated Learning powered Controller. 

• FR-AARES-000 and FR-AARES-001 for anomaly detection. 

Most of the advances in ML approaches are based on the idea of a single intelligent agent that 

computes and executes the learning process. When we consider multi-agent environments, we can 

consider (i) the distributed version of the single-agent approach, where each agent acts independently 

and attempts to learn a selfish (or common) goal at the same time as all the other agents, or (ii) 

Federated Learning (FL))[70];  the FL approach can be used for reasons of scalability and data protection. 

Scalability is crucial for many DAEMON functionalities and applications. In the FL approach, the 

distributed knowledge bases contain local information regarding the performance of the model. Certain 

information is communicated to a centralized controller of the FL model, and such controller will be 

tuning the algorithm in accordance with the FL paradigm. 

In general, FL is the recommended solution over RL and other centralized and distributed choices, since 

it provides the following advantages: 

• Low fault tolerance in anomaly detection process due to FL enhancement. 

• Low response time due to the existence of the local anomaly detection module. 

• High scalability due to the exchange of limited traffic between FL clients and FL controller. 

• Access to local database for the execution of anomaly detection process, while keeping a small 

central database in the FL controller. 

• Low network traffic exchanged between FL clients and FL controller. 

We refer to D2.2 [1] for a detailed explanation of the advantages of FL.  

Limitations and future challenges 

Federated learning is known to have several challenges that may prevent a fast development of FL-

based solutions. It is crucial to ensure reliability and synchronization, in the sense that each agent must 

be treated in a similar way, and the performance may be impacted by convergence issues. These 

challenges affect FL in general and solutions from other fields can be implemented to realize FL-based 

NI functionalities. 

7.2.7 Predictive HARQ 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• NFR-CAWRS-000, NFR-CAWRS-001, NFR-CAWRS-003 for Compute-aware Radio Scheduling NI. 

In D2.2 [1], we provided a detailed analysis of the guidelines for implementing Hybrid Automatic Repeat 

Query (HARQ), which is an essential operation at the physical layer of a 5G Distributed Unit. Predictive 

HARQ enables the inference of the decodability of Uplink data essentially using feedback from the 

decoder, minimizing situations where uplink subframes are discarded because they cannot be 

processed in time. The produced prediction allows the subsequent tasks to be performed without waiting 

for the decoding process to be finished. Due to the extremely fast-inference constraints of this task, 

complex data-driven models based on neural networks are not necessarily the best tool for HARQ 

operations. This was illustrated in D2.2 [1], where results evidenced clearly identifiable patterns between 

decodable and non-decodable code blocks, which could be detected via simple, non-ML approaches. 

Indeed, to effectively take advantage of the decodability forecasting, the inference time of the 

proposed solution must be extremely low as stated in the design constraint NFR-CAWRS-001. With the 

information observed in the previous results and the time requirements imposed by design, rule- or 

threshold-based algorithms will better fit the design of predictive HARQ mechanisms rather than ML-

based techniques. 

Limitations and future challenges 

While some tasks may take advantage of simple patterns of clear correlations, some others may lack 

such property, thus making impossible to obtain at the same time the required extremely high reliability 

and the equally exacting latency constraints. Further research is required on the fundamental limits of 

the trade-off between speed and accuracy for a plethora of diverse applications.  
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7.2.8 Satisfaction of hard constraints 

A number of NI problems require satisfying hard network constraints, e.g., minimizing energy consumption 

while ensuring minimum QoS metrics. Though these constraints may be relaxed, e.g., ensure them only 

on average, there are some other problems that cannot afford to violate such constraints even while 

learning. Problems of this type include, but are not limited to, reliability network problems or physical 

system limitations. 

To address this type of problems, DAEMON proposes using a non-parametric Bayesian learning approach 

that can address these scenarios with the concept of expansive safe action sets.  This approach models 

the cost to minimize and the hard constraints to satisfy as samples of Gaussian Processes (GPs) over the 

joint context-control space. This non-parametric estimator deals with the system non-linearities and 

correlations, and quantifies the function estimation uncertainty, effectively addressing the exploration vs. 

exploitation trade-off. In the following, we detail the key components of the approach, which can then 

be applied to many different problems that face the same hard constraints.  

Function approximator. In order to estimate the cost and constraint functions we propose using GPs, 

which consist of a collection of random variables that follow joint Gaussian distributions. Let 𝑧 ∈ 𝒵 = 𝒞 × 𝒳 

denote a context-control pair. We model each of the unknown functions as a sample from 

𝐺𝑃(𝜇(𝑧), 𝑘(𝑧, 𝑧′)), where 𝜇(𝑧) is its mean function and 𝑘(𝑧, 𝑧′) denotes its kernel or covariance function. 

W.l.o.g., we assume 𝜇:= 0 and 𝑘(𝑧, 𝑧′) < 1, which we refer to as the prior distribution, not conditioned on 

data. Given the prior distribution and a set of observations, the posterior distribution can be computed 

using closed-form formulas. 

The sets of observations of the cost and constraint functions at points 𝑍𝑇 = [𝑧1, … , 𝑧𝑇] up to time period 𝑇 

are denoted by 𝑦𝑇
(0)
= [𝑢1, … , 𝑢𝑇], 𝑦𝑇

(1)
= [𝑑1, … , 𝑑𝑇], 𝑦𝑇

(2)
= [𝜌1, … , 𝜌𝑇], respectively, assuming i.i.d. Gaussian 

noise ∼ 𝑁(0, 𝜁(𝑖)
2 ). The posterior distribution of these functions follows a GP distribution with mean 𝜇𝑇

(𝑖)
(𝑧) 

and covariance 𝑘𝑇
(𝑖)
(𝑧, 𝑧′): 

𝜇𝑇
(𝑖)
(𝑧) = 𝑘𝑇

(𝑖)
(𝑧)⊤(𝐾𝑇

(𝑖)
+ 𝜁(𝑖)

2 𝐼𝑇)
−1𝑦𝑇

(𝑖)
 

𝑘𝑇
(𝑖)
(𝑧, 𝑧′) = 𝑘(𝑖)(𝑧, 𝑧′) − 𝑘𝑇

(𝑖)
(𝑧)⊤(𝐾𝑇

(𝑖)
+ 𝜁(𝑖)

2 𝐼𝑇)
−1𝑘𝑇

(𝑖)
(𝑧′) 

where 𝑘𝑇
(𝑖)
(𝑧) = [𝑘(𝑖)(𝑧1, 𝑧), … , 𝑘

(𝑖)(𝑧𝑇 , 𝑧)]
⊤, 𝐾𝑇

(𝑖)
(𝑧) is a kernel matrix defined as [𝑘(𝑖)(𝑧, 𝑧′)]𝑧,𝑧′∈𝑍𝑇, 𝐼𝑇 is the 𝑇-

dimension identity matrix, and 𝜁(𝑖)
2  the variance of noise in observations. Index 𝑖 denotes the objective 

function, with 𝑖 = 0 for the cost function, 𝑖 = 1 for the delay, and 𝑖 = 2 for the mAP. The distribution of 

unobserved values of 𝑧 ∈ 𝒵 for function 𝑖 is computed from the prior distribution, vector 𝑍𝑇 and the 

observed values 𝑦𝑇
(𝑖)

. 

Kernel selection. The kernel function shapes the GP’s prior and posterior distributions having an impact 

on the learning rate. It encodes the correlation of the function values for every pair of context-control 

points. That is, the kernel characterizes the smoothness of the functions. 

The properties of the kernel function should be thoroughly selected for each specific application and 

the underlying functions that must be learned. Two common properties for these functions are stationarity 

and anisotropicity. This means that the kernel 𝑘(𝑧, 𝑧′) is invariant to translations in 𝒵 but not invariant to 

rotations in 𝒵. The smoothness of the kernel for each dimension of function 𝑖 is encoded in the length-

scale vector ℒ (𝑖) = [𝑙1
(𝑖)
, … , 𝑙𝑁

(𝑖)
], where 𝑁 indicates the number of dimensions of 𝒵. The distance between 

two points based on the length-scale vector is given by: 

𝑑(𝑖)(𝑧, 𝑧′) = √(𝑧 − 𝑧′)⊤(𝐿(𝑖))−2(𝑧 − 𝑧′), 

where 𝐿(𝑖) = diag(ℒ (𝑖)) is a diagonal matrix of the length-scale vector. In order to satisfy the properties 

stated above, we propose a Matérn kernel on its anisotropic version. Moreover, following standard 

practice, we propose to particularize it with parameter 𝜈 =
3

2
, indicating that the function is at least once 

differentiable. Thus, the expression of the kernel can be particularized as follows: 

𝑘(𝑖)(𝑧, 𝑧′) = (1 + √3𝑑(𝑖)(𝑧, 𝑧′))exp(−√3𝑑(𝑖)(𝑧, 𝑧′)). 

Note that although we propose using the same kernel for all the functions (cost and constraints), their 

hyperparameters will vary depending on its shape. In fact, the hyperparameters ℒ (𝑖) and noise variance 

𝜁(𝑖)
2  should be optimized for each function 𝑖 before running the algorithm by maximizing the likelihood 

estimation over prior data. During execution, the hyperparameters shall remain constant. This is because 

when the hyperparameters are optimized using newly acquired data, it is not guaranteed that the GP’s 

confidence interval will cover the true function within, causing the optimization to fall into poor local 

optima. 
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Safe set. It is crucial to identify first which controls or actions satisfy the constraints, which, however, 

depends also on the context. We define the safe set as the set of policies that satisfy all the constraints 

for a given context 𝑐: 

𝑆(𝑐) = {𝑥 ∈ 𝒳  ∣  𝑑(𝑐, 𝑥) ≤ 𝑑𝑚𝑎𝑥 ∧ 𝜌(𝑥) ≥ 𝜌𝑚𝑖𝑛} 

Unfortunately, the computation of the safe set is very challenging for several reasons. Firstly, the 

observations of the performance indicators are noisy due to the stochastic nature of the system. And 

secondly, the number of available controls |𝒳| is usually very large in practice, making it unfeasible to 

explore all controls for all possible contexts. For that reason, we use the GPs to compute an estimation of 

the safe set: 

𝑆𝑡 = {𝑥 ∈ 𝒳 | 𝜇𝑡−1
(1)
(𝑐𝑡 , 𝑥) + 𝛽𝜎𝑡−1

(1)
(𝑐𝑡 , 𝑥) ≤ 𝑑

𝑚𝑎𝑥

∧ 𝜇𝑡−1
(2)
(𝑐𝑡 , 𝑥) − 𝛽𝜎𝑡−1

(2)
(𝑐𝑡 , 𝑥) ≥ 𝜌

𝑚𝑖𝑛}
 

where (𝜎𝑡
(𝑖)
(𝑧))

2
= 𝑘𝑡

(𝑖)
(𝑧, 𝑧) and 𝛽 is a weighting parameter. Note that at each time period 𝑡 the point 𝑧𝑡 

is observed and the vectors 𝑍𝑡 and 𝑦𝑡
(𝑖)
∀𝑖 are updated consequently. Due to their correlation, the 

posterior distribution of points near 𝑧𝑡 will vary having an impact on the controls that will be included in 

the safe set in 𝑡 + 1. 

Acquisition function. It indicates, at each time period 𝑡, which control 𝑥𝑡 shall be used in the system given 

context 𝑐𝑡. This task is crucial for the convergence of the algorithm and needs to interleave an exploration 

process in order to expand the safe set while seeking a safe control with high performance. Many 

previous works have proposed acquisition functions for constrained Bayesian optimization, but they do 

not consider contexts. We hence propose the contextual lower confidence bound as an acquisition 

function, but constrained to the safe set: 

𝑥𝑡 = argmin
𝑥∈𝑆𝑡

 𝜇𝑡−1
(0)
(𝑐𝑡 , 𝑥) − √𝛽𝜎𝑡−1

(0)
(𝑐𝑡 , 𝑥). 

Limitations and future challenges 

As previously mentioned, this approach requires a profound knowledge of the scenario that is being 

managed. In particular, kernel functions should be thoroughly selected for each specific application and 

the underlying functions that have to be learned. This aspect is a limitation in as much as it limits the 

generalization and applicability to a broad set of problems, and connect with the guidelines on tailored 

AI design presented in Section 7.1, and in particular with 7.1.2 and 7.1.3. One solution, as mentioned in 

Section 7.1.3, would be to include Auto-Machine Learning algorithms that are able to search on the 

space of kernel functions and learn the best one for each application (or group of applications). 

Another limitation is the inference time of Bayesian learning models, which is usually large. Although the 

learning rate of these models is extremely high, the rather high inference time incurred in computing 

Bayesian updates makes this approach unsuitable for very fast control loops (below second-level 

granularity.  

7.2.9 Anticipatory decision-making in mobile networks 

The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 

presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 

A of this same document: 

• FR-SLMANO-000 for self-learning MANO. 

• FR-CFORE-001 for capacity forecasting. 

• FR-MTERM-000 for Multi-timescale Edge Resource Management. 

One of the main purposes of the development of intelligence is to be able to take anticipatory decisions 

based on accurate future forecasts that allow the network operator to act before the change or 

problem appears. This decision-making often covers different time-scales, such that the orchestration, 

management, and coarse resource allocation can be updated with long interval periods, while the 

same decision is refined in a much smaller timescale to leverage fresher data and system updates. This 

requires of duplicated algorithms that act in a similar way but at different time-scales, with probably 

different parameters and complexity. Furthermore, these actions usually require the fulfillment of hard 

constraints, as stated in the previous Section 7.2.8.  Based on these conditions and characteristics, 

DAEMON proposes the use of cascaded hybrid methods that include both ML-based elements and 

optimization-based blocks, so as to better handle the hard constraints while exploiting all the 

advantages of ML methods for regression and forecasting, and the use of quasi-similar systems for 

different time-scales, which update and operate the same function at different timescale and with 

different accuracy requirements.  
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This guideline has been implemented for admission control and resource allocation for network slicing in 

a solution that will be fully described in deliverables D3.3 and D5.3. Motivated by this application, 

DAEMON also advocates for the use of yield management strategies such as the overbooking of services, 

which can be exploited thanks to the bursty and non-stable nature of mobile traffic. 

In this activity, we provide a first assessment of overbooking gains in the presence of real-world demands 

generated by multiple service providers, as measured in a metropolitan-scale production network. We 

investigate advantages for the mobile network operator in terms of net profit along diverse dimensions 

that include the resource orchestration flexibility, the cost of allocated resources to slices, or the over-

dimensioning strategy of the operator.   

 

Figure 35. Proposed framework for  hierarchical hybrid anticipatory MANO decisions. 

The proposed architecture is shown in Figure 35, where we can observe how there are operations at two 

different timescales: (i) First, on top, the Admission Control (AC) is performed in a long-term timescale; (ii) 

once the AC decision is decided for the whole long-term interval (i.e., which slices are accepted and 

which ones are rejected), the Resource Allocation (RA) block below is enacted at a much shorter 

timescale, and receives the AC decisions as part of the state of the system. Each one of the two block 

(AC and RA) are composed of a hybrid structure tailored to NI: (i) the input data is first introduced in a 

deep learning block that predicts the future capacity required to serve the traffic of each slice without 

violating the SLA (for that, it makes use of an expert-defined loss function, as recommended by the 

guideline in Section 7.1.2). Then, this capacity prediction is used as input for a knapsack-type optimization 

problem that decides the specific resources allocated to each slice. This architecture allows us to break 

the complex problem into smaller pieces, easing the operation and understanding of the proposed 

solution.  

Furthermore, the use of overbooking strategies for network slicing resource allocation is illustrated in Figure 

36, where we can see the intervals of time in which the overbooking strategy provides increased benefit 

for the operator due to a higher number of accepted slices in green, and the benefit from reducing the 

amount of resources reserved in blue.  

 

Figure 36. Illustration of the overbooking concept proposed for network slicing resource allocation. 
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Limitations and future challenges 

Dealing with anticipatory decisions always implies a certain level of uncertainty. However, this 

uncertainty and the corresponding risks and possible loss of performance can be compensated with the 

use of hybrid, well-defined algorithms and the joint operation at different timescales for coarser and finer 

decisions. Yet, the anticipatory decisions shall measure and control the confidence intervals required to 

satisfy the imposed conditions. For example, in Figure 36, we highlight red the interval of time in which an 

accepted slice cannot be served because the overbooking approach is too aggressive and there are 

not enough resources to serve all the accepted services. Thus, fully characterizing the accuracy and 

distribution of the forecast is crucial to leverage the maximum potential of the proposed architectures.  
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8 Conclusions 
This deliverable serves as a crucial link between the second and third iterations of the DAEMON project, 

providing the necessary groundwork for the final phase of the project. The document encompasses 

various key aspects of the project, starting with the final updates on the functional and non-functional 

requirements for the eight NI-assisted functionalities, includes the evaluation of the risks associated with 

meeting these requirements, and provides their current completion status. It also outlines specific actions 

required for the successful finalization of unresolved requirements, indicating the corresponding 

deliverable for presenting the results.  

Furthermore, the document presents the final updates of the Network Intelligence Plane (NIP), which has 

undergone significant development. The NIP now serves as a unified framework, incorporating the 

operational hierarchy and orchestration of NI components, as well as the N-MAPE-K representation. This 

progress aligns with the vision previously described in D2.2 [1]. Moreover, we motivated that the NIP has 

evolved towards a NI Stratum, which typically denotes a collection of elements that span various network 

domains. Considering that network intelligence components are distributed across multiple domains 

such as access, core, infrastructure, management, and orchestration, it was only natural to adopt this 

terminology in line with 3GPP standards. Moreover, this approach also moved the NIP design from a 

purely separate plane to a more orthogonal approach where NIFs and NISs can effectively be integrated 

into the traditional planes (data, control and management) for an easy adoption in the industry. 

The document thoroughly identifies and discusses the specific needs and challenges that NI algorithms 

pose to the NIP, particularly in terms of NI management procedures at the NIO level. It outlines the 

necessary functionalities that the NIO should provide to address these needs and highlights their 

integration within the overall architecture. Additionally, the document delves into the interfaces required 

for communication between NIP components and external entities, such as the RAN controller and the 

5G Core systems. These interfaces enable the design of procedures that address the introduced needs 

and challenges. 

A comprehensive literature review on integrating machine learning and NI in mobile network 

management is presented, showcasing the unique contributions of the DAEMON project and 

highlighting key trends in current research. The findings from this analysis further support the final updates 

to the project guidelines, which aim to achieve a pragmatic design of NI. These guidelines focus on two 

main directions: designing NI tailored to the needs of B5G network management, orchestration, and 

control, and emphasizing the utilization of more traditional, simpler, or interpretable models to avoid 

overburdening the system with data-heavy models. 

The content of this document successfully provides the final version of the DAEMON framework and 

toolset for NI, which continues to provide the foundation for the subsequent stages of the third and final 

iteration. It will guide the updated design implementation of NI-assisted functionalities, ensuring the 

fulfillment of all requirements, verifying performance against the project's Key Performance Indicators 

(KPIs), and delivering a final version of the NI functionalities that aligns with the detailed architecture, 

interfaces, and NIP procedures presented. By following this roadmap, the DAEMON project aims to 

achieve its objectives and contribute to the advancement of NI in mobile network management. 
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A Appendix: NI Use Cases Functional Requirements 
In the following figure, the top-level requirements of DAEMON are represented tree shaped. Each 

requirement is colored considering the risk assessment, and the KPIs addressed by each requirement are 

shown at the bottom of each box. We represent either the functional and non-functional requirements, 

which can be visually distinguished using a dotted or continuous line. The percent complete and the risk 

management are represented on the left side of each cluster. 

 

 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 

  

  FR-RIS-000  

DAEMON shall integrate Reconfigurable Intelligent Surfaces technology into 

mobile networks. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-MTERM-000 

DAEMON’s Multi-timescale Edge Resource Management (MTERM) shall 

perform automated management and orchestration of resources and 

services in distributed edges and different timescales. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-IBSSI-000 

DAEMON’s IBSSI shall learn network policies using the user plane itself. 

 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-CAWRS-000 

DAEMON shall integrate NI solution in vRAN systems. 

 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

DAEMON 

 Functionalities 

Requirements 

  

  FR-EAWVNF-000 

DAEMON Energy-aware VNF placement (EAWVNF) shall profile the energy 

footprint of those network tasks that influence the network global power 

consumption. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-SLMANO-000 

DAEMON shall design autonomous and self-learning orchestrators and 

controllers that can operate with minimal human intervention. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-CFORE-000 

DAEMON shall design capacity forecast models that can support Network 

Intelligence (NI) algorithms across the mobile network architecture 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-AARES-000 

DAEMON shall automatically detect, analyze, and act against anomalous 

behaviors. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

75% 

 90% 

100% 

100% 

 90% 

 80% 

 90% 

  90% 
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A.1 RIS control  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 

 

 

 

 

 

 

 

 

 

  

FR-RIS-001 

RIS controller shall interact with the 

system orchestrator and radio 

controllers 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-RIS-002 

RIS controller shall receive 

feedback about the wireless 

channel 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-RIS-000 

DAEMON shall integrate 

Reconfigurable Intelligent Surfaces 

technology into mobile networks 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-RIS-003 

RIS units shall support more than 

one user concurrently 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-RIS-004 

RIS should be modular and enable 

a variable amount of reflective 

cells. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-RIS-000 

RIS should aid to increase wireless 

capacity (bits/m2) by 100% 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-RIS-001 

Re-configuring all the components 

in a RIS must be achieved within 

100 ms. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-RIS-002 

The (non-RF) electronic equipment 

required to control a RIS must 

consume less than 100 mW 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-RIS-003 

RIS must provide beamforming 

gains passively, without energy-

consuming (active) RF chains 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

75% 

50% 

  50% 

  50% 

  50% 

  50% 

  50% 

 100% 

  50% 
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FR-RIS-000 

Description DAEMON shall integrate Reconfigurable Intelligent Surfaces (RIS) technology into 

mobile networks. 

Version 001M1 

Owner NEC 

Priority High 

Risk 2 

Risk Description There is a mild risk that the project will not be able to build a RIS prototype. Should 

this happen, the project will rely on simulations and mathematical models. 

Rationale RIS technologies will play a key role in increasing the wireless network capacity of 

next-generation networks, reducing energy consumption, and creating new 

privacy and security applications. However, optimal RIS operation can only be 

achieved in coordination with the radio access network controller. To this end, 

native support by DAEMON platform and open interfaces that integrate RIS 

controllers into the rest of the mobile network control ecosystem is required. 

K1  K2  K3  K4  K5  K6 X K7  K8  K9  

Parents None 

Current Status 

Percent complete 75% 

Risk 

management 

Successful  

 

Rationale Risks were low. There was an initial risk that a RIS prototype may not have been 

available for experimentation, in such a case, analytical data would have been 

used. But the risk has not materialized. The initial design of a RIS control NI was 

presented in D3.2 [2], Section 4, and the final design will be presented in D3.3. The 

detailed design has been presented in [71]. Moreover, the initial design of an 

experimental prototype was presented in D5.2 [4], Section 4.6, and the final 

prototype will be presented in D5.3.  

 

FR-RIS-001 

Description RIS controller shall interact with the system orchestrator and radio controllers 

Version 002M5 

Owner NEC 

Priority High 

Risk 1 

Risk Description No risk 

Rationale An interface between the mobile network orchestrator, the gNB controllers, and 

the RIS controller shall enable joint optimization of gNBs, UEs and surfaces. 

K1  K2  K3  K4  K5  K6 X K7  K8  K9  

Parents FR-RIS-000-001M1 

Current Status 

Percent complete 50% 

Risk 

management 

Successful  

Rationale A RIS prototype is being built along with an interface to interact with an external 

controller. The initial prototype design was presented in D5.2 [4], Section 4.6, and 

the final design will be presented in D5.3. 

 

FR-RIS-002 

Description RIS controller shall receive feedback about the wireless channel 

Version 002M4 

Owner NEC 

Priority Medium 

Risk 3 

Risk Description Channel feedback may not be received in a timely manner or with the required 

accuracy so as to be useful information. 

Rationale Reconfigurable Intelligent Surfaces modify the propagation properties of 

impinging wireless signals in a controllable manner. To this end, good estimations 
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about the wireless environment based upon feedback from users and gNBs, i.e., 

channel information, are required to perform optimal RIS operation.  

K1  K2  K3  K4  K5  K6 X K7  K8  K9  

Parents FR-RIS-001-002M5 

Current Status 

Percent complete 50% 

Risk 

management 

Successful  

Rationale A RIS prototype is being built along with an interface to receive feedback from 

an external controller. The initial prototype design was presented in D5.2 [4], 

Section 4.6, and the final design will be presented in D5.3. 

 

FR-RIS-003 

Description RIS units shall support more than one user concurrently 

Version 003M17 

Owner NEC 

Priority Medium 

Risk 4 

Risk Description Tight and timely coordination between gNB MAC schedulers may be required 

Rationale This enables increasing the system capacity for multiple users. 

K1  K2  K3  K4  K5  K6 X K7  K8  K9  

Parents FR-RIS-000-001M1 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale There was a risk that optimizing the RIS configuration for multiple concurrent 

users would be overly hard to achieve. We solved this complicated problem as 

will be explained in D3.3. The details can be found in [71]. 

 

FR-RIS-004 

Description RIS should be modular and enable a variable amount of reflective cells. 

Version 002M17 

Owner NEC 

Priority Low 

Risk 4 

Risk Description Modularity may be overly hard to achieve when designing a RIS. 

Rationale The ability to change the amount of reflective surface would enable a RIS to 

adapt itself to the surface, which may be highly irregular. 

K1  K2  K3  K4  K5  K6 X K7  K8  K9  

Parents FR-RIS-000-001M1 

Current Status 

Percent complete 50% 

Risk 

management 

Successful 

Rationale Though initially was believed that modularity would be overly hard to achieve, 

we have solved this problem as will be reported in D5.3. 
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A.2 Functional requirements: Multi-timescale Edge resource management 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 

 
  

FR-MTERM-004.01 

DAEMON’s MTERM shall continuously 

perform multi-timescale monitoring of 

data traffic, mobility pattern of users, 

and spectrum bands of radio access 

networks. The monitoring could be 

aided by AI/ML, e.g., by providing data 

dimensionality reduction. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-004 

DAEMON's MTERM shall continuously 

perform multi-timescale monitoring of 

resources (e.g., computing, network, 

spectrum), data traffic and mobility 

pattern of users, as well as the energy 

consumption of network services and 

edge platforms. The monitoring could 

be aided by AI/ML, e.g., by providing 

data dimensionality reduction. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-020 
DAEMON’s MTERM shall coordinate the 

decisions between different edges 

domains and timescales. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-021 
DAEMON’s MTERM shall expose 

information of their NIFs (e.g., CPU/GPU 

consumption, accuracy, timescale, 

input data format) to the Network 

Intelligence Plane to facilitate their 

management. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-007.00 

DAEMON’s MTERM shall provide 

automated on-the-fly VNF scaling. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-000 

DAEMON’s Multi-timescale Edge 

Resource Management (MTERM) 

shall perform automated 

management and orchestration of 

resources and services in 

distributed edges and different 

timescales. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-004.02 

DAEMON’s MTERM shall continuously 

perform multi-timescale monitoring of 

energy consumption of deployed 

network services and edge platforms. 

The monitoring is aided by AI/ML, 

providing data dimensionality 

reduction.   
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-MTERM-002 

DAEMON’s MTERM shall provide 

compliance with standardized 

frameworks (e.g., ETSI NFV MEC, 

ETSI NFV MANO, and O-RAN) 

running at the network edge.   
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-MTERM-003 
DAEMON’s MTERM shall provide NIF 

modularity and reusability among 

different players (e.g., network 

operators/vendors, service 

providers, etc.) 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-007.01 

DAEMON’s MTERM shall provide 

automated on-the-fly updates of VNFs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-006 
DAEMON’s MTERM shall use NIFs and 

NISs to support orchestration of edge 

resources. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-007 

DAEMON’s MTERM shall provide 

automated on-the-fly reconfiguration 

of VNFs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-MTERM-001 

DAEMON’s MTERM shall provide an 

exhaustive list of orchestration 

operations. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-004.00 

DAEMON's MTERM shall continuously 

perform multi-timescale monitoring of 

computing, network, and spectrum 

resources in all edges The monitoring 

could be aided by AI/ML, e.g., by 

providing data dimensionality 

reduction. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

100% 

100% 

100% 

100% 

100% 

90% 

85% 

90% 

75% 

85% 

95% 

90% 

90% 

90% 
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FR-MTERM-000 

Description DAEMON’s Multi-timescale Edge Resource Management (MTERM) shall perform 

automated management and orchestration of resources and services in 

distributed edges and different timescales.  

Version 003M18 

Owner IMEC 

Priority High 

Risk 3 

Risk Description The decisions made by Network Intelligent Functions (NIFs) and network Intelligent 

Services (NIS) distributed across the edge networks might be out of sync, since 

they can make decisions in different timescales. We might need to assign the level 

of priority to decision-making entities in different tiers and have a control loop that 

will track the effect of these decisions on the service KPIs.   

Rationale Services are deployed in a distributed fashion, due to the high mobility of users, 

and an uneven distribution of resources across the edge networks. Thus, proper 

management and orchestration of these distributed services need to be 

achieved. The network intelligence in the form of AI-based NIFs and NISs needs to 

be distributed to different edges in the management and orchestration 

architecture in order to treat different service dynamics in coarse/fine granular 

timescale. This should be done in an automated way. Unfortunately, current 

management frameworks do not provide automation in the form of flexible and 

dynamic NFV management and orchestration and therefore, this gap should be 

addressed. Moreover, management frameworks should be able to coordinate 

intelligence or resources across different network segments and timescales.  

Services: MEC application services (specific to use cases, i.e., vertical services), 

Value-added services (e.g., location services, Radio Network Information 

Service), NISs and NIFs (e.g., traffic classifiers), energy consumption analyzers, etc. 

Resources: CPU, memory, spectrum, storage, and network 

K1 X K2 X K3  K4 X K5 X K6  K7  K8 X K9 X 

Parents None 

Current Status 

Percent complete 90% 

Risk 

management 

Effective  

Rationale Since this requirement is the root, by fulfilling the child requirements, DAEMON can 

effectively perform automated management and orchestration of resources and 

services in distributed edges and different timescales. All the risks were low and 

effectively or successfully managed. 

 

FR-MTERM-004 

Description  DAEMON's MTERM shall continuously perform multi-timescale monitoring of 

resources (e.g., computing, network, spectrum), data traffic and mobility pattern 

of users, as well as the energy consumption of network services and edge 

platforms. The monitoring could be aided by AI/ML, e.g., by providing data 

dimensionality reduction. 

Version  002M18  

Owner  IMEC  

Priority  High  

Risk  1  

Risk Description  The amount of data that is being collected might burden the resource-

constrained edge nodes. Thus, we need to assess the resource requirements of 

monitoring services that will be running along with other services on the edge 

platforms, and to perform a corresponding management of these services in 

order to produce meaningful and credible results.   

Rationale  Monitoring is one of the main pillars of any automated and adaptative system. 

By monitoring, any system can verify that its decisions were correctly applied, 

achieving closed-loop control. However, given the diversity of network 
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operators/vendors/infrastructure/providers/service providers, monitored data 

stems from multiple sources. In that sense, AI/ML techniques could help to pre-

process and reduce such data's dimensionality. However, current frameworks do 

not incorporate real-time data analytics, making difficult the monitoring of data. 

K1   X K2  X  K3    K4    K5    K6    K7    K8  X K9    

Parents  FR-MTERM-000 

Current Status 

Percent complete 95% 

Risk 

management 

Successful 

Rationale Several NI solutions implemented a monitoring method. For instance, in the AI-

enhanced edge orchestration (Section 3.1 of D3.2 [2]), NIFs are constantly 

collecting data from various nodes. This data is composed of computing 

resources, network metrics (latency, bandwidth) and application services. 

Similarly, the model in Section 3.2 of D3.2 [2] continuously consumes the monitored 

spectrum usage. Moreover, the model in Section 3.4 of D3.2 [2], leverages big 

data to collect information about different devices. Despite the energy footprint 

was not measured in any of the activities mentioning this requirement, the solution 

presented in FR-EAWVNF-001 can be used for this purpose.  

 

FR-MTERM-004.00 

Description  DAEMON's MTERM shall continuously perform multi-timescale monitoring of 

computing, network, and spectrum resources in all edges. The monitoring could 

be aided by AI/ML, e.g., by providing data dimensionality reduction. 

Version  001M18 

Owner  IMEC  

Priority  High  

Risk  1  

Risk Description  Risk FR-MTERM-004 

Rationale  The constant monitoring input of computing, network and spectrum resources will 

feed the orchestration entities that perform orchestration operations, to control 

and provide an on-the-fly reconfiguration of deployed virtualized network 

functions, to migrate them, and to identify anomalies in service and/or framework 

operation. These metrics shall be monitored at different timescales, depending 

on the granularity required by the service consuming the data and the available 

resources at the edge.  

K1    K2  X K3    K4    K5    K6    K7    K8   K9    

Parents  FR-MTERM-004 

Current Status 

Percent complete 90% 

Risk 

management 

Effective 

Rationale Same as parent. Detailed in Sections 3.1 and 3.4 of D3.2 [2]. 

 

FR-MTERM-004.01 

Description  DAEMON’s MTERM shall continuously perform multi-timescale monitoring of data 

traffic, mobility patterns of users, and spectrum bands of radio access networks. 

The monitoring could be aided by AI/ML, e.g., by providing data dimensionality 

reduction. 

Version  002M18 

Owner  IMEC  

Priority  Low  

Risk  2 
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Risk Description  The value-added services that collect and parse data from the network traffic, 

the UE mobility, and the spectrum bands impose additional burdens on the 

resource-constrained edge nodes. Thus, we need to assess the resource 

requirements of those services that will be running along with other services on 

the edge platforms, and to perform a corresponding management of these 

services in order to produce meaningful and credible results.  

Rationale  The constant monitoring input of data traffic, mobility patterns and spectrum 

bands will provide input about the UEs to the orchestration entities that perform 

orchestration operations, to proactively deploy additional VNFs when and where 

needed, to migrate them, and to reconfigure existing VNFs to meet demands of 

all UEs in the system. These metrics shall be monitored at different timescales, 

depending on the granularity required by the service consuming the data and 

the available resources at the edge.  

K1   K2   K3    K4    K5    K6    K7    K8  X K9    

Parents  FR-MTERM-004 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale Same as parent. Detailed in Section 3.2 of D3.2 [2].  

 

FR-MTERM-004.02  

Description  DAEMON’s MTERM shall continuously perform multi-timescale monitoring of 

energy consumption of deployed network services and edge platforms. The 

monitoring is aided by AI/ML, providing data dimensionality reduction.   

Version  002M18  

Owner  IMEC  

Priority  Low  

Risk  3 

Risk Description  The energy consumption calculation of isolated services might be a complex 

task, while at the same time, an aggregated energy consumption per edge 

platform might severely affect the accuracy of energy-aware NIFs. Furthermore, 

although those NIFs that manage energy consumption in the whole system run in 

cloud, they still need to have probes installed on the edges, and a proper 

assessment of their energy consumption and resource requirements needs to be 

obtained.  

Rationale  The constant monitoring of energy consumption per service/per edge platform is 

needed to make an optimal decision on VNF placement and VNF migration from 

one edge to another. With such an energy consumption footprint in the whole 

system, the cloud orchestrator can perform load balancing between edge 

platforms, and accordingly turn off certain NIFs and deployed services if energy 

consumption needs to be decreased.  

K1   X K2   K3    K4    K5    K6    K7    K8    K9    

Parents  FR-MTERM-004 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale Same rationale as FR-EAWVNF-001.  

 

FR-MTERM-020 

Description  DAEMON’s MTERM shall coordinate the decisions between different edge 

domains and timescales. 

Version  001M18 
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Owner  IMEC 

Priority  Low 

Risk  4 

Risk Description  Depending on the number of decision-making engines, the coordination can be 

cumbersome.  

Rationale  Several management and orchestration operations are based on the decisions 

of different decision-making engines. Such engines can be based on AI/ML. To 

guarantee service continuity, coordination between distributed orchestrators in 

different edge domains is almost mandatory. However, current frameworks do 

not coordinate intelligence or resources across different network segments and 

timescales. 

K1    K2   K3    K4   X K5    K6    K7    K8    K9    

Parents  FR-MTERM-000 

Current Status 

Percent complete 85% 

Risk 

management 

Effective 

Rationale The solutions presented in Sections 3.1 and 3.5 of D3.2 [2] coordinate the decisions 

between different edges (§3.1) and timescales (§3.2). The risks were mitigated by 

considering two levels of priorities. When taking decisions among multiple edges, 

decisions at the edge affect only the local resources, while cloud decisions affect 

the global resources and, therefore, have higher priority. Regarding the 

timescales, decisions made at longer timescales (e.g., placement) are performed 

less frequently than decisions made at shorter timescales (e.g., adjustments to 

respond to the evolution of the data).  

 

FR-MTERM-021 

Description  DAEMON’s MTERM shall expose information of their NIFs (e.g., CPU/GPU 

consumption, accuracy, timescale, input data format) to the Network 

Intelligence Plane to facilitate their management. 

Version  001M18 

Owner  IMEC 

Priority  Low 

Risk  4 

Risk Description  The huge amounts of collected data from surrounding infrastructure might 

represent a risk, since that data might be incomplete or inconsistent. This lack of 

sufficient and consistent input data leads to inefficiencies in decision-making, 

e.g., when to replace a NIF. 

Rationale  Information about NIFs, like CPU/GPU consumption, accuracy, timescale, and 

input data format, should be exposed to the Network Intelligence Plane. Based 

on this information, the intelligent orchestrator(s) should take a decision (e.g., 

change NIFs because of their poor performance). This would facilitate the 

lifecycle management of AI/ML-based functions, which current frameworks do 

not support. 

K1   X K2   K3    K4    K5    K6    K7    K8    K9   X 

Parents  FR-MTERM-000 

Current Status 

Percent complete 90% 

Risk 

management 

Effective 

Rationale The solution presented in Section 3.4 of D3.2 [2] performs a classification, then, 

based on that, a resource allocation decision is made in the orchestrator. The 

results from the NIF, a classification model in this case, are exposed through open 

APIs as mentioned in Section 3.3 of D2.3.  
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FR-MTERM-006  

Description  DAEMON’s MTERM shall use NIFs and NISs to support orchestration of edge 

resources. 

Version  002M28  

Owner  IMEC  

Priority  Low  

Risk  2 

Risk Description  The interfaces created to support the instantiation of NIFs and NISs could be 

tightly coupled which difficult their integration with existing management and 

orchestration frameworks. 

Rationale  Current research has shown that management and orchestration operations can 

be improved by using Network Intelligence Functions (ML-based solutions). 

However, existing management and orchestration frameworks that operate at 

the network edge (e.g., NFV MANO, OSM, ETSI MEC) do not fully integrate and 

support the instantiation of such intelligent functions. These frameworks do not 

provide the necessary interfaces to enable services and applications to be data-

driven.   

K1    K2   K3    K4    K5    K6    K7    K8   X K9    

Parents  FR-MTERM-000 

Current Status 

Percent complete 90% 

Risk 

management 

Effective 

Rationale The solutions in Sections 3.1, 3.2 of D3.2 [2] and 5.2 of D4.2 [3] use a model which 

improves the quality of the decisions made by orchestrators. For instance, the 

solution proposed in Section 4.1 of D4.2 [3] (Federated Anomaly Detection) can 

be used by the orchestrator in Section 3.1 of D3.2 [2] to receive the indication that 

the current node has an abnormal behavior, so the service can be migrated to 

a healthy node (Synergic Integration of Network Intelligences Demo).  

 

FR-MTERM-007 

Description  DAEMON’s MTERM shall provide automated on-the-fly reconfiguration of VNFs  

Version  003M18 

Owner  IMEC  

Priority  High  

Risk  2  

Risk Description  The reconfiguration of VNFs in the service function chain might impose a risk of 

service unavailability during the reconfiguration.   

Rationale  Following the cloud-native service design, the service function chains consist of 

loosely-coupled VNFs that can be replaced and separately configured. 

Orchestration entities can make decisions to scale up/down/out/in any of these 

VNFs, and to replace the faulty ones, while maintaining service continuity.   

K1    K2  X  K3    K4   X K5   X K6    K7    K8   K9    

Parents  FR-MTERM-000 

Current Status 

Percent complete 85% 

Risk 

management 

Effective 

Rationale The solutions in Section 3.1 of D3.2 [2] and 5.2 of D4.2 [3] perform on-the-fly 

reconfiguration of VNFs. For example, the model proposed in §5.2 od D4.2 [3] 

changes the number of replicas of a service whose processing is subject to a 

delay constraint. Then, scaling is performed accordingly with the workload 
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changes. Similarly, the orchestrator in §3.1 of D3.2 [2] performs scaling and service 

relocation, which are considered as methods to perform VNF updating.  

 

FR-MTERM-007.00 

Description  DAEMON’s MTERM shall provide automated on-the-fly VNF scaling. 

Version  002M18  

Owner  IMEC  

Priority  High  

Risk  2 

Risk Description  The VNF scaling in the service function chain might impose a risk of service 

unavailability during the reconfiguration.   

Rationale  Rationale FR-MTERM-007 

K1    K2   K3    K4   X K5    K6    K7    K8    K9    

Parents  FR-MTERM-007 

Current Status 

Percent complete 75% 

Risk 

management 

Effective 

Rationale Same as parent. The solution described in Section 5.2 of D4.2 [3] performs 

autonomous VNF scaling.  

 

FR-MTERM-007.01 

Description  DAEMON’s MTERM shall provide automated on-the-fly update of VNFs  

Version  002M18  

Owner  IMEC  

Priority  Low  

Risk  2 

Risk Description  The update of VNFs (e.g., change of VNF image, VNF descriptor, IP address, etc.) 

in the service function chain might impose a risk of service unavailability during 

the reconfiguration.   

Rationale  Following the cloud-native service design, the service function chains consist of 

loosely-coupled VNFs that can be replaced and separately configured. 

Orchestration entities can make decisions to update VNFs, e.g., if an updated 

image or descriptor is needed. 

K1    K2  X  K3    K4   X K5   X K6    K7    K8    K9    

Parents  FR-MTERM-007 

Current Status 

Percent complete 90% 

Risk 

management 

Effective 

Rationale Same as parent. The solution proposed in Section 3.1 of D3.2 [2] performs 

relocation of services deployed as VNFs from one edge to the other, to avoid 

service quality degradation (e.g., because the users are driving away from a 

given RSU).   
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A.3 Functional requirements: In-backhaul support for service intelligence 

 

 

 

 

 

 

 

 

 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-IBSSI-002.01 

DAEMON’s IBSSI shall handle both 

packet-level and flow-level 

inference. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-IBSSI-001 

DAEMON’s IBSSI provides 

Intelligence-as-a-Service to vertical 

3rd parties. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-IBSSI-000 

DAEMON’s IBSSI shall learn network 

policies using the user plane itself. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-IBSSI-000 

Network Intelligence algorithms 

should be adapted to the PISA 

architecture. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-IBSSI-002 

DAEMON’s IBSSI shall integrate 

Network Intelligence within 

programmable switches. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-IBSSI-001 

Network Intelligence algorithms 

should be resource-prudent. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

95% 

100% 

95% 

75% 

100% 

75% 
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FR-IBSSI-000 

Description DAEMON’s IBSSI shall learn network policies using the user plane itself. 

Version 003M18    

Owner UC3M 

Priority Low 

Risk 3 

Risk Description To ensure fast reaction times for orchestration mechanisms upon network 

changes, the network shall learn directly from data-plane network functions, 

providing triggers for the required re-orchestrations or re-configurations of the 

network functions. 

Rationale Besides monitoring of KPIs, the network shall already understand and detect 

malfunctioning already from the analysis of specific traffic patterns or control-

plane interactions. This is especially important for operations such as anomaly 

detection. 

K1  K2  K3 X K4  K5  K6  K7  K8 X K9  

Parents None 

Current Status 

Percent complete 95% 

Risk 

management 

Successful 

  

Rationale The procedures described in Section 5 of this document allow the online 

monitoring of the traffic to support the online learning of policies. 

 

FR-IBSSI-001 

Description DAEMON’s IBSSI shall provide Intelligence-as-a-Service to vertical 3rd parties 

Version 003M17 

Owner UC3M 

Priority High 

Risk 4 

Risk Description Third parties will be allowed to be included in the network operation through 

specific APIs that are used to i) manage the kind of provided intelligence and ii) 

ensure that the resources are provided to them. Also, these interfaces shall 

accommodate different intelligence instances running in the third-party premises 

and in the network domain. 

Rationale DAEMON will provide algorithms for the execution of network intelligence directly 

related to the vertical service (e.g., video analytics directly in the u-plane) and 

allow efficient and secure resource provisioning through the usage of solutions 

based on, e.g., distributed ledger platform. 

K1  K2  K3 X K4  K5  K6  K7  K8 X K9  

Parents FR-IBSSI-000-003M18 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The work performed and discussed in Section 4.2.2 defined the interfaces 

towards the management and orchestration and other core functions such as 

the AF, which can be used to interact with 3rd parties. 

 
 

FR-IBSSI-002 

Description DAEMON’s IBSSI shall integrate Network Intelligence within programmable 

switches. 

Version 002M17 

Owner IMDEA 

Priority Medium 

Risk 3 

Risk Description Programmable switches have extremely limited computational capabilities and 

memory, which substantially constrains what they can do in terms of learning. 
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Rationale Programmable user planes are starting to be leveraged for network telemetry 

functionalities. However, these are limited to data collection and pre-processing, 

which are then fed to NI located in the control plane to take network 

management decisions. DAEMON will investigate what portion of the decision 

process can be moved to the switches directly, at line rate and avoiding the 

delay of interacting with the control plane.    

K1  K2  K3 X K4  K5  K6  K7  K8  K9  

Parents FR-IBSSI-000-003M18 

Current Status 

Percent complete 95% 

Risk 

management 

Successful. 

Rationale DAEMON has developed Random Forest (RF) models that are tailored to the 

hardware of programmable switch ASICs, where they can extract flow-level 

features and use them for inference, as described in Section 5.1 of D3.2 [2]. The 

models have been evaluated in a real-world experimental platform with 

production-grade hardware, where they could achieve high accuracy (up to 

99%) at line rate with ultra-low (~100 ns) latency, as per Section 4.7.1 of D5.2 [4]. 

Risks were estimated as intermediate at the start of the activity, due to the 

limitation of the computing environment offered by programmable switch ASICs; 

such risks were avoided by using models that are relatively simple and mappings 

of such models that are tailored to the target hardware. 

 

FR-IBSSI-002.01 

Description DAEMON’s IBSSI shall handle both packet-level and flow-level inference 

Version 001M18 

Owner IMDEA 

Priority Medium 

Risk 3 

Risk Description Programmable switches have extremely limited storage and memory capabilities 

that constrain the possibility of computing and preserving features about the 

many individual packets or flows traversing the switch. 

Rationale Inference in programmable user planes can largely benefit from the availability 

of both packet-level (e.g., header fields) and flow-level (e.g., inter-arrival times, 

counters, etc.) input features. Indeed, these features offer different correlations 

with prediction variables (e.g., for classification, anomaly detection, intrusion 

detection, etc.). It is thus desirable that both types of features are available to a 

machine learning model deployed in the switch. 

K1  K2  K3 X K4  K5  K6  K7  K8  K9  

Parents FR-IBSSI-002-002M17 

Current Status 

Percent complete 75% 

Risk 

management 

Effective.  

Rationale The solutions developed by DAEMON, as indicated in the parent requirement, 

can gather and use both packet-level and flow-level features. The last remaining 

step toward meeting this requirement in a fully successful way is designing RF 

models that can operate on packet-level features for the first very few packets of 

each flow, i.e., before flow-level features can be reliably computed. Risks were 

estimated as intermediate at the start of the activity, due to the added 

complexity of computing and storing flow-level features in resource-constrained 

switch architectures; these risks were avoided by designing novel approaches to 

feature representation that suited the target hardware. 
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A.4 Functional requirements: Compute-aware radio scheduling 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

NFR-CAWRS-003 

Predictive HARQ inference 

mechanisms shall have a minimum 

accuracy of 99% and a false 

positive rate below 0.1%. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CAWRS-001 

DAEMON NI solutions for vRAN 

systems shall integrate predictive 

HARQ. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-CAWRS-001 

NI control solutions for vRAN shall 

have reaction times below 100ms. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CAWRS-000 

DAEMON shall integrate NI solution 

in vRAN systems. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CAWRS-002 

DAEMON NI solutions for vRAN 

systems shall integrate intelligent 

algorithms to allocate radio and 

computing resources in real time. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-CAWRS-002 

NI solutions for vRAN shall achieve 

a bounded wireless performance 

wrt the optimal. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-CAWRS-000 

NI orchestration solutions for vRAN 

shall have reaction times below 

10s. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  

100% 

100% 

100% 

100%-0% 

100% 

100% 

100% 

100% 
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FR-CAWRS-000 

Description DAEMON shall integrate NI solution in vRAN systems 

Version 001M3 

Owner UC3M 

Priority High 

Risk 1 

Risk Description There is a low risk that DAEMON will not integrate NI solutions into vRAN systems, 

as DAEMON partners were already capable of integrating such kinds of solutions 

in Open Source vRAN environments. 

Rationale The mobile network industry is moving towards virtual network function solutions, 

and RAN Functions are not an exception. Being among the most resource-

consuming functions (in terms of computation), thus allowing the re-design of 

such function by taking into account the computing resource optimization as 

further objective will improve the overall spending (both CAPEX and OPEX, for the 

resource provisioning) for the network operation. 

 

K1 X K2 X K3  K4 X K5 X K6  K7  K8  K9  

Parents None 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale Several solutions have been provided already in D3.2 [2] (Section 3) and will be 

extended in D3.3 

 

FR-CAWRS-001 

Description DAEMON NI solutions for vRAN systems shall integrate predictive HARQ. 

Version 001M17 

Owner i2CAT 

Priority High 

Risk 1 

Risk Description There is a low risk that DAEMON will not integrate predictive HARQ solutions, 

because they have been widely studied in other contexts before. 

Rationale Predictive HARQ mechanisms collect data from the subframe decoding process 

and make a prediction about the decodability of the corresponding transport 

blocks. This enables the usage of transport blocks that otherwise would have been 

dropped because they were not decoded on time. 

K1 X K2 X K3  K4 X K5 X K6  K7  K8  K9  

Parents FR-CAWRS-000-001M3 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The requirement has been fulfilled as already demonstrated in D5.2 [4], Section 

4.1.1.2 

 

FR-CAWRS-002 

Description DAEMON NI solutions for vRAN systems shall integrate intelligent algorithms to 

allocate radio and computing resources in real-time. 

Version 001M17 

Owner i2CAT 

Priority High 

Risk 3 

Risk Description There is a medium risk in integrating intelligent algorithms for radio and computing 

resource allocation in real time because of the reduced operation timescale. 

Rationale Intelligent radio and computing allocation algorithms provide mechanisms to 

efficiently distribute the available radio and computing resources, being at the 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

100 

same time crucial for providing latency guarantees and for maximizing the 

performance of the overall system. 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  

Parents FR-CAWRS-000-001M3 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The risk described above was mitigated by implementing light rule-based NI 

rather than complex neural network-based solutions. 
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A.5 Functional requirements: Energy-aware VNF placement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-EAWVNF-001.01 

DAEMON’s EAWVNF shall measure 

the energy footprint of VNFs in 

terms of data transmission.  
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-001 

DAEMON’s EAWVNF energy-aware 

solution, will scale well when 

considering a heterogenous set of 

devices and network  

infrastructure. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-001.00 

DAEMON’s EAWVNF shall measure 

the energy footprint of VNFs in 

terms of CPU usage. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-002 

DAEMON’s EAWVNF expects to 

save 50% of the energy cost thanks 

to applying NI solutions to find out 

the energy-aware optimal 

placement of VNFs of FR-EAWFN-

000. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-001 

DAEMON’s EAWVNF shall measure 

the energy footprint of VNFs in 

terms of CPU usage and 

communication traffic. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-003 

The cost in terms of energy 

footprint of the NI solution for VNFs 

placing shall be less than the 

global energy saving. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-002 

DAEMON’s EAWVNF shall measure 

the impact of hardware resource 

usage by VNFs in the calculation of 

the energy footprint. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-000 

DAEMON Energy-aware VNF 

placement (EAWVNF) shall profile 

the energy footprint of those 

network tasks that influence the 

network global power 

consumption. 

K

1 

K

2 

K

3 

K

4 

K

5 

K

6 

K

7 

K

8 

K

9 

FR-EAWVNF-003.00 

DAEMON’s EAWVNF shall measure 

the energy footprint of VNF 

migration due to virtualization cost. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-003.01 

DAEMON’s EAWVNF shall measure 

the energy footprint of VNF 

migration due to transmission cost. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-003 

DAEMON’s EAWVNF shall measure 

the energy footprint of VNFs 

migration. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

95% 

75% 

100% 

100% 

100% 

100% 

100% 

60% 

60% 

75% 

75% 
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Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-EAWVNF-000 

DAEMON Energy-aware VNF 

placement (EAWVNF) shall profile 

the energy footprint of those 

network tasks that influence the 

network global power 

consumption. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-004.00 

DAEMON’s EAWVNF should define 

an energy profile with the 

dependency relationships of the 

different possible locations of VNFs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-004 

DAEMON’s EAWVNF shall consider 

how the context of the location of 

VNFs affects the energy footprint 

of VNFs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-004.01 

DAEMON’s EAWVNF should 

characterize the different variants 

of VNFs regarding the context of 

the location where the VNF will be 

running. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-004 

Energy-efficient NI shall balance 

throughput and energy 

consumption in vRANs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-005 

DAEMON’s EAWVNF shall configure 

virtualized radio access networks 

to increase their energy efficiency. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-005 

NI orchestrating resources in vRANs 

shall maximize networking 

throughput given power 

consumption constraints. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-006 

Energy savings shall be achieved 

in virtualized RANs without 

compromising given service 

performance constraints. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-006 

DAEMON’s EAWVNF shall measure 

the energy footprint of VNFs 

scaling. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-006.00 

DAEMON’s EAWVNF shall measure 

the energy footprint of VNFs 

vertical scaling. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-006.01 

DAEMON’s EAWVNF shall measure 

the energy footprint of VNFs 

horizontal scaling. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

95% 

95% 

100% 

100% 

90% 

100% 

100% 

50% 

25% 

100% 

 70% 
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FR-EAWVNF-000 

Description DAEMON Energy-aware VNF placement (EAWVNF) shall profile the energy 

footprint of those network tasks that influence the network global power 

consumption. 

Version 001M1 

Owner UMA 

Priority High 

Risk 2 

Risk Description The reliability of the measurement depends on a complete identification of the 

external factors that affect the energy footprint (e.g., temperature, processor, or 

noisy neighbor problem), the accuracy of the energy measurement methods 

used, and the dependency on specific hardware. We should be able to estimate 

the energy consumption of VNFs both in simulated and real environments, 

obtaining possibly similar results. 

Rationale  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents None 

Current Status 

Percent complete 90% 

Risk 

management 

Effective  

Rationale In order to meet the goal of energy efficiency we have to identify the list of 

elements that strongly affect the energy consumption in the edge context. We 

have implemented the SAVRUS algorithm that works with unknown-domain (in this 

case, VNFs foredge-based mobile networks) to identify and rank the main 

network features and their interactions by how much they affect the final energy 

consumption (D3.1 [5], Section 5.3.2.1, D3.2 [2], Section 3.3.3, and journal [72]). 

We evaluated the SAVRUS strategy with experiments that provide completely 

measured models, by properly degrading the completely measured spaces to 

represent incomplete measures space, which are the measures spaces under 

SAVRUS works. Regarding the construct validity of the data set, the degradation 

procedure was automatic and random and was independently applied to the 

original spaces several times. Consequently, we analyzed the same space many 

times but degraded it differently to minimize the collateral effects that the 

degradation procedure could have on the results. There is a risk to the internal 

validity, since the selected sampling and learning methods may not be the best 

choice for all systems. To mitigate this risk, we did not only validate SAVRUS outputs 

but individually reviewed each strategy component to avoid hidden errors. We 

repeated the analysis and presented average metrics to reduce a possible bias. 

Also, SAVRUS comprises a normality test within the process with a 95% confidence. 

 

FR-EAWVNF-001 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs in terms of CPU 

usage and communication traffic. 

Version 001M2 

Owner UMA 

Priority High 

Risk 2 

Risk Description The reliability of the measurement depends on the ability to identify and quantify 

the influence of external factors in the energy consumption calculation (e.g., 

noisy neighbor problem or distance to base station).  Calculating the cost of 

executing code and transmitting and receiving information on specific hardware 

accurately is a complex task. It is possible to mitigate this risk by going through 

calculating an upper bound of its energy footprint. 

Rationale The main factors that influence energy consumption are CPU usage and the data 

sent and received by a given VNF. We need to identify what are the factors that 

should be considered in the formula that calculates the total energy footprint of 

the network, in terms of computation and communication. We should consider 

not only the internal factors, as we said, computation and communication, but 

also the external ones, such as the neighboring traffic. Since our main goal is not 

to report absolute energy footprint values, but relative ones, we need to find a 
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sound method to quantify the revenue of placing a VNF in one or another 

location in terms of power saving.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale In the placement solution presented in D4.2 [3] the energy model used to 

estimate energy consumption includes both CPU and data transmission. 

 

FR-EAWVNF-001.00 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs in terms of CPU 

usage. 

Version 001M2 

Owner UMA 

Priority High 

Risk 2 

Risk Description Calculating the cost of executing any kind of code, on specific hardware 

accurately is a complex task, since there are several factors that we need to 

quantify in order to calculate the energy footprint. The theoretical values given 

by CPU providers usually do not coincide with the real ones.  

Rationale We need to identify what are the factors that should be considered in the formula 

that calculates the global energy footprint of the VNFs instantiated for each 

application, in terms of computation. We know that the processor type of the 

device where a VNFs is running influences the energy footprint, but there are also 

other parameters that make the software provoke the hardware to consume 

more energy, like the size of VNF input. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-001 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale In the placement solution presented in D4.2 [3] the energy model used to 

estimate energy consumption includes explicitly the energy cost of computation 

calculated from the CPU cycles and the CPU frequency along with other factors. 

In the placement and autoscaling solution presented in D4.2 [3] the energy 

consumption model calculates the energy footprint of VNFs in terms of CPU usage 

according to the node in which VNFs are going to be deployed. 

 

FR-EAWVNF-001.01 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs in terms of data 

transmission.   

Version 001M2 

Owner UMA 

Priority High 

Risk 2 

Risk Description Calculating the cost of data transmission over different types of network links, 

accurately is a complex task, since there are several factors that we need to 

quantify in order to calculate the energy footprint. The network throughput is 

something that varies a lot and depends on some external factors like the current 

traffic or transmitting neighboring devices.  

Rationale In the energy footprint calculation, we need to consider that some VNFs will 

produce some data that might need to be transmitted to other devices. We know 

that the transmission power, the payload and the transmission rate should be 

considered, along with other terms. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-001 
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Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale In the energy-aware placement solution presented in D4.2 [3] the energy model 

includes explicitly the energy cost of data communication calculated in the 

amount of bytes sent and received along with other terms. In the autoscaling and 

placement solution in D4.2 [3] the energy consumption model calculates the 

energy footprint of VNFs in terms of the amount of data transmitted (sent and 

received) according to the node in which VNFs are deployed. 

 

FR-EAWVNF-002 

Description DAEMON’s EAWVNF shall measure the impact of hardware resource usage by 

VNFs in the calculation of the energy footprint. 

Version 001M2 

Owner UMA 

Priority Low 

Risk 4 

Risk Description The accuracy of the energy consumption measurement depends on specific 

hardware, including not only the computing device processor. Other hardware, 

such as memory use or access to HDD, could also influence the total energy 

footprint, but it is difficult to assess in which percentage. So, it is not easy to 

estimate it accurately. 

Rationale Measuring the hardware resources usage of VNFs and their energy footprint 

provides extra information to accurately estimate the overall energy footprint of 

a VNF. We are seeking to find additional factors to the energy consumption 

formula, to calculate more precisely the network energy footprint. Although the 

DAEMON approach does not need absolute values of energy consumption, we 

need to find out if there are certain situations where the excessive use of 

additional resources by a certain VNF strongly impacts the decision of, for 

example, migrating it to another location.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The solution presented in D4.2 [3] monitors the impact of hardware resources of 

VNFs in the estimation of the energy consumption. The solution also considers the 

computation, communication, and storage resources as part of placement 

algorithm. 

 

FR-EAWVNF-003 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs migration. 

Version 001M2 

Owner UMA 

Priority High 

Risk 4 

Risk Description The cost in terms of energy consumption of code migration in general, and in 

particular considering VNFs, depends on several factors that we need to identify. 

Also, there are different mechanisms to perform code migration and each of 

them requires a different formula for energy footprint calculation, affecting the 

accuracy of the final result.  

Rationale The migration of a certain VNF has an energy cost that should be analyzed. It is 

essential to understand this energy cost to prioritize migrations to other systems if 

needed. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-000 

Current Status 

Percent complete 75% 
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Risk 

management 

Partial 

Rationale The energy consumption model used in the proactive autoscaling solution and 

VNF placement presented in D4.2 [3] can be used to calculate the energy 

footprint of VNF migration due to virtualization costs and data transmission cost 
as virtualization scaling cost is considered in this solution. 

 

FR-EAWVNF-003.00 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNF migration due to 

virtualization cost. 

Version 001M2 

Owner UMA 

Priority High 

Risk 3 

Risk Description The main risk is that we do not consider all the factors relative to virtualization that 

affect the energy consumption of migrating a certain VNF. Another risk is that 

even when we find a formula to calculate this energy footprint for a certain 

virtualization technology (or a few of them), later new technologies may appear. 

Rationale Virtualization has an energy cost and should be analyzed. We should find out if 

this cost depends on the device (mainly Edge devices and Cloud), and how we 

can calculate it for both simulated and real environments. It is essential to 

understand this energy cost to prioritize migrations to other systems if needed. 

Also, we need to choose the list of virtual machines we are going to consider in 

this requirement. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-003 

Current Status 

Percent complete 75% 

Risk 

management 

Partial 

Rationale The energy consumption model used in the proactive autoscaling solution and 

VNF placement presented in D4.2 [3] can be used to calculate the energy 

footprint of VNF migration due to virtualization costs as virtualization scaling cost 

is considered in this solution. 

 

FR-EAWVNF-003.01 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNF migration due to 

transmission cost. 

Version 001M2 

Owner UMA 

Priority High 

Risk 4 

Risk Description The main risk is that we do not consider all the factors relative to virtualization that 

affect the energy consumption of migrating a certain VNF. Another risk is that 

even when we find out a formula to calculate this energy footprint for a certain 

virtualization technology (or a few of them), later new technologies appear. 

Rationale The main factors that affect the energy footprint of VNF migration are the code 

and data transmission. There are different mechanisms to move a VNF to a 

different location and each one implies transferring more or less data. So, the 

code migration mechanism strongly influences the energy footprint since it varies 

the amount of information to be transmitted. We should find out how we can 

calculate it for both simulated and real environments. It is essential to understand 

this energy cost to prioritize migrations to other systems if needed. Also, we need 

to decide on a single migration mechanism, if possible, to be able to calculate its 

energy footprint.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-003 

Current Status 

Percent complete 75% 
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Risk 

management 

Partial 

Rationale The energy consumption model used in the proactive autoscaling solution and 

VNF placement presented in D4.2 [3] can be used to calculate the energy 

footprint of VNF migration due to data transmission costs as data transmission cost 

is considered in this solution and can be used to calculate transfer cost in terms 

of data sent and receive. 

 

FR-EAWVNF-004 

Description DAEMON’s EAWVNF shall consider how the context of the location of VNFs affects 

the energy footprint of VNFs. 

Version 001M3 

Owner UMA 

Priority High 

Risk 4 

Risk Description The main risk is not modeling the context properly due to external and non-

measurable artifacts. Moreover, DAEMON could not capture all the possible 

scenarios related within the location context to model the data's location to feed 

Rationale The VNF placement cost in terms of energy footprint should consider the 

execution context where a VNF will be running, and the location of the data that 

will feed this function. The goal is to adapt the energy footprint of the needed 

VNFs to the context of the location where they are running. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-000 

Current Status 

Percent complete 95% 

Risk 

management 

Effective 

Rationale D4.2 [3] presents an energy-aware placement solution for VNFs, considering the 

execution location context. This solution selects nodes based on an energy profile 

considering available RAM, storage, and hardware configurations. It aims to 

reduce energy consumption while meeting infrastructure needs. The solution 

includes an energy-aware orchestrator that assigns VNFs to the most energy-

efficient nodes. It also considers the energy cost of computing VNF placement as 

part of the overall energy footprint, placing VNFs in an energy-efficient manner 

throughout the infrastructure. 

 

FR-EAWVNF-004.00 

Description DAEMON’s EAWVNF should define an energy profile with the dependency 

relationships of the different possible locations of VNFs. 

Version 001M3 

Owner UMA 

Priority High 

Risk 4 

Risk Description One possible risk is that we cannot capture all the possible scenarios related to 

the location context. The variability of execution location contexts and their 

relationship with the energy footprint could be so high that it is not possible to 

consider all the cases in the AI algorithms that compute the best solution to 

deploy a set of VNFs. 

Rationale To compute the energy footprint of a VNF we need to consider the energy cost 

depending on the location of the input data, and also the context of the 

execution location.  One possible context could be the quality of the energy 

consumed, if it is green and renewable energy or polluting energy.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-004 

Current Status 

Percent complete 100% 

Risk 

management 

Effective 
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Rationale The energy-aware placement solution in D4.2 [3] has the specificity of an energy 

profile considering requirements that are related to the execution location 

context, such as the available Random Access Memory (RAM), storage, or 

specific hardware/server configurations. Based on the different constraints 

above, the solution allows selecting the nodes where VNFs can be run to reduce 

energy consumption while meeting the needs of the infrastructure. 

In addition, one of the modules that are part of the proactive auto-scaling 

solution and VNF placement is the energy-aware orchestrator, which calculates 

the energy consumption according to the location of the VNFs and assigns the 

applications/VNFs to the most energy-efficient node. 

 

FR-EAWVNF-004.01 

Description DAEMON’s EAWVNF should characterize the different variants of VNFs regarding 

the context of the location where the VNF will be running. 

Version 001M3 

Owner UMA 

Priority High 

Risk 5 

Risk Description Sometimes the proposed solutions for energy saving cost about the same or 

sometimes even more than applying a non-energy aware policy. So, we need to 

assess the cost of computing NI solutions in terms of energy, by adding this cost to 

the global energy footprint of the solution proposed by DAEMON.  

Rationale The energy footprint of a VNF could depend on the energy cost of getting the 

input information depending on the location of the input data. Sometimes, the 

best solution could be to migrate the VNFs, but other times DAEMON could 

propose to adapt VNFs so that we can instantiate the most energy-efficient 

version. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-004 

Current Status 

Percent complete 90% 

Risk 

management 

Effective 

Rationale A solution in D4.2 [3] considers the energy cost of computing VNF placement, 

which is considered part of the global energy footprint of the solution. The 

placement decision considers the computational and communication energy 

consumption of VNFs based on their location in the infrastructure to place them 

in an energy-efficient manner. 

 

FR-EAWVNF-005 

Description DAEMON’s EAWVNF shall configure virtualized radio access networks to increase 

their energy efficiency 

Version 001M17 

Owner NEC 

Priority High 

Risk 1 

Risk Description There is a risk that DAEMON will be unable to configure virtualized radio access 

networks. This risk is low because O-RAN specification shall permit this. 

Rationale RAN virtualization promises high flexibility and lower costs but current virtualization 

techniques render higher energy consumption in the RAN. Hence, it is of 

paramount importance to configure virtualized base stations with their energy 

consumption in mind 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The risk was low. The design of NI to configure virtualized radio access networks 

with energy-driven goals was presented in D4.2 [3], Section 2.3, and additional NI 
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will be presented in D4.3, with an NI that jointly controls virtualized radio access 

networks and edge services. Details can be found in [18], [40], [63]. 

 

FR-EAWVNF-006 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs scaling. 

Version 001M18 

Owner UMA 

Priority Medium 

Risk 2 

Risk Description The cost in terms of energy consumption of VNFs scaling, depends on several 

factors that we need to identify. Depending on the approach used to calculate 

or estimate energy footprint the accuracy of the final result will be more or less 

adjusted to reality. 

Rationale there are different proposals to perform VNF scaling and each of them needs to 

incorporate an energy profile to calculate or estimate the energy footprint. 

Scaling up or down a certain VNF frequently according to a dynamic demand 

has an energy cost that should be analyzed. It is essential to understand this 

energy cost to prioritize if scaling up and down is needed. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-000 

Current Status 

Percent complete 70% 

Risk 

management 

Effective 

Rationale In D4.2 [3], a proactive autoscaling solution and VNF placement consider the 

energy consumption of horizontal scaling explicitly to optimize VNF placement. 

Also, it will be extended to consider vertical scaling. 

 

FR-EAWVNF-006.00 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs vertical scaling. 

Version 001M18 

Owner UMA 

Priority Low 

Risk 5 

Risk Description The cost of VNF vertical (up/down) scaling to augment (i.e., scale up) the 

provision of VNF resources depends on several factors that we need to identify. 

Also, there are different approaches to perform VNF resource allocation and 

each of them requires a different formula for energy footprint calculation, 

affecting the accuracy of the final result. 

Rationale The cost of VNF vertical scaling to augment (i.e., scale up) the provision of VNF 

resources has an energy cost that should be analyzed.  It is essential to understand 

the energy cost of resource provision to decide when VNF vertical scaling is 

needed, while taking into account the cost of resource provision actions. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-006 

Current Status 

Percent complete 25% 

Risk 

management 

Partial 

Rationale Our proactive energy consumption model presented in D4.2 [3] will be 

extended to calculate the energy footprint of VNFs' vertical scaling, but it has 

not been tested nor validated yet. 

 

FR-EAWVNF-006.01 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs horizontal scaling. 

Version 001M18 

Owner UMA 

Priority Low 

Risk 2 
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Risk Description The main risk is that we do not consider all the factors relative to VNFs horizontal 

scaling due to virtualization that affects the energy consumption of scaling a 

certain VNF. Another risk is that, even when we find a formula to calculate this 

energy footprint for a certain virtualization technology (or a few of them), later 

new technologies may appear.  

Rationale The horizontal scaling (I.e., in/out) of a VNF has an energy cost due to the 

virtualization process, which should be analyzed. DAEMON should propose 

mechanisms to find out the elements that influence this energy cost, such as the 

HW of target devices (mainly Edge devices and Cloud). Also, DAEMON will 

propose mechanisms to estimate the energy footprint for both simulated and real 

environments. It is essential to understand this energy cost to prioritize horizontal 

scaling if needed.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-006 

Current Status 

Percent complete 100% 

Risk 

management 

Effective 

Rationale The proactive autoscaling solution and VNF placement presented in D4.2 [3] 

explicitly consider the energy consumption of horizontal scaling to optimize VNF 

placement. This solution considers both the base (idle) and dynamic (due to 

application execution) energy consumption of the nodes, as well as the energy 

consumption of node scaling. 
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A.6 Functional requirements: Self-learning MANO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 

FR-SLMANO-002 

DAEMON controllers and orchestrators 

shall support diverse intent based 

objective combinations provided by 

application developers, in terms of 

high-level application properties 

(possibly unknown at design time). 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-SLMANO-000 

DAEMON controllers and orchestrators 

shall be steered by high-level QoE 

targets and business KPIs (high level 

intents), rather than strict QoS goals 

and technical KPIs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-003 

DAEMON controllers and orchestrators 

shall self-converge to stable control 

loops. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-002.00 

DAEMON controllers and 

orchestrators should support 

diverse intent based objective 

combinations of energy footprint 

and latency provided by 

application developers, in terms of 

high-level application properties. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-004 

DAEMON controllers and orchestrators 

shall be trustworthy and explainable, 

where decisions can be traced back to 

the key intents that have driven a 

specific action. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-005 

DAEMON controllers and orchestrators 

shall be able to report that the systems 

they control behave unexpectedly, 

indicating a possible need for retraining 

to cope with unseen or changed 

dynamics. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-000 

DAEMON shall design autonomous 

and self-learning orchestrators and 

controllers that can operate with 

minimal human intervention. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-SLMANO-001 

DAEMON shall define metrics to 

check the stability of a control 

algorithm. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-006 

DAEMON shall implement mechanisms 

to detect when learned information 

becomes stale. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-007 

The autonomous and self-learning 

orchestrators and controllers of 

DAEMON shall be able to gradually 

adapt to changing environments. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

80% 

90% 

60% 

90% 

30% 

80% 

30% 

100% 

80% 

80% 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

112 

 
FR-SLMANO-000 

Description DAEMON shall design autonomous and self-learning orchestrators and controllers 

that can operate with minimal human intervention. 

Version 002M17 

Owner NBL 

Priority High 

Risk 2 

Risk Description Only regularly repeating patterns can be learned. Stochastic fluctuation on top 

of these regular patterns hamper learning and need to be filtered out.  The 

learning rate, number of epochs (the number of times that is run through the data) 

and exploitation versus exploration balance need to be carefully chosen. 

Moreover, the behavior of the system can change either slowly (as the system 

evolves) or suddenly (when, e.g., new software is installed on some of the 

components. Both need to be handled.   

Rationale Any decision that the orchestration and control functions can be envisioned to 

be automized in the following way. First, the software agent taking the decisions 

needs to be provided (in a timely way) with the data necessary to take its 

decisions. The agent relies on the policy currently in force to take the appropriate 

action. With each action taken (given the provided data) the agent is provided 

with feedback that expresses how good that action was given the current data. 

Based on this feedback, the agent can change its policy to steer the system in 

the desired direction.    

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 

Parents None. 

Current Status 

Percent complete 80% 

Risk 

management 

Effective 

  

Rationale We have studied the SLMANO components, i.e., placement/routing of requests 

for new network services and scaling/life-cycle management of existing network 

services under various traffic loads, as reported in Section 6.1.4 of D4.1 [6] and 

Section 4.4.7 of D5.1 [7]), respectively.  Random noise was added to the regular 

patterns and flash crowds were introduced (see the talk on DAEMON’s 1st 

industrial workshop). Under all circumstances the components behaved 

robustly.  

All these loads were artificially generated because, as far as we know, no real 

loads are available yet. Once real data becomes available an additional round 

of robustness checks with these real loads will be needed.  

We also studied the essential building block of an application-aware RAN (in 

D3.1 [5], D3.2 [2]), which classifies traffic in a finite number of classes (data, 

video, web, podcast, …), based on a labeled data captured in a testbed. The 

classifier, which is the essential component in the Application Aware RAN (AAR), 

operates without any human intervention (once the labeled data is captured): 

it is trained via a supervised learning technique (and interrupts automatically 

before it is overtrained), while the interference is operated without any human 

interaction. 

 

FR-SLMANO-002 

Description DAEMON controllers and orchestrators should support diverse intent based 

objective combinations provided by application developers, in terms of high-

level application properties (possibly unknown at design time). 

Version 002M17 

Owner NBL 

Priority High 

Risk 2 

Risk Description Can a single algorithm fulfill this requirement for all use cases (e.g., URLLC (ultra-

low latency reliable communication), EMBB (enhanced mobile broadband), and 

MMTC (massive machine type communication) defined in 5G)? Will it be too 

complex? Is it better to train multiple competing algorithms for each specific use 

case and select the best performing? 
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Rationale Business KPIs will change frequently due to highly varying markets. The algorithms 

provided by DAEMON need to be flexible enough to self-learn and converge to 

sufficiently optimized behavior to avoid human intervention for retuning or 

redesigning the algorithms and mechanisms. If a classical algorithm still has 

parameters to tune a procedure, to tune (i.e., learn) these parameters need to 

be designed and investigated.  

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 

Parents FR-SLMANO-000 

Current Status 

Percent complete 70% 

Risk 

management 

Partial 

Rationale We have tested the placement/routing and scaling algorithms with a variety of 

workloads (see FR-SLMANO-000) and under differentiated latency bounds (to be 

reported in D5.3) and noticed that the proposed algorithms perform well.  

Unfortunately, there was no real data available to us pertaining to ULLRC, eMMB 

and MMTC slices, so that beyond the test on a wide variety of artificially 

generated traces, tests with real traffic were not possible.  

We have also trained and (cross-)tested the classifier, which plays a central role 

in the application-aware RAN, on two different datasets, i.e., one captured with 

tail-drop buffers, and one captured with L4S activated (see D3.3 and D5.3), the 

former of which aims at maximizing throughput, while the latter of which respects 

a strict latency bound.    

Ideally, the AAR classifier allows fine-tuning the traffic differentiation based on 

class-specific intents, e.g., low latency for XR, high throughput for bulk downloads. 

Beyond latency and throughput, we did not consider high-level application 

properties. 

 

FR-SLMANO-002.00 

Description DAEMON controllers and orchestrators should support diverse intent based 

objective combinations of energy footprint and latency provided by application 

developers, in terms of high-level application properties. 

Version 002M17 

Owner UMA 

Priority High 

Risk 2 

Risk Description The energy consumption calculation of placement decision should take into 

consideration also the requirements in terms of the latency/time 

response/timescale needs of service function chains. The algorithm should find 

the best tradeoff between the most fitting timescale and the energy-saving 

requirements for the VNF placement. 

Rationale Following the cloud-native service design, the service function chains consist of 

loosely coupled VNFs that can be separately placed. Orchestration managers 

can make the VNFs placement decisions, while maintaining the service provision. 

The algorithms provided by DAEMON that make orchestration decisions should 

consider latency/time response/timescale needs of service function chains and 

at the same time the energy footprint. So, to make a tradeoff between time and 

energy footprint is desired.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9 X 

Parents FR-SLMANO-002 

Current Status 

Percent complete 85% 

Risk 

management 

Effective 

Rationale The CQL framework [73] supports advanced optimization by supporting multi-

objective combinations of quality attributes, such as latency and energy 

consumption.  In the evaluation of the CQL framework and to control randomness 

we repeated the experiments 97 times and averaged the results for a confidence 

level of 95% with a 10% margin of error. External validity is that not all the evaluated 

systems are NFVs, but well-known models with registered complex quality 

measurements are rare in the SDN literature. Consequently, by choosing the real-
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world systems selected in the evaluation we pretended to cover a variety of 

properties, quality attributes and functions commonly found in VNF cases. 

Nonetheless, we are aware that they do not cover every possible casuistic 

individually. Moreover, while one could claim that larger systems should be tested, 

we should mention that larger spaces are very rare for VNF orchestrators. The 

problem in SDN systems is the complexity of the reasoning and not the size of it. 

Testing our algorithms with only one Category Theory reasoner could be another 

threat. The problem is that Category Theory tools are rare due to the intrinsic 

abstraction and knowledge requirement. 

 

FR-SLMANO-003 

Description DAEMON controllers and orchestrators should self-converge to stable control 

loops. 

Version 002M17 

Owner NBL 

Priority High 

Risk 3 

Risk Description Can we capture realistic dynamic behavior in the systems, emulators or simulators 

that we will use? How can stability be verified? 

Rationale Different parts of the system will have different dynamics, potentially changing 

over time due to SW and HW upgrades. The algorithms provided by DAEMON 

need to be intelligent enough to self-learn and converge to a stable though 

responsive behavior without human intervention for retuning or redesigning the 

algorithms and mechanisms.    

In general, a system operating in a steady state is stable if after an infinitesimally 

short, small enough perturbation applied to it dies out exponentially fast so that it 

returns to that steady state working point. The perturbation needs to be short 

compared to the reaction time inherent to the system and small so that it does 

not jump to another working point.   

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 

Parents FR-SLMANO-000 

Current Status 

Percent complete 90% 

Risk 

management 

Successful 

Rationale We used a practical definition of stability: as long as small perturbations on the 

input, did not lead to growing fluctuations at the output, we called the system 

stable.  

For the closed-loop scalers we noticed that in all cases we considered there was 

a setting of the parameters that yielded stable operation (see Section 4.4.7 of 

D5.2 [4]). However, during training of the reinforcement learning scaler and the 

tuning of the parameters of the proportional integral scalers, some parameter 

settings lead to unstable operation. Whenever such a situation occurred, we 

interrupted the learning process and restarted with new initial parameters. This 

procedure turned out to be sufficient to end up with a stable scaler.   

 

FR-SLMANO-004 

Description DAEMON controllers and orchestrators should be trustworthy and explainable, 

where decisions can be traced back to the key intents that have driven a specific 

action. 

Version 003M17 

Owner NBL 

Priority Low 

Risk 5 

Risk Description Often ML tools are black boxes that after training work well but do not give any 

indication of why they work. Human network operators might distrust such tools 

and hence, be reluctant to use them. Moreover, when decisions are taken at 

multiple layers at different timescales, conflicts may arise amongst agents 

operating at different timescales (possibly due to a human error when setting the 

goals).  
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Rationale In a complex composition of multi-layer controllers, conflicts between different 

levels of intents need to be visualized, such that unexpected unwanted behavior 

can be analyzed and revised in terms of the active and potentially erroneously 

specified intents (due to human errors).    

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 

Parents FR-SLMANO-000 

Current Status 

Percent complete 30% 

Risk 

management 

Partial 

Rationale We started this work in the 3rd year, and we are still working on it. If there is 

progress, we will update this later.  

 

FR-SLMANO-005 

Description DAEMON controllers and orchestrators should be able to report that the systems 

they control behave unexpectedly, indicating a possible need for retraining to 

cope with unseen or changed dynamics. 

Version 001M2 

Owner NBL 

Priority High 

Risk 3 

Risk Description There is a risk that spurious changes are seen by the system as changes in the 

environment, causing the system to retrain (doing a lot of exploration and making 

the associated wrong decisions) where it is not needed.  

Rationale If online retraining is prohibited, or if the algorithms are incapable of self-

converging to a sufficient solution, the need for human intervention needs to be 

reported. 

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 

Parents FR-SLMANO-000 

Current Status 

Percent complete 80% 

Risk 

management 

Successful 

Rationale The classifier associated with the application-aware RAN was trained on two 

different datasets (describing the evolution of the RLC buffer under various types 

of traffic), i.e., one dataset in which the RLC buffer was governed by tail drop 

and another dataset in which the RLC buffer was governed by L4S active queue 

management to keep the RLC buffer (and hence. The latency incurred over 

that buffer) small.  

It was shown that training the classifier on one data set and testing on another 

yielded a low performance (will be updated in D5.3), indicating that detecting 

a change in buffer acceptance mechanism can be easily detected when 

observing the performance of the traffic classifier.    

 

FR-SLMANO-006 

Description DAEMON shall implement mechanisms to detect when learned information 

becomes stale. 

Version 002M17 

Owner NBL 

Priority Medium 

Risk 3 

Risk Description The behavior of the system can change suddenly (when, e.g., a flash crowd 

arrives generating a lot of traffic, when new software is installed on some of the 

components, when there is an outage of part of the infrastructure), which makes 

that the policy learned on past system behavior is no longer applicable. 

Therefore, a system is needed to detect when learned information becomes stale 

indicating when retraining is required.   

Rationale In the framework defined under FR-SLMANO-000-001M2, where the software 

agent taking the decisions is provided (in a timely way) with the data necessary 

to take its decisions and where with each action taken (given the provided data), 
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the agent is provided with quantitative feedback that expresses how good that 

action was, a change in behavior can be detected by observing the evolution 

of the feedback. If there is a drastic change, the balance between exploration 

and exploitation needs to be tilted in favor of exploration so that the system can 

be retrained to work properly in the new environment.     

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 

Parents FR-SLMANO-000 

Current Status 

Percent complete 30% 

Risk 

management 

Partial 

Rationale In the study of how to segment a service function chain (SFC), in which the 

segments are assigned to various datacenters, based on a distributed multi-

agent reinforcement learning (DMARL) technique we gradually decreased the 

balance between exploitation and exploration (see Section 4.2.6 of D5.2 [4] and 

[61]). We chose the decrease in such a way that the system was able to learn 

the desired behavior. This turned out to be trickier than we initially expected, so 

not enough time remained in the scope of the project to investigate how this 

balance should be reinstated when the traffic load would drastically change.  

 

FR-SLMANO-007 

Description The autonomous and self-learning orchestrators and controllers of DAEMON shall 

be able to gradually adapt to changing environments. 

Version 001M17 

Owner NBL 

Priority Medium 

Risk 2 

Risk Description The behavior of the system can change slowly together with the usage patterns. 

DAEMON self-learning MANO needs to follow these changes otherwise the 

decisions it takes will gradually become worse. This can be achieved by setting a 

good balance between exploration and exploitation.  

Rationale A learning system that relies on feedback to improve its policy, can gradually 

learn by taking from time-to-time exploratory actions (i.e., random actions which 

are deemed not to be optimal by the current policy). Usually, the fraction of 

exploration actions is large (close to 100%) at the start of the learning process, 

and gradually reduces to 0 as the system learns. In order to be able to adapt to 

a changing environment, the exploration fraction is kept at, say, 10%.     

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 

Parents FR-SLMANO-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale In the study of how to segment a service function chain (SFC), in which the 

segments are assigned to various datacenters, based on a distributed multi-

agent reinforcement learning (DMARL) technique we determined how to 

decrease the balance between exploitation and exploration (see Section 4.2.6 

of D5.2 [4] and [61]). We have spent a lot of time investigating what the optimal 

decrease is, avoiding, on the one hand, that the system gets stuck in a 

suboptimal policy and, on the other hand, that it takes random decisions for too 

long a time.   
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A.7 Functional requirements: Capacity forecasting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-CFORE-001 

DAEMON capacity forecast 

models shall operate at very 

different timescales. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-002 

DAEMON capacity forecast 

models shall account for monetary 

costs in order to produce a 

practical prediction. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-003 

DAEMON capacity forecast 

models shall operate over 

streaming data. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-000 

DAEMON shall design capacity 

forecast models that can support 

Network Intelligence (NI) 

algorithms across the mobile 

network architecture. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-004 

DAEMON capacity forecast 

models shall provide information 

about their level of accuracy. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-006 

Loss meta-learning should occur 

with minimum training time. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-005 

DAEMON capacity forecast 

models shall be able to learn their 

objective/loss function 

autonomously. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-007 

Loss meta-learning shall support 

losses that combine multiple 

predictions. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

90% 

95% 

100% 

75% 

100% 

95% 

75% 

50% 
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FR-CFORE-000 

Description DAEMON Capacity Forecasting (CFORE) shall design models capable of 

anticipating the amount of resources needed to accommodate future mobile 

service demands, so as to support Network Intelligence (NI) algorithms across the 

mobile network architecture. 

Version 001M2 

Owner IMDEA 

Priority High 

Risk 3 

Risk Description The main risk is that the forecasting models do not achieve the accuracy needed 

to support efficient decision-making, hence limiting the effectiveness of NI. 

Rationale Many decisions to be taken by orchestrators and controllers deployed across 

different micro-domains of the mobile network must be taken in an anticipatory 

manner, i.e., proactively, with respect to the actual demand or requirements. 

Such decisions concern the capacity that orchestrators and controllers shall 

allocate in their micro-domain of competence. Predicting such capacity is thus 

a key enabler for the NI operating across the whole network.  

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 

Parents None 

Current Status 

Percent complete 90% 

Risk 

management 

Effective 

Rationale DAEMON has developed models for capacity forecasting that can follow 

original design guidelines and allow effectively allocating resources in an 

anticipatory fashion. Extensive performance evaluations have demonstrated 

the accuracy of the models. Details on the design and evaluation are provided 

in D2.2 [1], D4.2 [3] and D5.2 [4], in addition to refinements that are developed 

in the last iteration of the project, as presented in Section 7.1.1 of the present 

document and later complemented in D4.3 and D5.3. Additional details are 

reported in the lower-level requirements, where we discuss how the developed 

solutions meet the requirements and what additional steps must be taken to 

meet them fully if not yet successfully completed. Risks were estimated as 

intermediate at the start of the activity, due to the limited amount of prior work 

on the topic of capacity forecasting; yet, all risks have been avoided or largely 

mitigated, as detailed in the children requirements, and the expectation is to 

reach a 100% completion of nearly all requirements by the end of the project, 

based on evaluations carried out in the last iteration and presented in D5.3. 

 

FR-CFORE-001 

Description DAEMON capacity forecast models shall operate at very different timescales 

Version 001M2 

Owner IMDEA 

Priority Medium 

Risk 3 

Risk Description The risk of insufficient accuracy in the prediction is exacerbated as timescales 

become faster, as traffic demands are increasingly bursty, and the changes in 

requirements become more and more rapid. 

Rationale Orchestrators and controllers operate at very different timescales across the 

diverse network domains and take decisions over intervals that range from hours 

to seconds or less depending on the nature of the concerned resources (e.g., 

computing resources, transport capacity, spectrum, etc.). Capacity forecasting 

models must be adapted to such diverse settings. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 

Parents FR-CFORE-000 

Current Status 

Percent complete 95% 

Risk 

management 

Successful 

Rationale The capacity forecasting models developed by DAEMON have been applied to 

very different use cases with heterogeneous timescales, as outlined in Section 3 
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of D4.2 [3]. The models proved effective in addressing those different settings. In 

order to fully meet the requirement in a successful way, further tests at even 

more diverse timescales (e.g., seconds to days) may be needed. Risks were 

estimated as intermediate at the start of the activity, due to the inherent 

uncertainty of the flexibility of the models to different timescales; the 

experimental results obtained by the project across a variety of capacity 

forecasting use cases prove that such risks have been avoided. 

 

FR-CFORE-002 

Description DAEMON capacity forecast models shall account for monetary costs in order to 

produce a practical prediction 

Version 001M2 

Owner IMDEA 

Priority High 

Risk 4 

Risk Description Considering a high number of cost sources makes the forecasting problem more 

involved and identifying the correct capacity prediction becomes harder in 

general. 

Rationale Predicting the sheer capacity needed to accommodate the traffic demand is 

not sufficient in many practical applications of capacity forecasting to network 

orchestration and control. Often, decisions on the allocation of resources and 

Virtual Network Functions (VNFs) must consider the costs incurred by the network 

operator (e.g., unnecessarily assigned resources that go unused, Service Level 

Agreement violations, VNF reconfiguration delays that determine subscriber 

churn, energy consumption generated by running VNFs at different network 

elements, etc.). Designing models that can capture such costs, and output a 

capacity that jointly reduces them, is critical to the economic sustainability of the 

network management process. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 

Parents FR-CFORE-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The capacity forecasting models developed by DAEMON were tested in settings 

that involved, in several cases, monetary costs. Specifically, the models were 

employed to solve tasks in anticipatory capacity allocation, as per Section 3.1 

of D4.2 [3], or minimization of video streaming slice OPEX, as per Section 3.3 of 

D4.2 [3]: these are problems that inherently include economic costs in their 

formulation. As shown in Section 4.5 of D5.2 [4], the models proved effective in 

such tasks. Risks were estimated as high at the start of the activity, due to the 

absence of prior work on the topic; yet, the project was able to demonstrate 

how the developed capacity forecasting models can successfully operate in 

settings where the performance (hence the loss design or loss meta-learning 

process) depend on monetary costs incurred by the operator. 

 

FR-CFORE-003 

Description DAEMON capacity forecast models shall operate over streaming data 

Version 001M5 

Owner IMDEA 

Priority High 

Risk 4 

Risk Description Adapting capacity forecasting to support a streaming model adds complexity 

and challenges to the design of the solution, which may reduce its efficiency. 

Rationale While many traffic forecasting models are trained offline and tested on historical 

data, the operation of such models in production calls for training and operation 

on traffic data as it is measured in the network. This implicitly means that capacity 

forecasting models must be adapted to work on streaming data. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 

Parents FR-CFORE-000 
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Current Status 

Percent complete 75% 

Risk 

management 

Effective 

Rationale The models for capacity forecasting proposed by DAEMON can operate over 

streaming data, as proven by the performance evaluations carried out in 

Section 4.5 of D5.2 [4], which employed measurement data from production 

networks as input to the models. In order to meet the requirement in a way that 

is fully successful, additional testing over very long time periods (e.g., months) is 

needed, so as to verify the capability of the models to generalize and adapt to 

varying traffic conditions that may be very different from those observed during 

the training period. Risks were estimated as high at the start of the activity, due 

to the lack of prior testing of capacity forecasting models over streaming data; 

the results of the proposed models with a number of use cases involving 

streaming mobile network traffic data collected from real-world production 

systems demonstrate that the risk has been effectively mitigated. 

 

FR-CFORE-004 

Description DAEMON capacity forecast models shall provide information about their level of 

accuracy 

Version 001M17 

Owner IMDEA 

Priority Low 

Risk 4 

Risk Description Anticipating not only the target variable but also the uncertainty of its estimate 

makes the prediction task sensibly more complex. 

Rationale Having information on the uncertainty of the prediction can help fine-tuning 

resource allocation, e.g., by including safety margins dimensioned on the level of 

expected accuracy of the forecasting model. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 

Parents FR-CFORE-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The capacity forecasting models developed by DAEMON can be naturally 

extended to leverage dropout layers during the inference phase so as to emulate 

the behavior of computationally complex Bayesian models. This strategy is 

adopted for instance in the models presented in Section 4.3 of D4.2 [3]. Risks were 

estimated as high at the start of the activity, due to the computational complexity 

of obtaining accurate information during inference via traditional Bayesian 

approaches; we avoided the risk by adopting computationally efficient 

approximations that make the operation possible at low cost, hence supporting 

the viability of the model in practical settings. 

 

FR-CFORE-005 

Description DAEMON capacity forecast models shall be able to learn their objective/loss 

function autonomously 

Version 001M17 

Owner IMDEA 

Priority High 

Risk 3 

Risk Description Meta-learning the correct loss from scratches is a challenging task, for which no 

solution exists in the machine learning community. 

Rationale Many network management tasks involve situations where the relationship 

between the prediction (e.g., of resources to be allocated) and the performance 

(e.g., quality of experience of users) is unknown a-priori. In these settings, 

designing a correct loss function for machine learning is not possible, and meta-

learning the loss is the only viable option. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 
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Parents FR-CFORE-000 

Current Status 

Percent complete 95% 

Risk 

management 

Successful 

Rationale DAEMON has designed loss-meta learning models as presented in Section 4.1.3 

of D2.2 [1], which are also enhanced in Section 7.1.3 of the present document. 

These models can autonomously learn losses that are tailored to the network 

management task at hand. They have been applied to different practical use 

cases in Section 3.2 and Section 3.3 of D4.2 [3], and their effectiveness has been 

proven with real demands in Section 4.5.2 and Section 4.5.3 of D5.2 [4]. In order 

to achieve 100% success, we will need to evaluate the solutions for combined 

predictors, which will be done in D5.3 of the project. Risks were estimated as 

intermediate at the start of the activity, due to the extreme novelty of the 

approach, and to the lack of loss meta-learning solutions for forecasting; the risks 

were avoided by the introduction of a fully novel design that operates very well 

in a variety of practical use cases. 

 

FR-CFORE-006 

Description Loss meta-learning should occur with minimum training time 

Version 001M17 

Owner IMDEA 

Priority Medium 

Risk 3 

Risk Description Meta-learning the loss inherently increases the time to convergence of a machine 

learning model, and reducing that time is challenging. 

Rationale In meta-learning models, the loss is learned (along with the model parameters) at 

runtime in the production system. Therefore, the initial lack of accuracy of the loss 

representation determines substantial errors in the predictions, hence significant 

costs for the operator. It is thus key to minimize the training time and the economic 

penalty for the operator of training the whole model from a cold start situation. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 

Parents FR-CFORE-005 

Current Status 

Percent complete 75% 

Risk 

management 

Efficient 

Rationale The models developed by DAEMON have been trained on limited amount of real-

world measurement data, i.e., 4-8 weeks, showing good performance in all cases, 

as demonstrated in the experiments described in D5.2 [4]. Meeting the 

requirement fully needs additional testing, e.g., with even shorter training 

datasets. Risks were estimated as intermediate at the start of the activity, due to 

the well-known needs for massive training data of deep neural network models; 

the risk was strongly mitigated thanks to a compute-prudent approach that 

traded off model complexity (e.g., depth) for a better (e.g., hybrid or meta-

learning) design, which ultimately resulted in a reduced need for training data. 

 

FR-CFORE-007 

Description Loss meta-learning shall support losses that combine multiple predictions 

Version 001M17 

Owner IMDEA 

Priority Medium 

Risk 3 

Risk Description Having multiple forecasting models depend on the same loss implies correlations 

in the predictions, which are typically very complex to learn, making the problem 

more involved than single-input loss meta-learning. 

Rationale In many network management tasks, the performance does not depend on a 

single prediction but on a composition of multiple forecasting tasks. This is the 

case, for instance, in admission control problems over many predicted traffic 

flows, or in network slice brokering. Learning the correct loss function in those 
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situations implies capturing the correlations among the different predictions and 

the performance metric, which calls for even more complex meta-learning tools. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 

Parents FR-CFORE-005 

Current Status 

Percent complete 50% 

Risk 

management 

Partial 

Rationale Support for intertwined predictions in meta-learned loss is introduced by the 

original architecture described in Section 7.1.3 of the present document. The 

design allows handling loss meta-learning in the presence of multiple decisions 

that have a reciprocal influence on each other. The requirement is only partially 

met at the time of writing, as the effectiveness of the solution needs to be assessed 

in practical use cases. Such use cases will be defined in D4.3, and the 

performance of the proposed solution will be evaluated in D5.3 of the project. 

Risks were estimated as intermediate at the start of the activity, due to the high 

complexity of achieving accurate capacity forecasting in the presence of 

mutually dependent predictions; the risks were mitigated by introducing an 

appropriate neural network design that can manage intertwined predictions 

associated with a single loss function. 
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A.8 Functional requirements: Automated anomaly response 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-AARES-001 

DAEMON anomaly detection shall 

operate at different timescales, 

depending on the input from the 

system DAEMON is monitoring. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-AARES-002 

DAEMON anomaly detection 

models have specific data 

requirements, including a sizable 

amount of historical data to 

establish normal behavior and 

ground truth occurrences of 

anomalies to develop a feasible 

solution. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-AARES-000 

NI solutions anomaly detection 

and response should have a high 

detection performance 

(specifically, DAEMON will target a 

0.9 precision-recall AUC with at 

least 85% scoring in both precision 

and recall.). 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-AARES-003 

DAEMON shall take into 

consideration the cost of system 

monitoring, developing and 

deploying the anomaly detection 

models in order to produce a 

feasible anomaly detection 

solution.   
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-AARES-000 

DAEMON shall automatically 

detect, analyze, and act against 

anomalous behaviors. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-AARES-004 

DAEMON anomaly detection 

models need to account for a 

possible temporal distribution shift 

in unseen data. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

 90% 

 90% 

 90% 

 90% 

 90% 

 100% 
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FR-AARES-000 

Description DAEMON shall automatically detect, analyze, and act against anomalous 

behaviors. 

Version 003M35 

Owner TID 

Priority High 

Risk 3 

Risk Description Anomaly detection tasks might not correctly capture new previously unseen 

anomalies. 

Rationale Most communication platforms use a reactive approach to deal with 

communication issues (i.e., operation teams react when incidents are severe 

only, and the service is often compromised already). DAEMON requires a 

proactive approach to anomaly detection that can detect both malicious and 

benign anomalies in the different systems it integrates.  

K1  K2  K3  K4  K5  K6  K7 X K8  K9  

Parents None 

Current Status 

Percent 

complete 

90% 

Risk 

management 

Successful  

Rationale DAEMON implements three different activities for real-time anomaly detection 

and automated anomaly response, namely, A9, A19 and A25 as reported in D5.2 

[4]. We provide details on the solution and its implementation in D4.2 [3] and D3.2 

[2], which we will complement with their final status in D4.3 and D3.3, respectively. 

The reported status in D5.2 [4] shows an average completion of approximately 

70% towards collecting the corresponding KPIs, which we will further update in 

D5.3. 

 

FR-AARES-001 

Description DAEMON anomaly detection shall operate at different timescales, depending on 

the input from the system DAEMON is monitoring.  

Version 002M5 

Owner TID 

Priority Medium 

Risk 2 

Risk Description Each anomaly detection task should take into consideration the requirements in 

terms of the timescale it needs to generate anomaly warnings. For finer 

granularities, the performance of the models might implicitly decrease, as the 

time available for the model to produce results also decreases. We will work to 

find the best tradeoff between the most fitting timescale and the performance 

requirements for the DAEMON anomaly detection tasks.  

Rationale Anomalies can become easier to spot depending on the timescale that fits to the 

particular system with which DAEMON interacts. 

K1  K2  K3  K4  K5  K6  K7 X K8  K9  

Parents FR-AARES-000 

Current Status 

Percent 

complete 

90% 

Risk 

management 

Effective 

Rationale The DAEMON anomaly detection NI functionality (e.g., A9, A19 in D5.2 [4]) adapts 

the local anomaly detection process frequency, based on the incoming data 

volumes, as well as the needs of the engineers managing the systems we monitor.   

 

FR-AARES-002 

Description DAEMON anomaly detection models have specific data requirements, including 

a sizable amount of historical data to establish normal behavior and ground truth 

occurrences of anomalies to develop a feasible solution.  

Version 002M5 
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Owner TID 

Priority High 

Risk 4 

Risk Description The lack of high-quality historical data to establish the baseline behavior of the 

system (i.e., anomaly-free state for training) poses a high risk to developing 

anomaly detection approaches for DAEMON. Similarly, the lack of ground truth 

anomalies that have been detected in the system will make the validation of any 

anomaly detection approach challenging. Finally, the lack of expert knowledge 

brings an extra risk when building data features to train the anomaly detection 

tools for DAEMON. 

Rationale The data quality is of paramount importance for the anomaly detection 

approaches we aim to integrate in DAEMON. Specifically, we aim to build on high 

quality ground truth for establishing the normal baseline for the system DAEMON 

monitors. Similarly, in order to validate the performance of our DAEMON anomaly 

detection solutions, we require a diverse set of ground-truth anomalies that 

operators previously captured in the systems DAEMON integrates. Furthermore, in 

order to craft data features that respond to the purpose of each system, we 

require expert knowledge and the operators’ support in this process.  

K1  K2  K3  K4  K5  K6  K7 X K8  K9  

Parents FR-AARES-000 

Current Status 

Percent 

complete 

90% 

Risk 

management 

Successful 

Rationale The solutions DAEMON proposes for anomaly detection rely on vast datasets of 

ground-truth anomalies that we collect from real-world systems (e.g., see the 

datasets supporting the evaluation of A19 in D5.2 [4]). DAEMON relies on the 

ticketing systems of the operational teams who manage the systems we monitor, 

which require continual updates.  

 

FR-AARES-003 

Description DAEMON shall take into consideration the cost of system monitoring, developing 

and deploying the anomaly detection models in order to produce a feasible 

anomaly detection solution.   

Version 003M5 

Owner TID 

Priority Low 

Risk 1 

Risk Description The high cost of training and running DAEMON anomaly detection tools might 

suppose a high expenditure for the operators’ of the system in question.  

Rationale DAEMON anomaly detection tools must run in real-world production systems, 

where we must also consider the actual monetary cost of running a state-of-the-

art system for ML/DL tasks. We will work to produce solutions that adapt to 

different tiers of existing resources.  

K1  K2  K3  K4  K5  K6  K7 X K8  K9  

Parents FR-AARES-000 

Current Status 

Percent 

complete 

90% 

Risk 

management 

Effective 

Rationale DAEMON’s anomaly detection solutions have been developed in collaboration 

with engineering teams of real-world systems, enabling us to take into 

consideration their requirements in terms of monitoring, data transformation, 

model training and anomaly inference. For example, DAEMON solutions are in 

some cases to integrated in the cloud-based big data platform that 

engineering teams use internally.  
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FR-AARES-004 

Description DAEMON anomaly detection models need to account for a possible temporal 

distribution shift in unseen data. 

Version 004M17 

Owner TID 

Priority High 

Risk 4 

Risk Description The data captured in a network environment is indeed a temporal series that can 

have seasonal patterns or data can even be non-stationary. This issue poses a 

high risk for any anomaly detection approach that learns some normal behavior 

or statistics from the data. A possible distribution shift where features extracted 

from the captured data diverge too much over time will make the detection of 

anomalies in unseen data challenging. 

Rationale The data used for anomaly detection should cover historical data for an analysis 

of seasonal shifts and temporal distribution shifts. The features extracted from the 

features should be tested against stationarity and temporal covariance shift. 

Feature selection should select features that show high stability over time to avoid 

this issue. Nevertheless, anomaly detection models can age over time and new 

data should be captured regularly to update such models. 

K1  K2  K3  K4  K5  K6  K7 X K8  K9  

Parents FR-AARES-000 

Current Status 

Percent complete 90% 

Risk 

management 

Effective 

Rationale DAEMON’s solutions for anomaly detection are designed to be periodically re-

trained to adapt to the shifts in the distributions of data.  We tested this, for 

example, this is the solution we described in Section 4.2 in D4.2 [3], showing that 

a monthly time window is likely adequate.  
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A.9 Functional requirements: Network Intelligence Plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

  

 

 

  

 

 

 

 

 
 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
 

 

 

FR-NIP-001 

DAEMON’s NIP shall offer end-to-end 

orchestration of network intelligence 

with closed control-loop to meet 

service KPIs in different micro-

domains. 

FR-NIP-001.00 

DAEMON’s NIP shall support the 

composition of Network intelligence 

Services (NISs) by selecting Network 

Intelligence Functions (NIFs) to pursue 

a given network KPI. 

FR-NIP-003.00 

DAEMON’s NIP shall support the 

lifecycle management of NISs. 
FR-NIP-003 

DAEMON’s NIP shall manage 

network intelligence with closed 

control loop to meet service KPIs in 

different micro-domains. 

FR-NIP-003.01 

DAEMON’s NIP shall support the 

lifecycle management of NIFs. 

FR-NIP-004 

DAEMON’s NIP shall coordinate 

network intelligence with closed 

control loop to meet service KPIs in 

different micro-domains. 

FR-NIP-004.00 

DAEMON’s NIP shall be able to 

perform policy/action/decision 

conflict resolution of different NIFs to 

guarantee the stability of the system. 

FR-NIP-000 

DAEMON’s Network Intelligence 

Plane (NIP) shall manage, 

coordinate, and orchestrate 

network intelligence with closed 

control loop to meet service KPIs in 

different micro-domains. 

FR-NIP-005 

DAEMON’s NIP shall provide a NIS 

and a NIF catalog. 

NFR-NIP-003 

NIP shall provide support for multiple 

virtualization environments for 

deploying services/applications in 

distributed domains 

 

         

NFR-NIP-004 

NIP shall provide support for 

federated multi-domain 

management and orchestration.   

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  100%-0% 

95% 

95% 

 100% 

 80% 

 100% 

 100% 

 100% 

 80% 

 80% 

 80% 

 100% 

 100% 
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Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
 

 

FR-NIP-002.00 

DAEMON’s NIP shall provide an interface 

to trigger the execution of ML pipelines. 

FR-NIP-002.01 

DAEMON’s NIP shall provide an interface 

with the network intelligence functions to 

communicate its decisions and to 

consume information (e.g., CPU/GPU 

consumption, accuracy, timescale, input 

data format) of NIF performance or 

conflicting policies to facilitate their 

management. 

FR-NIP-000 

DAEMON’s Network Intelligence 

Orchestrator (NIO) shall manage 

and orchestrate network 

intelligence with closed control 

loop to meet service KPIs in 

different micro-domains. 

NFR-NIP-008 
The system constraints for NIF 

selection at the edge are energy, 

computation, network, and KPIs. 

FR-NIP-002.02 

DAEMON’s NIP shall provide an interface 

to support end-to-end, decentralized, 

and unified data management for 

network intelligence. 

FR-NIP-002.03 

DAEMON’s NIP shall provide an interface 

with the network management and 

orchestration system. 

NFR-NIP-001 

DAEMON’s NIP shall make an optimal 

decision on using the communication 

framework for sharing information 

between monitoring systems and the 

management and orchestration 

framework.   

FR-NIP-002 

DAEMON’s NIP shall provide the 

appropriate interfaces to 

communicate with different 

functional blocks (referenced in 

section 3 of D2.2). 

NFR-NIP-002 

NIP shall provide openness of interfaces 

between orchestration/control tiers and 

NIFs/NISs to mitigate the dependence on 

specific network 

operators/vendors/infrastructure 

providers/service providers. 

NFR-NIP-005 

DAEMON’s NIP shall interact with the 

Network Orchestration Framework 

aligned with ETSI-NFV-MANO. 

NFR-NIP-006 

DAEMON’s NIP shall interact with the 

3GPP Network Analytics System. 

NFR-NIP-007 

DAEMON’s NIP shall interact with the O-

RAN on non-RT RIC and near-RT RIC. 

NFR-NIP-009 

DAEMON’s NIP shall provide native NI 

procedures to be used by the project 

developed NIFs. 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial 
  

95% 

95% 

 100% 

 100% 

 100% 

100%-0% 

 100% 

 100% 

 100% 

 100% 

 100% 

 100% 

 100% 

 100% 

 100% 
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FR-NIP-000 

Description DAEMON’s Network Intelligence Plane (NIP) shall manage, coordinate, and 

orchestrate network intelligence with a closed control loop to meet service KPIs 

in different micro-domains. 

Version 002M18 

Owner IMEC  

Priority Low 

Risk 1 

Risk Description Given the wide range of NI solutions we need a common framework to map the 

most common features of NI algorithms, integrate them into a defined 

architecture, and design the necessary interfaces that algorithms use to interact 

with their environment.  

Rationale Network Intelligence (NI) is proposed to replace or assist network operators in their 

diverse set of network management tasks. However, current management 

frameworks (e.g., O-RAN, MANO) are not flexible enough or do not support the 

integration of NI instances. The DAEMON architectural framework enables the 

penetration of intelligence into both the user and control planes, thereby 

creating a hierarchical NI architecture that consists of distributed NI instances for 

network management, which altogether collaborate to improve their individual 

learning and decision-making processes. 

Parents None 

Current Status 

Percent complete 95% 

Risk 

management 
Successful 

Rationale D2.3 presents the final updates of the architectural model for native orchestration 

in Beyond 5G (B5G) networks that was envisioned in Section 1 of D2.1. These 

updates contemplate the feedback from WP3 and WP4 during the second report 

period, plus the requirements defined in Section 2 of D2.2 [1]. Moreover, as shown 

in Sections 3, 4, and 5 of D2.3, the architectural model is able to fulfill the 

requirements imposed by the child, and consequently, is able to manage, 

coordinate and orchestrate network intelligence. The full competition of this 

requirement will be achieved once specific performance metrics related to 

orchestration and lifecycle management of NIF/NIS are measured and provided 

as reference values for NIP implementations.  

 

FR-NIP-001 

Description DAEMON’s NIP shall offer end-to-end orchestration of network intelligence with 

closed control loop to meet service KPIs in different micro-domains. 

Version 001M18 

Owner IMEC 

Priority Low 

Risk 1 

Risk Description One of the main challenges in the orchestration of NI is to translate network 

requirements or KPIs to meet business needs. 

Rationale The NI Plane integrates the functions related to network intelligence. In several 

cases, these functions can be orchestrated to create end-to-end Network 

Intelligence Services. The creation of such services can be done in an automatic 

way, similarly as in network orchestrators.   

Parents FR-NIP-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The architectural design finalized in D2.3 takes care of the end-to-end 

orchestration of intelligence with closed control-loop in different micro-domains.   
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FR-NIP-001.00 

Description DAEMON’s NIP shall support the composition of Network intelligence Services 

(NISs) by selecting Network Intelligence Functions (NIFs) to pursue a given network 

KPI.  

Version 002M18 

Owner IMEC 

Priority Low 

Risk 1 

Risk Description It is possible that the available NIFs do not address the system constraints. In this 

case, NIFs that try to fulfill system constraints as close as possible will be selected. 

Rationale Network Intelligence Functions (NIFs) are functional blocks that implement a 

decision-making functionality to be deployed in a controller. Similar to the 

information model specified for network management by, e.g., 3GPP, NIFs can 

be arranged to compose a Network Intelligence Service (NIS).  

 

Depending on the available resources and the business goals or SLAs, NIP will 

select the best NIF model that suits the system constraints. For example, in some 

cases it might be feasible to sacrifice accuracy at the expenses of a lower 

computational complexity.    

Parents  FR-NIP-001 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The composition of Network Intelligence Services can be achieved in a similar 

way as presented in [31]. Moreover, model selection was included in the NI Plane 

procedures in Section 5 of D2.3.   

 

FR-NIP-002  

Description  DAEMON’s NIP shall provide the appropriate interfaces to communicate with 

different functional blocks (referenced in section 3 of D2.2 [1]) 

Version  001M18 

Owner  IMEC  

Priority  Low  

Risk  1 

Risk Description  There are common communication patterns (e.g., pub/sub) that could be 

replicated here. However, we must select the most suitable communication 

system, considering that the decisions taken by the NIP might impact network 

behavior. 

Rationale  Once a NIS is created/composed, training such models (NIFs) will be performed 

via the creation and deployment of MLOps frameworks. Once the models are 

trained, they will be registered in the NIF/NIS catalogue and will be ready to be 

deployed in a test/production environment. Currently there are several 

commercial frameworks that already do that for ML applications. The idea is not 

to reinvent the wheel, but to adapt such frameworks to the network domain.  

Once the NISs are deployed, the appropriate interfaces to manage the lifecycle 

management of their NIFs shall be used. Moreover, NIFs should be able to infer 

the network state/context as input. For that reason, the NIP should enable an 

interface with the corresponding management framework.  

Parents  FR-NIP-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 
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Rationale The results of this activity are reported in Section 4 of D2.3, where the interfaces 

(internal and external) with the main functional blocks of the architecture are 

defined.   

 

FR-NIP-002.00 

Description  DAEMON’s NIP shall provide an interface to trigger the execution of ML pipelines 

Version  002M18 

Owner  IMEC  

Priority  Low  

Risk  1 

Risk Description  From the architectural point of view, we need to identify or to create the 

interaction points between the NIP and the MLOps framework.  

Rationale  MLOps is a methodology that combines Machine Learning (ML) with software 

development operations (DevOps) and data engineering with the goal of 

building, training, deploying, and maintaining ML systems in productions with high 

reliability and efficiency guarantees. DAEMON architecture explicitly indicates 

that building ML models functionality (i.e., the ML pipelines) is delegated to an 

external platform, and MLOps frameworks are the de-facto platform to do this 

task. Currently there are several commercial frameworks that already do that for 

ML applications. The idea is not to reinvent the wheel, but to adapt such 

frameworks to the network domain. 

Parents  FR-NIP-002 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale Same as parent.  

 

FR-NIP-002.01 

Description  DAEMON’s NIP shall provide an interface with the network intelligence functions 

to communicate its decisions and to consume information (e.g., CPU/GPU 

consumption, accuracy, timescale, input data format) of NIF performance or 

conflicting policies to facilitate their management 

Version  001M18 

Owner  IMEC 

Priority  Low  

Risk  1  

Risk Description  Functionalities and NIFs can be very diverse. To ease the implementation of a NIP, 

information should be standardized (e.g., format) which can be cumbersome 

given the wide application domains of DAEMON functionalities. 

Rationale  NIP decisions (replacement, retraining, execution, and termination) should be 

made based on the information coming from the Network Intelligence Functions 

(NIFs). This information should be enough to take a good decision. Furthermore, 

this decision must be communicated using the same channel, guaranteeing the 

stability of the system. 

Parents  FR-NIP-002 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale Same as parent. 
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FR-NIP-002.02 

Description DAEMON’s NIP shall provide an interface to support end-to-end, decentralized, 

and unified data management for network intelligence. 

Version 001M8 

Owner ZSC 

Priority High 

Risk 1 

Risk Description Besides managing the lifecycle of different NISs, the burden of managing data 

can be too big as it involves a multiplicity of data sources and data types.  

Rationale The NI Multi-timescale Closed-loop AI Framework should provide end-to-end 

decentralized and unified data management to ease the development, 

operation, and management of any NI model. Such data is gathered with the 

purpose of training NI algorithms. The main characteristics are previously defined 

in FR-MTERM-001 in D2.1. 
Parents FR-NIP-002 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale Same as parent.  

 

FR-NIP-002.03 

Description  DAEMON’s NIP shall provide an interface with the network management and 

orchestration system. 

Version  001M18 

Owner  IMEC 

Priority  Low  

Risk  1 

Risk Description  In some cases, the interaction point with network management and 

orchestration systems is evident (e.g., O-RAN architecture) but in other domains it 

can be hard to define (e.g., NFV MANO) since they are not developed to natively 

support NI.  

Rationale  The NIP manages the connection towards the network management and 

orchestration to gather important information such as the expected network KPIs 

for the managed slice and service, as well as the information of the underlying 

network infrastructure. 

Parents  FR-NIP-002 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale Same as parent. 

 

FR-NIP-003 

Description  DAEMON’s NIP shall manage network intelligence with closed control-loop to 

meet service KPIs in different micro-domains. 

Version  001M18 

Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description  Overall system stability should be achieved. However, it can be that some NISs 

span several domains which require extra coordination.  
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Rationale  Once a NIS is released for production, the NIP shall support its lifecycle 

management. By lifecycle management we refer to onboarding, instantiation, 

termination, scaling, and state retrieval.  The same should happen with different 

NIFs that compose the NIS 

Parents  FR-NIP-000 

Current Status 

Percent complete 80%  

Risk 

management 

Successful 

Rationale The results of this activity are reported in Section 5 of D2.3, more specifically, 

subsection 5.1.3 described the procedures needed for managing NIFs and NISs.  

To complete this requirement, the measurement of performance metrics related 

to NIS/NIF/NIF-C composition and deployment will be provided as reference 

values to evaluate the performance of the lifecycle management capabilities 

provided by the NIP.    

 

FR-NIP-003.00 

Description  DAEMON’s NIP shall support the lifecycle management of NISs 

Version  002M18 

Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description  The metrics that measure the impact of a NIF in the overall performance of a NIS 

could be difficult to define.  

Rationale  NISs are composed of one or more NIFs with a specific target, usually related with 

a specific set of targeted KPIs. They possibly span several network domains. 

Therefore, it is required to not only monitor the performance of a given NIF from 

the NIS, but also the impact of this NIF in the performance of the NIS.  

Parents  FR-NIP-003   

Current Status 

Percent complete 80% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Section 5 of D2.3, where the procedures 

for each step of the NIS lifecycle are defined using the building blocks proposed 

by the architectural design. To complete this requirement, the measurement of 

performance metrics related to NIS composition and its deployment will be 

provided as reference values to evaluate the performance of the lifecycle 

management capabilities provided by the NIP.    

 

FR-NIP-003.01 

Description  DAEMON’s NIP shall support the lifecycle management of NIFs  

Version  001M18 

Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description  NIFs themselves could be of different kinds: They could be learning models, based 

on, e.g., Deep Neural Networks or Engineered Models, or they could be built upon 

specific optimization algorithms such as the ones based on control theory or 

Mixed-Integer Linear Programming (MILP). Thus, it’s necessary to define common 

strategies to proper manage both types of NIFs. 

Rationale  According to the DAEMON architecture, the NIF manager is responsible for the 

lifecycle management of NIFs and monitoring the health of the intelligence 
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functions. This includes typical diagnostic information, if the NIF is being used in 

inference or it is an online learning solution, or other metrics such as the loss and 

the training loops if the NIF is currently being trained.  Moreover, the NIP needs to 

provide feedback on the NIFs performance so higher-level decisions can be 

made (e.g., that the model can be updated or replaced). 

Parents  FR-NIP-003  

Current Status 

Percent complete 80% 

Risk 

management 

Successful 

Rationale The procedures defined in Section 5 of D2.3 are valid for NISs as well as for NIFs. To 

complete this requirement, the measurement of performance metrics related to 

NIF and NIF-C composition and their deployment will be provided as reference 

values to evaluate the performance of the lifecycle management capabilities 

provided by the NIP.    

 

FR-NIP-004 

Description  DAEMON’s NIP shall coordinate network intelligence with closed control-loop to 

meet service KPIs in different micro-domains. 

Version  001M18 

Owner  IMEC  

Priority  Low  

Risk  1 

Risk Description  To determine which action/policy/decision has priority on optimizing a given 

function is not trivial and it depends on multiple factors that need to be 

evaluated. Therefore, the initial selection of policies/actions/decisions is highly 

coupled with the use case.    

Rationale  Coordination of NI can include, but is not limited to: 

• Sharing NIF-C among different NIFs (e.g., two NIFs that require the same 

input) 

• Arbitration policies in case of two NIFs that share the same sink, that is, 

the configuration APIs. 

• Guarantee system stability among conflicting policies/actions/decisions.  

Parents  FR-NIP-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Section 5 of D2.3, where the procedures 

for coordinating NIs is described. In particular, we’ve shown procedures for 

conflict resolution (§5.2.1) and knowledge sharing (§5.2.2) which are two of the 

main concerns of this requirement.   

 

FR-NIP-004.00 

Description  DAEMON’s NIP shall be able to perform policy/action/decision conflict resolution 

of different NIFs to guarantee the stability of the system.  

Version  003M18 

Owner  IMEC  

Priority  Low  

Risk  1 

Risk Description  When a NIF/NIS performs an action that conflicts with the action of other NIF/NIS, 

it is required to solve the conflict in a coordinate manner. However, designing the 

conflict resolution mechanism may be a very hard problem as it will depend on 

the multiple factors tailored to specific use cases (e.g., centralized vs. 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

135 

decentralized vs. federate network domains, flat vs. hierarchical decision making, 

etc.).  

Rationale  Optimizations will take place in different domains of the assisted system. Therefore, 

the decisions/policies/actions that are taken to optimize a certain objective 

function (e.g., business goal, SLAs) can be counterproductive to other 

policies/decisions/actions. Thus, a conflict resolution system is needed that can 

guarantee that the system is evolving towards a stable state.   

Parents  FR-NIP-004 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Section 5 of D2.3, specifically §5.2.1 show 

the steps necessary to perform conflict detection and resolution.  

 

FR-NIP-005 

Description  DAEMON’s NIP shall provide a NIS and a NIF catalog 

Version  001M18 

Owner  IMEC 

Priority  Low  

Risk  1 

Risk Description  There must be some commonalities between NIFs and NISs, so they could be 

advertised in a general framework.  

Rationale  The NIP has catalogs of already onboarded NIS and NIFs. In particular, NIFs may 

need to be (re)-trained to cope with changing or different conditions, or on a 

periodical basis. 

When a NIS is composed of NIF empowered by ML models, training such models 

will be performed via the creation and deployment of ML pipelines. Once the 

models are trained, they will be registered in the NIF/NIS catalog and will be ready 

to be deployed in a test/production environment. 

Parents  FR-NIP-000 

Current Status 

Percent complete 80% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Section 3 of D2.3, where the NIS/NIF 

catalog is included in the proposed architecture. The packaging of the diverse 

NIFs could be done as in [31]. However, the descriptor should include, beside the 

elements mentioned in the previous reference, the additional information 

mentioned in §5.1.1 of D2.3. To complete this requirement, the measurement of 

performance metrics related to NIS/NIF/NIF-C upload latency will be provided as 

reference values to evaluate the performance of the NIS/NIF/NIF-C register 

provided by the NIP.    
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A.10 Performance requirements 

Specify both the static and the dynamic numerical requirements placed on the software or on human 

interaction with the software. 

 

NFR-RIS-000 

Description RIS should aid to increase wireless capacity (bits/m2) by 100% 

Version 001M1g 

Owner NEC 

Priority High 

Risk 3 

Risk Description There is a risk that the performance attained in realistic environments fall below 

100% 

Rationale This will allow surfaces to adapt in a timely manner, following the channel 

dynamics. 

K1  K2  K3  K4  K5  K6 X K7  K8  K9  

Parents FR-RIS-000-001M1 

Current Status 

Percent complete 50% 

Risk 

management 

Successful  

Rationale An experimental RIS prototype is being built and measurements will be collected 

in an anechoic chamber. The initial design steps were presented in D5.2 [4], 

Section 4.6, and the final design and results will be presented in D5.3. 
 

 

NFR-RIS-001 

Description Re-configuring all the components in a RIS must be achieved within 100 ms.  

Version 003M17 

Owner NEC 

Priority High 

Risk 3 

Risk Description There is a risk that the electronic equipment required can only be re-configured 

in more than 100ms. For instance, nowadays shortages in electronic components 

may force us to resort to less performing designs. 

Rationale 100 ms is the timescale of O-RAN near-real-time RAN Intelligent controller and a 

good trade-off between tracking fast wireless channel dynamics and high 

overhead. 

K1  K2  K3  K4  K5  K6  K7  K8 X K9  

Parents FR-RIS-000-001M1 

Current Status 

Percent complete 50% 

Risk 

management 

Successful 

Rationale An experimental RIS prototype is being built and measurements will be collected 

in an anechoic chamber. The initial design steps were presented in D5.2 [4], 

Section 4.6, and the final design and results will be presented in D5.3. 
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NFR-RIS-002 

Description The (non RF) electronic equipment required to control a RIS must consume less 

than 100 mW. 

Version 001M17 

Owner NEC 

Priority High 

Risk 3 

Risk Description There is a risk that the electronic equipment required to control a RIS consumes 

more than 100 mW. For instance, nowadays shortages in electronic components 

may force us to resort to more energy-consuming solutions. 

Rationale Provide smart RF reflectors that are very efficient in terms of energy consumption 

hence reducing OPEX. 

K1 X K2  K3  K4 X K5  K6  K7  K8  K9  

Parents FR-RIS-000-001M1 

Current Status 

Percent complete 50% 

Risk 

management 

Successful 

Rationale An experimental RIS prototype is being built and measurements will be collected 

in an anechoic chamber. The initial design steps were presented in D5.2 [4], 

Section 4.6, and the final design and results will be presented in D5.3. 

 

NFR-CAWRS-000 

Description NI orchestration solutions for vRAN shall have reaction times below 10s 

Version 002M17 

Owner UC3M 

Priority High 

Risk 1 

Risk Description There is a low risk that DAEMON will not integrate and succeed in providing such 

timings for the NI-based network orchestration. In preliminary works, DAEMON 

partners were able to achieve computing resources orchestration within a 10s 

constraint. This constraint may be lowered with the usage of more complex 

orchestration solutions. 

Rationale In [62], DAEMON authors were able to orchestrate computing resources for vRAN 

by using the Docker API, with a 10 seconds granularity. This value is already 

enough to bring down the computing resource usage by more than 30% in some 

scenario. By using directly the cgroups API offered by the Linux system, we may 

achieve even lower values. 

 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  

Parents FR-CAWRS-000-001M3 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale As reported in [17] this requirement has been achieved. 

 

NFR-CAWRS-001 

Description NI control solutions to schedule computing and radio resources in real time for 

vRAN shall have an inference time below 500us 

Version 002M17 

Owner UC3M 

Priority High 

Risk 2 

Risk Description There is a mild risk that NI cannot achieve sub-second timings for the vRAN control 

algorithms such as the radio scheduling (which needs 1ms timings). If these timings 
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cannot be achieved, DAEMON partners will use solutions such as slower 

scheduling patterns, enforced every 50-100 TTIs 

Rationale Ideally, scheduling decisions are taken every TTIs, thus in the ms range scale. This 

requirement is quite stringent and may require specialized hardware such as GPUs 

deployed at the edge if deep learning solutions shall be put in place. Alternatives 

could be the usage of mixed models between machine learning and traditional 

optimization 

 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  

Parents FR-CAWRS-002-001M17 

Current Status 

Percent complete 90% 

Risk 

management 

Successful 

Rationale Validation results for this activity will be reported in D3.3 and D5.3 

 

NFR-CAWRS-002 

Description NI solutions for vRAN shall maximize spectral efficiency given computing capacity 

constraints. 

Version 002M17 

Owner UC3M 

Priority High 

Risk 2 

Risk Description There is a mild risk that NI cannot achieve bounded performance for the wireless 

performance (i.e., spectrum efficiency, leading to bandwidth and latency 

figures). In this case, specific boundaries to the achievable computing resource 

saving will be defined. 

Rationale With unbounded computing resource savings, the spectral efficiency may be 

unacceptably low. In [17], DAEMON partners were capable of achieving very 

good tradeoffs between achievable savings and pure performance, by correctly 

understanding the traffic patterns. Other solutions may have to be designed to 

guarantee that this tradeoff (the ratio between the best possible performance 

without computing resource optimization and the one obtained by DAEMON 

solutions never falls below certain thresholds) maximizing hence spectral 

efficiency given computing capacity constraints. 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  

Parents FR-CAWRS-002-001M17 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale As reported in [62] this requirement has been achieved. 

 

NFR-CAWRS-003 

Description Predictive HARQ inference mechanisms shall have a minimum accuracy of 99% 

and a false positive rate below 0.1% 

Version 001M17 

Owner UC3M 

Priority High 

Risk 1 

Risk Description There is a low risk that NI cannot integrate inference mechanisms whose 

accuracy is at least 99% and the false positive rate below 0.1%. There are multiple 

previous works applying this technique in other fields. 

Rationale It is critical that the inference mechanisms have a very high accuracy and a very 

low rate of false positives, because a wrong prediction (due to a prediction fail 

or a false positive result of the prediction) incurs substantially higher cost because 

the transport block has to be recovered by others. 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  
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Parents FR-CAWRS-001-001M17 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale Validation results for this activity were reported in D5.2 [4] (Section 4.1). 
 

NFR-EAWVNF-002 

Description DEAMON expects to save 50% of the energy cost, thanks to applying NI solutions 

to find out the energy-aware optimal placement of VNFs of FR-EAWFN-000. 

Version 001M2 

Owner UMA 

Priority High 

Risk 3 

Risk Description We cannot achieve the 50% of energy saving in all cases, only in some of them, 

or simply DAEMON solutions save an inferior percentage of energy. 

Rationale The performance in terms of energy consumption of the DAEMON solution should 

improve the current solutions by a 50%.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-001-001M1 

Current Status 

Percent complete 60% 

Risk 

management 

Effective 

Rationale The energy-aware placement solution reduces up to 51% of the energy 

consumption compared with the default deployment proposed by the existing 

MANO standard solutions, which follow non-energy-aware policies. 

In addition, the proactive autoscaling solution and VNF placement have a 92.5% 

decrease in energy consumption (a failed request rate of up to 0% and 

reasonable execution times of the auto-scaling process for different problem 

sizes). 

 

NFR-EAWVNF-003 

Description The cost in terms of energy footprint of the NI solution for VNFs placing shall be less 

than the global energy saving  

Version 001M2 

Owner UMA 

Priority High 

Risk 2 

Risk Description The cost of the NI-assisted VNF placement could be not much less or even higher 

than the energy consumption savings of the proposed solutions.  

Rationale The energy saving obtained by applying energy profiling to the NI algorithms for 

the VNFs placement should be less than the global energy saving, to be worthy. 

So, the cost of the energy-awareness mechanism should be a lot less than 50% of 

the energy saving proposed in NRF-EAWVNF-002. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-001-001M1 

Current Status 

Percent complete 60% 

Risk 

management 

Effective 

Rationale Section 4.4.9 in D5.2 [4] presents the results in measuring the improvements in the 

Edge, and the energy cost reduction goes above 15% and, in some scenarios, up 

to 92%. 
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NFR-EAWVNF-004 

Description Energy-efficient NI shall balance throughput and energy consumption in vRANs  

Version 001M17 

Owner NEC 

Priority High 

Risk 1 

Risk Description There is no risk 

Rationale Tethered virtualized base stations may be interested in trade-off radio spectrum 

capacity for energy savings 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-005-001M17 

Current Status 

Percent complete 100% 

Risk 

management 
Successful 

Rationale The risks were low. The design of the NI was presented in D4.2 [3], Section 2.3, and 

an empirical evaluation was presented in D5.2 [4], Section 4.2.1. The details can 

be found in [18], [40]. More specifically, a data-driven approach based on 

Bayesian Learning was designed to control different configuration parameters of 

virtualized base stations to balance throughput and power consumption. 

 

NFR-EAWVNF-005 

Description NI orchestrating resources in vRANs shall maximize networking throughput given 

power consumption constraints 

Version 001M17 

Owner NEC 

Priority High 

Risk 3 

Risk Description There may be cases where power constraints cannot be satisfied. 

Rationale Respecting power consumption constraints, even while learning, it is of 

paramount importance for battery-powered small cells, solar-powered small cells 

or other types of power-constrained small cells. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-005-001M17 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The design of the NI was presented in D4.2 [3], Section 2.3, and an empirical 

evaluation was presented in D5.2 [4], Section 4.2.1. The details can be found in 

[18], [40]. More specifically, a data-driven approach based on Bayesian Learning 

was designed to control different configuration parameters of virtualized base 

stations to maximize network throughput given hard power consumption 

constraints.  

 

NFR-EAWVNF-006 

Description Energy savings shall be achieved in virtualized RANs without compromising given 

service performance constraints  

Version 001M17 

Owner NEC 

Priority High 

Risk 3 

Risk Description It may be possible that energy savings can only be achieved when service 

performance constraints are not satisfied. 

Rationale Satisfying service-level agreements is the top priority of a mobile network. Hence, 

NI solutions should strive to meet service performance constraints with a minimum 

energy consumption toll. 
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K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-005-001M17 

Current Status 

Percent complete 50% 

Risk 

management 

Successful 

Rationale The design of NI is currently ongoing and will be presented in D4.3 (design) and in 

D5.3 (empirical results).  

 

NFR-AARES-000 

Description NI solutions anomaly detection and response should have a high detection 

performance (specifically, DAEMON will target a 0.9 precision-recall AUC with at 

least 85% scoring in both precision and recall.). 

Version 001M5 

Owner TID 

Priority High 

Risk 2 

Risk Description There is a mild risk that NI for anomaly detection cannot achieve its target 

performance. This highly depends on the quality and availability of ground-truth 

datasets from the systems DAEMON will monitor.  

Rationale It is important that NI solutions for anomaly detection in the different systems that 

DAEMON will monitor detect real (and important) anomalies, and do not flood 

the operators with false alarms for their systems.  

K1  K2  K3  K4  K5  K6  K7 X K8  K9  

Parents FR-AARES-002-002M5 

Current Status 

Percent 

complete 

100% 

Risk 

management 

Effective 

Rationale We reported the performance results of A19 in D5.2 [4], showing that we were 

able to achieve the performance of the anomaly detection in DAEMON.  

 

A.11 Design constraints 

Specify constraints on the system design imposed by external standards, regulatory requirements, or 

project limitations. 

 

NFR-RIS-003 

Description RIS must provide beamforming gains passively, without energy-consuming 

(active) RF chains 

Version 001M17 

Owner NEC 

Priority High 

Risk 1 

Risk Description There is a small risk that beamforming gains can only be achieved with active RF 

chains that integrate RF amplifiers. 

Rationale Smart RF reflectors with active RF chains already exist and are called “relays”. The 

main motivation for RIS is the possibility of attaining beamforming gains with 

minimal energy consumption and costly electronic equipment. Hence, a RIS must 

necessarily be passive. 

K1  K2  K3  K4  K5  K6 x K7  K8  K9  

Parents FR-RIS-000-001M1 

Current Status 

Percent complete 50% 

Risk 

management 

Successful 
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Rationale Risks are low. The initial design steps, consisting of a patch antenna array without 

active RF chains, were presented in D5.2 [4], Section 4.6. 

 

NFR-EAWVNF-001 

Description DAEMON energy-aware solution will scale well when considering a heterogenous 

set of devices and network infrastructure FR-EAWVFN-001.  

Version 001M2 

Owner UMA 

Priority High 

Risk 4 

Risk Description The variety of devices  

Rationale DAEMON should be able to consider the global footprint of VNFs placement 

solutions for a large number of different IoT and Edge devices with variable 

resources and networking infrastructure. The upper values of the devices’ 

resources considered in DAEMON will be taken from the software and hardware 

network or device specifications of the underlying infrastructure. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-001-001M1 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The auto-scaling solution includes an energy-aware orchestrator, which 

calculates the energy consumption according to the location of the VNFs and 

assigns the applications/VNFs to the most energy-efficient node. The energy-

aware orchestrator, as well as the Essential Node Identifier module, includes the 

expected performance as a constraint, to reduce energy consumption without 

compromising throughput. 

 

 

NFR-MTERM-001 

Description  DAEMON’s MTERM shall provide an exhaustive list of orchestration operations  

Version  002M18  

Owner  IMEC  

Priority  Low   

Risk  1  

Risk Description  The list of orchestration operations might involve subgroups of operations, 

depending on the policies defined for specific types of applications (e.g., value-

added services require different orchestration operations than services that are 

directly consumed by users).  

Rationale  The NI-assisted management and orchestration framework needs to provide 

support for at least a basic set of orchestration operations, such as onboarding 

(I.e., preparation of application descriptors and images on all required edge 

platforms), instantiation (on all required edge platforms), scaling 

up/down/out/in depending on the resource (computing and network) 

requirements and current resource consumption, termination (i.e., releasing the 

allocated resources so they can be consumed by other applications, or save 

energy), and state/context migration (I.e., migrating the state/context of the 

application from one edge to another due to the UE mobility, resource 

availability, or energy saving purposes).  

K1    K2  X  K3    K4    K5    K6    K7    K8    K9    

Parents  FR-MTERM-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 
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Rationale The solution in Section 3.1, D3.2 [2] uses OSM on top of Kubernetes, which covers 

the most basic orchestration operations. 

 

NFR-MTERM-002  

Description  DAEMON’s MTERM shall provide compliance with standardized frameworks (e.g., 

ETSI NFV MEC, ETSI NFV MANO, and O-RAN) running at the network edge.   

Version  002M18 

Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description  The insufficient level of compatibility between different standardization tracks 

(ETSI MEC/ETSI NFV MANO & O-RAN) can potentially lead to complex and 

application-specific orchestration platforms, limiting their exploitability among 

research tracks.   

Rationale  As the standardization plays a key role in ensuring that a software tool meets 

certain requirements that guarantee proper work in various conditions, and 

expanding the exploitability of such solution, NI-assisted management and 

orchestration framework needs to be designed and developed in accordance 

with the existing standardization efforts.   

K1    K2  X  K3    K4    K5    K6    K7    K8    K9    

Parents  FR-MTERM-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale All the solutions tackling the MTERM functionality use standardized frameworks.  

 

NFR-MTERM-003 

Description  DAEMON’s MTERM shall provide NIF modularity and reusability among different 

players (e.g., network operators/vendors, service providers, etc.)  

Version  002M18 

Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description  The lack of NIF complexity and an increased level of openness of I/O interfaces 

might decrease the accuracy of decision-making processes performed by those 

NIFs.  

Rationale  Due to the heterogeneity in resource and service deployments across edge 

networks, the NIFs running in both framework tiers need to be application/service-

agnostic, thus, no application-specific data should be considered apart from the 

resource requirements and KPIs stated in SLAs. With such a configuration, NIFs can 

be maintained and used by different stakeholders.   

K1    K2  X  K3    K4    K5    K6    K7    K8    K9    

Parents  FR-MTERM-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale All the solutions tackling the MTERM functionality are developed as containers 

following a cloud-based approach, facilitating modularity and reusability.  

 

NFR-SLMANO-000 
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Description DAEMON controllers and orchestrators should be steered by high-level QoE 

targets and business KPIs (high-level intents), rather than strict QoS goals and 

technical KPIs. 

Version 002M4 

Owner NBL 

Priority Medium 

Risk 2 

Risk Description The problem may be that it may be difficult to describe expected behavior in a 

concise way.  

Rationale Application developers should have an easy way of specifying intended 

behavior based on their application-level knowledge and requirements to 

guarantee QoE for their users.    

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 

Parents FR-SLMANO-000-002M17 

Current Status 

Percent complete 90% 

Risk 

management 

Successful 

Rationale In the scaling work we have set a target latency and defined a reward function 

that penalizes latency violations and the (excessive) use of resources (Section 

4.4.7 of D5.1 [7]), showing that high-level QoE targets can be used for MANO 

life-cycle management.  

 

NFR-SLMANO-001 

Description  DAEMON shall define metrics to check the stability of a control algorithm.  

Version  001M5 

Owner  NBL  

Priority  High 

Risk  2  

Risk Description  Although a rough definition of a stable control system is easy to understand, i.e., 

if after exciting the system with a short, small perturbation, it returns fast enough 

to the original equilibrium, it is hard to make that definition precise for nonlinear 

systems.    

Rationale  It is well-known that closing the control loop may lead to unstable systems. In 

linear systems, instability stems from the fact that the closed loop transfer function 

has poles in the positive half plane, leading to an impulse response that 

exponentially increases. Although some ideas some chaos engineering may be 

applied, in non-linear systems there is no rigorous equivalent.    

K1    K2    K3    K4    K5    K6    K7    K8    K9   X 

Parents  FR-SLMANO-003-002M17 

Current Status 

Percent complete 80% 

Risk 

management 

Successful 

Rationale We used a practical definition of stability: as long as small perturbations on the 

input, did not lead to growing fluctuations at the output, we called the system 

stable (see FR-SLMANO-003). 

 

NFR-IBSSI-000 

Description Network Intelligence algorithms should be adapted to the PISA architecture 

Version 001M17 

Owner IMDEA 

Priority Medium 

Risk 3 

Risk Description Programmable switches have specific internal architectural models that make 

some machine learning models more suitable than others for deployment. 
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Rationale Modern programmable switches are compliant with the Protocol Independent 

Switch Architecture (PISA) model. The solutions for machine-learning-based 

inference implemented in such devices must thus be aligned with the internal 

organization into Match-Action Units (MAUs) of such a model. 

K1  K2  K3 X K4  K5  K6  K7  K8  K9  

Parents FR-IBSSI-002-003M18 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The RF models proposed by DAEMON are tailored to the PISA architecture by 

design, as detailed in Section 5.1 of D3.2 [2], hence are guaranteed to be fully 

compatible with the target programmable hardware in the user plane. Indeed, 

they have been implemented in real-world production-grade switches for the 

performance evaluation presented in Section 4.7.1 in D5.2 [4]. 
 

NFR-IBSSI-001 

Description Network Intelligence algorithms should be resource-prudent 

Version 001M17 

Owner IMDEA 

Priority Low 

Risk 4 

Risk Description Programmable switches have extremely limited computational capabilities that 

are primarily intended to support forwarding-related policies. 

Rationale Decision-making is not a legacy or priority task in programmable user planes. 

Therefore, NI solutions deployed in programmable switches must consume as little 

resources as possible, in a way not to hinder the regular operation of the devices 

and the whole network. Ideally, NI models for programmable switches should not 

consume more than 1% of the different memory types available in these devices. 

K1  K2  K3 X K4  K5  K6  K7  K8  K9  

Parents FR-IBSSI-002-003M18 

Current Status 

Percent complete 75% 

Risk 

management 

Effective 

Rationale The performance evaluations carried out as described in Section 4.7.1 of D5.2 [4] 

show how the proposed solution for integration of NI in programmable user planes 

consumes a limited amount of resources in a production-grade switch. 

Depending on the use case, an RF model uses between 3% and 29% of the total 

memory resources in the switch and is thus compatible with other functionalities 

that the programmable switch must perform. In order to meet the requirement in 

a fully successful way, more resource-prudent mappings than the one adopted 

in the current implementation need to be devised and tested. 

  

NFR-NIP-001 

Description  NIP shall make an optimal decision on using the communication framework for 

sharing information between monitoring systems and the management and 

orchestration framework   

Version  002M18  

Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description  Additional benchmarking of communication systems (e.g., message broker) that 

will be used for sharing information between framework entities is needed, and 

different systems might be suitable for different types of applications.   
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Rationale  As communication systems/platforms enable either synchronous or asynchronous 

communication between different orchestration components and NIFs, it is 

important to consider the complexity of using and managing the communication 

system (e.g., RabbitMQ is a simple and often used in most of the existing MANO 

solutions) for pub/sub purposes, but also the additional latency this entity involves 

in the communication (e.g., RabbitMQ inevitably generates additional latency 

because of message queuing on a central node, comparing to ZeroMQ).   

Parents  FR-NIP-002 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The prototype of the implementation of the NI Orchestrator given in Section 5.3 

of D2.3, uses a pub/sub/query protocol implemented in Zenoh23 as a 

communication system. In the context of messages communication protocols, a 

team from the National Taiwan University (NTU) completed a Performance Study 

on the Throughput and Latency of Zenoh, MQTT, Kafka, and DDS. The results 

showed that Zenoh outperforms the other communication protocols with 

impressive performance numbers [74].  

 

NFR-NIP-002 

Description  NIP shall provide openness of interfaces between orchestration/control tiers and 

NIFs/NISs to mitigate the dependence on specific network 

operators/vendors/infrastructure providers/service providers 

Version  001M18 

Owner  IMEC  

Priority  Low  

Risk  3  

Risk Description  The vulnerability of open interfaces between management and orchestration 

tiers, and between NIFs, might impose certain security risks that need to be 

properly handled.   

Rationale  Distributed edge networks and cloud can be deployed by different 

vendors/infrastructure providers, belonging to different Mobile Network Operator 

(MNO) domains. Thus, it is of utmost importance to provide open interfaces 

between NIFs and management and orchestration tiers (i.e., edge and cloud) in 

order to facilitate orchestration operations, and to mitigate the dependence on 

the vendor-specific configuration of NIFs.   

Parents  FR-NIP-002 

Current Status 
Percent complete 100% 

Risk 

management 

Successful 

Rationale All the interfaces defined in Section 4 of D2.3 are open and follow the standards.  

 

NFR-NIP-003 

Description  NIP shall provide support for multiple virtualization environments for deploying 

services/applications in distributed domains 

Version  002M18 

Owner  IMEC  

Priority  Low  

Risk  1  

                                                           
23 https://zenoh.io/     

https://zenoh.io/
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Risk Description  The diversity in virtualization environments needs specific maintenance, and 

virtualization-specific policies for orchestration operations, which significantly 

increases the complexity of orchestration operations in both tiers within NI-assisted 

management and orchestration framework.   

Rationale  With regards to the limited resource availability within the edge platforms, 

comparing to the large and resourceful data-center, the lightweight 

virtualization, and orchestration solutions for small-size programmable devices are 

required. Thus, containerization proves to be a suitable candidate to deliver a 

lightweight deployment of services and applications suitable for network edge 

deployments. 

Parents  FR-NIP-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Sections 3.2.3 and 4.2 of D2.3, where we 

define the interactions between external entities such as O-RAN and MANO and 

the NI Orchestrator. External entities can be associated with different domains 

and use different virtualization environments.   

 

NFR-NIP-004 

Description  NIP shall provide support for federated multi-domain management and 

orchestration. 

Version  003M18 

Owner  IMEC  

Priority  Low  

Risk  3 

Risk Description  Management-level agreements are necessary for establishing collaboration 

between orchestration and management entities, and NIFs in different edge 

domains.   

Rationale  Due to the high mobility of users in 5G and beyond 5G ecosystems, applications 

are deployed in distributed ways across different edge platforms. Thus, NI-assisted 

management and orchestration framework needs to support cross-

domain/cross-edge service orchestration for achieving seamless service 

operation. 

Parents  FR-NIP-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Sections 3.2.3 and 4.2 of D2.3, where we 

define the interactions between external entities such as O-RAN and MANO and 

the NI Orchestrator. Thanks to the NI Orchestrator and its conflict resolution 

mechanism, the interaction with such external entities allows a federated 

approach in which each entity remains in control of its assets while allowing other 

NI to be implemented and achieving seamless service operation. 

 

NFR-NIP-005 

Description  DAEMON’s NIP shall interact with the Network Orchestration Framework aligned 

with ETSI-NFV-MANO 

Version  002M18 

Owner  UC3M  

Priority  High  
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Risk  1  

Risk Description  The NIP needs to understand what are the Network Services that are currently 

running in the system, in order to match the network intelligence to them.  

Rationale  The Network Orchestrator (either based on an ETSI-NFV-MANO platform or an 

implementation using ONAP) is the element in the network architecture that 

keeps track of all the network services (and the network slices implementing 

them). Therefore, the NIO shall interact with the Network Orchestrator to (we use 

in the following the ETSI NFV MANO terminology): 

• The number and type of network slices/ services that are running 

(available at the NFV-O) 

• The number and extent of subnetwork slices that are running (available 

at the NFV-O) 

• The number and extent of VNFs that are running (available at the NFV-O 

and VNFM) 

• The network topology (available at the NFV-O and VIM) 

This information is required by the NIO to understand, e.g., where to run the NI 

and to match the already running network services (e.g., an eMBB Network Slice). 

Parents  FR-NIP-002 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Section 3.2.3 of this deliverable, where 

we define the interactions between the MANO and the NI Orchestrator. 

 

NFR-NIP-006 

Description  DAEMON’s NIP shall interact with the 3GPP Network Analytics System 

Version  002M18 

Owner  UC3M  

Priority  High  

Risk  1  

Risk Description  The NIP needs to interact with the 3GPP Network Data Analytics System, as the 

network analytics defined by the standard are NIFs.  

Rationale  The network analytics services, as defined by the 3GPP system in [75] are NIFs that 

need to be orchestrated and managed as the other NIF defined in the project. 

The producer/consumer NFs in the analytics systems are NIF-C in the DAEMON 

view. The NWDAF is a particular kind of NIF-C, that implements the model. 

Parents  FR-NIP-002 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Section 4.2.2 of this deliverable, where 

we define the interactions between the 5GC analytics and the NI Orchestrator. 

 

NFR-NIP-007 

Description  DAEMON’s NIP shall interact with the O-RAN on non-RT RIC and near-RT RIC 

Version  002M18 

Owner  NEC  

Priority  High  

Risk  1  

Risk Description  The NIP needs to interact with the O-RAN RIC entities, namely non-RT RIC and 

near-RT RIC, through standard interfaces defined by O-RAN, e.g., via A1, E2, O2 
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or O1.  The interfaces may need to be extended or new interfaces need to be 

defined to communicate and interact with DAEMON NIFs.  

Rationale  The Non-RT RIC entities (such as rApps) or Near-RT RIC entities (such as xApps), 

defined in the O-RAN reference architecture, can be provided by the NIFs in the 

project. The O-RAN RICs can be considered as the consumer of the NIFs for 

managing open RAN configuration and RAN related functionalities and 

resources.  

Parents  FR-NIP-002 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Section 4.2.1 of D2.3, where we define 

the interactions between the O-RAN RIC Controllers and the NI Orchestrator. 

 

NFR-NIP-008 

Description  The system constraint for NIF selection at the edge are energy, computation, 

network, and KPIs 

Version  002M18 

Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description    

Rationale  Depending on the available resources and the business goals or SLAs, DAEMON 

will select the best NIF model that suits the assisted system. For example, in some 

cases it might be feasible to sacrifice accuracy at the expenses of a lower 

computational complexity.    

Parents FR-NIP-000 

Current Status 

Percent complete 100% 

Risk 

management 

Successful 

Rationale In Section 5.1 of D2.3, we defined the parameters that compose a NIS/NIF 

Descriptor. Among them, parameters in learning metrics, data-related topics, 

such as data types, age and output format, and computation were defined. 

These parameters allow the NI Orchestrator to perform NIF selection, as indicated 

in Section 5.1.3 of the same deliverable. 

 

NFR-NIP-009 

Description  DAEMON’s NIP shall provide native NI procedures to be used by the project 

developed NIFs 

Version  002M18 

Owner  UC3M  

Priority  High  

Risk  1  

Risk Description  The NIFs may require some advanced functionality that is provided by the NI 

Orchestrator, especially for their coordination and execution. 

Rationale  As discussed in Section 7 of D3.2 [2], after the N-MAPE-K analysis of the different 

NIFs designed by the project, some additional features of the NIO are required: 

namely Knowledge Sharing, Conflict Resolution, and model deployment and re-

training. 

Parents  FR-NIP-002 

Current Status 
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Percent complete 100% 

Risk 

management 

Successful 

Rationale The results of this activity are reported in Section 5 of this deliverable, where we 

show the orchestration procedures that will be used by the project developed 

NIFs. 
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B Appendix: Literature Review − Final status 
In this appendix, we present the final status of the literature review. We include all the reviewed papers 

and their data that support the findings listed in Section 6. We incorporate such information in this 

deliverable for completeness in a tabular format to improve readability.  

We remind the reader that some of the research questions have a limited set of possible questions, which 

we detail in the following. Regarding the operation timescale, we distinguish the following cases: 

• Very short timescale (us-ms) 

• Short timescale (ms-s) 

• Medium timescale (s-min) 

• Long timescale (min-h) 

• Very long timescale (h-days) 

For algorithm location, we distinguish between 

• Orchestration Plane 

• Control plane 

• Data plane 

For the micro-domain of operation, we have: 

• Subscriber 

• Access 

• Beyond Edge 

• Far Edge 

• Edge 

• Transport 

• Core 

• Cross domain (“Cross”) 

With respect to the Application Area, we follow the latest 5GPPP white paper [76] where three major 

application areas were identified, namely i) Network Planning, ii) Network Diagnostics, and iii) Network 

Optimization and Control. We include Network Security inside the Network Diagnostics category, as they 

are correlated. 

Like in D2.2 [1], we included two subsections, one dedicated to the questions regarding the network and 

dataset, and the second dedicated to the machine learning questions. We motivate this split mainly due 

to the size of the content. Each column shows the information of a given paper, while every row identifies 

the information related to one of the questions.  

 



B.1 Research questions related to the network and data 

 

 Bib key sotocamelo2021atari [25] ayalagarcia2021 [40] sotocamelo2021[26] sotocamelo2023 [43] goez2022quantizedm

odclass [47] 

akembutun2023 [16] akemgucciardo2023 

[77] 

N
e

tw
o

rk
 R

e
la

te
d

 

Networking 

problem 

Link Evaluation, Throughput 

Prediction 

Energy consumption 

and performance 

optimization in vRAN 

Resource 

management 

Resource 

management 

Radio Resource 

Management 

Traffic classification Traffic classification 

Application 

Area 

Network Optimization and 

Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and control 

Network Diagnostics 

and Security 

Network Diagnostics 

and Security 

Micro-

domain 

Edge Edge Cross-domain Cross-domain Access Transport Transport 

Algorithm 

Location 

Control Plane Control plane Control and 

Orchestration Plane 

Control and 

Orchestration Plane 

Control Plane Data Plane Data Plane 

Operation 

Timescale 

Short timescale (ms-s) Medium timescale (s-

min) 

Medium timescale (s-

min) 

Medium timescale (s-

min) 

Short timescale (ms-s) Very short timescale 

(us-ms) 

Very short timescale 

(us-ms) 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Synthetic Real Synthetic Synthetic Synthetic Real Real 

Dataset 

Generation 

Setup 

600 deployments with random 

number of APs and STAs (78078 

devices in total). APs are fixed 

at the center of the cell while 

STAs are randomly placed 

around the AP’s coverage area 

(10m) 

2 nodes acting 

as UE and eNB 

Analytically 

generated 

Analytically 

generated 

GNU radio was used 

to generate the 

waveforms 

data collected from 

28 IoT devices during 

a period of 6 months 

Multiple datasets 

Dataset 

Availability 

Open Open Open Open Public Open Open 

Data 

Velocity 

End-to-end: around KB/seconds 

Only prediction: around 

KB/milliseconds 

Second 1 sample per second 1 sample per second Not provided Velocity of the data 

through the switch in 

the order of 

MB/seconds 

Variable 

Data Variety Structured Data Structured Data Structured Data Structured Data Structured Data Structured Data Structured Data 

Data Volume A deployment is given in a csv 

file with approximately 20 KB per 

file 

3 floating numbers Not provided Not provided 20GB 652MB Not provided 

Data 

Veracity 

The Distributed Coordination 

Function operation and 

Dynamic Channel Bonding in 

Komondor, were validated 

against ns-3 and the well-known 

Bianchi and Markov models. 

However, there is no validation 

using real data. 

Accurate Accurate Accurate Accurate Accurate Accurate 
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Bib key 

loschiavofiore2022 [28] colletbanchs2022  [37] colletbazco2023 [38] NinaSK2023CCNC [21] Zhu2021[78] ayalagarcia2020 [17] nakanoyasato2019 

[79] 
N

e
tw

o
rk

 R
e

la
te

d
 

Networking 

problem 

Resource 

management 

Resource 

management 

Resource 

management 

Resource 

management, 

Resource forecasting 

Resource 

management 

Radio and computing  

resource control 

Resource 

management 

Application 

Area 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and control 

Network Optimization 

and control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Micro-

domain 

Transport Cross-domain Edge/core Edge/core Edge and Client Edge Cross-domain 

Algorithm 

Location 

Control Plane Control Plane Control and 

Orchestration Plane 

Control and 

Orchestration Plane 

Control Plane Control plane Orchestration Plane 

Operation 

Timescale 

Predictor: Short 

timescale (ms-s) 

Predictor: Short 

timescale (ms-s) 

Long timescale (min-h) Short timescale (ms-s) N/A Very short timescale 

(us-ms); Short timescale 

(ms-s) 

N/A 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Real dataset obtained 

from operator 

Real dataset obtained 

from operator 

 

Synthetic dataset 

generated through 

network-simulation 

pipeline 

Real dataset obtained 

from operator 

 

Synthetic dataset 

generated through 

network-simulation 

pipeline  

Data generated on the 

testbed 

Synthetic Real Real 

Dataset 

Generation 

Setup 

Not provided QoE pipeline simulated Multiple datasets Real data from 

Kubernetes clusters 

deployed on the 

Roadside units 

(Kubernetes metrics 

API) 

Number of vehicles: 6, 

Computation power of 

VEC server: 6.3GHz, 

Computation power of 

vehicle: 1GHz, The 

data amount per task: 

[50, 600] kB, Initial price 

of VEC server: 0.3, 

Prices of VEC servers: 

[0, 1], Cost of vehicle: 1 

2 nodes acting 

as UE and eNB 

SFC1: Proxy - FW - IDS, 

SFC2: FW - IDS, SFC3: 

IDS - FW 

Dataset 

Availability 

Private Private Private and public, 

depending on the 

evaluation 

Yes Not provided Open Not provided 

Data 

Velocity 

GB/seconds GB/seconds GB/seconds Not provided Not provided Second Not provided 

Data Variety Structured Data Structured Data Structured Data Not provided Not provided Structured Data Structured Data 

Data Volume 

N/A ~10GBs ~10GBs Not provided Not provided 3xBxT floating numbers  

(B = number 

of Base Stations, T =  

nof monitoring samples 

per interval (100 in their 

case)) 

Not provided 

Data 

Veracity 

Accurate Accurate Accurate Not provided Not provided Accurate Not provided 
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Bib key xiaozhang2019 [80] quanghadjadj-

aoul2019 [81] 

peihong2019 [82] zhengtian2019 [83] solozabalceberio2019 

[84] 

foukasradunovic2021 

[85] 

zhaoliang2019 [86] 
N

e
tw

o
rk

 R
e

la
te

d
 

Networking 

problem 

Resource 

management 

Resource 

management 

Resource 

management 

Resource 

management 

Resource 

management 

Execution times 

prediction 

User association and 

 resource allocation 

on heterogeneous  

cellular networks 

Application 

Area 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Diagnostics 

and Security 

Network Planning 

Micro-

domain 

Cross-domain Cross-domain Cross-domain Core Cross-domain Edge UE 

Algorithm 

Location 

Orchestration Plane Orchestration Plane Orchestration Plane Orchestration Plane Orchestration Plane Control Plane Control Plane 

Operation 

Timescale 

Short timescale (ms-s) Short timescale (ms-s) Short timescale (ms-s) Not provided Not provided Short timescale (ms-s) Not provided 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Synthetic Synthetic Real Synthetic Synthetic Real Not provided 

Dataset 

Generation 

Setup 

Not provided Not provided Not provided Not provided Not provided Probes at the 

network deployment 

Not provided 

Dataset 

Availability 

Open N/A Open Not provided Not provided Not provided Not provided 

Data 

Velocity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 

Variety 

Structured Data Structured Data Structured Data Structured Data Structured Data Not provided Not provided 

Data 

Volume 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 

Veracity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 
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Bib key Bakri2021 [87] tripathipuligheddu2021 

[88] 

mismarchoi2019 [89] xiongZilberman2019  

[90] 

gijon21_longterm [91] gutterman19 [92] yangcao2020 [93] 
N

e
tw

o
rk

 R
e

la
te

d
 

Networking 

problem 

Network Slice 

Admission Control 

Dynamic radio 

resource  

allocation in 

heterogeneous  

vRANs 

Downlink SINR 

maximization  

problem given the 

worst  

case distribution of 

network  

fault predictability both  

indoors and outdoors 

Traffic classification Traffic Forecasting Resource Forecasting Spectrum Access 

Applicatio

n Area 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Diagnostics 

and Security 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Micro-

domain 

Core Edge Edge Transport Edge/core Edge/core Edge 

Algorithm 

Location 

Control Plane Control Plane Control Plane Data Plane Control and 

Orchestration Plane 

Control and 

Orchestration Plane 

Control Plane 

Operation 

Timescale 

Short timescale (ms-s; 

Medium timescale (s-

min) 

Short timescale (ms-s) Short timescale (ms-s) Very short timescale 

(us-ms) 

Very long timescale (h-

days)  

Very long timescale (h-

days)  

Short timescale (ms-s) 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Not provided Not provided Not provided Real Real Synthetic Synthetic 

Dataset 

Generation 

Setup 

Not provided Not provided Not provided Testbed with 28 

different IoT devices 

(e.g., cameras, sensors, 

etc.) 

Data collected from 

January 2015 to June 

2017 (i.e., 30 months) in 

a large live LTE network 

serving an entire 

country 

 LTE eNB configured 

with a 

10 MHz bandwidth 

using 700 MHz wireless 

spectrum 

Two USRP2 connected 

to respective PCs to 

generate and collect 

the RF traces. 

Authors varied the 

window size, the SNR 

levels and data 

payload size. 

All the experiments 

were perform in a 4-

node star topology.  

Dataset 

Availability 

Private Not provided Not provided Open Not provided Not provided Private 

Data 

Velocity 

Not provided Not provided Not provided Velocity of the data 

through the switch in 

the order of 

MB/seconds 

Not provided Not provided Not provided 

Data 

Variety 

Not provided Not provided Not provided Unstructured Data Not provided Not provided Unstructured Data 

Data 

Volume 

Not provided Not provided Not provided PCAP file Not provided Not provided Not provided 

Data 

Veracity 

Not provided Not provided Not provided Accurate Not provided Not provided RF traces are from real 

devices but might be 

limited to the ones used 

during training.  
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Bib key liuyu2020 [94] camelomennes2020 

[95] 

yange2020 [96] wangmao2021 [97] jiayang2021[98] nakashimakamiya2020 

[99] 

xucheng2018 [100] 
N

e
tw

o
rk

 R
e

la
te

d
 

Networking 

problem 

Resource 

management 

Spectrum Sharing Resource 

management 

Resource 

management 

Resource 

management 

Channel Allocation Spectrum Sensing 

Application 

Area 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Planning 

Micro-

domain 

Edge Edge Cross-domain Cross-domain Edge Access Access 

Algorithm 

Location 

Orchestration Plane Control and 

Orchestration Plane 

Orchestration Plane Orchestration Plane Orchestration Plane Control Plane Control Plane 

Operation 

Timescale 

Not provided Short timescale (ms-s) Short timescale (ms-s) Short timescale (ms-s) Not provided Not provided Not provided 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic 

Dataset 

Generation 

Setup 

Task generation is 

modeled as a Poisson 

process; the distribution 

of the IoT devices is 

modeled by a Poisson 

cluster process.  

5 Collaborative 

Intelligent Radios were 

sharing the spectrum; 

the incumbent was a 

doppler weather radar; 

radios were sharing 

10MHz of bandwidth; 

the radios were 

connected to a 

collaboration network 

in Colosseum.  

Not provided Not provided Not provided Multiple APs were 

simulated using back-

of-the-envelope (BoE) 

technique, this assumes 

each AP has a STA and 

the wireless link is 

saturated 

Multiple PUs (2, 3) and 

multiple SUs (6, 9) were 

simulated; the 

transmission power of 

each PU is set to 50 mW; 

transmission signals are 

assumed to attenuate 

according to a free-

space propagation 

model with pathloss 

exponent equal to 4. 

Dataset 

Availability 

Private Private Not provided Not provided Not provided Private Private 

Data 

Velocity 

Not provided Sample rate of 

23.04Mb/s; each 

scatter voxel contains 

35 32-FFT samples 

Not provided Not provided Not provided Not provided Not provided 

Data 

Variety 

Structured Data Unstructured Data Structured Data Structured Data Structured Data Structured Data Structured Data 

Data 

Volume 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 

Veracity 

Good amount of 

considered parameters 

allowing to obtain a 

rich dataset 

Not provided Not provided Not provided Not provided BoE is an easy 

computation method 

that produces very 

accurate results in 

modest-size networks, 

however it presents 

limitations in large-scale 

networks 

The assumptions made 

might not hold in 

realistic scenarios (e.g., 

the coverage area of 

the PU is a perfect 

circle) 
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Bib key manousis2021 

[101] 

perinoyang2020 [102] iyerli2018 [103] navarrohuet2021arxiv, 

navarrorossi2020 [104], [105] 

kattadigeraman2021 

[106] 

manglahalepovic2020 

[107] 

subramanya2021ce

ntralized [108] 
N

e
tw

o
rk

 R
e

la
te

d
 

Networking 

problem 

Anomaly 

Detection 

Network Failure 

Management 

RAN Performance 

Analysis 

Anomaly Detection Traffic classification Quality of Experience 

Prediction 

Resource 

management 

Application 

Area 

Network 

Diagnostics and 

Security 

Network Diagnostics 

and Security 

Network Diagnostics 

and Security 

Network Diagnostics and 

Security 

Network Optimization 

and Control 

Network Diagnostics 

and Security 

Network 

Optimization 

and Control 

Micro-

domain 

Subscriber Access Access Core Transport Transport Edge/core 

Algorithm 

Location 

Data Plane Control Plane Control Plane Control Plane Control Plane Control Plane Control Plane 

Operation 

Timescale 

Short timescale 

(ms-s) 

Millisecond 

Long timescale (min-h) Long timescale (min-h) Long timescale (min-h) Long timescale (min-h) Long timescale (min-h) Not provided 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Private Private Private Private Public Private Private 

Dataset 

Generation 

Setup 

Not provided Not provided 6TB traffic per hour. minute time scale 70K KPIs 

per router 

Hours Not provided GB/seconds 

Dataset 

Availability 

Not provided Structured Data Structured Data Structured Data Structured data Structured Data Structured Data 

Data 

Velocity 

Not provided Not provided 6TB traffic per hour. Minute time scale 70K KPIs 

per router 

Not provided Not provided Not provided 

Data Variety Not provided Not provided Not provided Not provided Not provided Not provided Accurate 

Data Volume Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 

Veracity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 
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Bib key rahman2018auto [109] huang2021scalable 

[110] 

zhang2020tiki [111] prados2020learnet 

[112] 

zhu2021network [113] yan2021acc [114] wang2022Hive [115] 
N

e
tw

o
rk

 R
e

la
te

d
 

Networking 

problem 

Resource 

management 

Resource Allocation Anomaly Detection Flow Allocation and 

Admission Control 

Planning ECN Tuning ML Splitting 

Application 

Area 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Diagnostics 

and Security 

Network Optimization 

and Control 

Network Planning Network Optimization 

and Control 

Network Optimization 

and Control 

Micro-

domain 

Transport Core Cross-domain Core, Transport Cross-domain Core, Transport Cross-domain 

Algorithm 

Location 

Control Plane Control and 

Orchestration Plane 

Data Plane Control Plane Orchestration Plane Data Plane Control Plane 

Operation 

Timescale 

Long timescale (min-h) N/A Medium timescale (s-

min) 

Short timescale (ms-s) Very long timescale (h-

days) 

Short timescale (ms-s) Long timescale (min-h) 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Private Public Public Private Public Private Private 

Dataset 

Generation 

Setup 

Sample data in bits 

collected every 5-min 

interval for 1.5 month 

10 epochs (~ Not provided Not provided Not provided 48KB/s bandwidth for 

one port for data 

collection 

Not provided 

Dataset 

Availability 

Structured Data Structured Data Structured Data Not provided Structured Data Structured Data Not provided 

Data 

Velocity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 

Variety 

Accurate Inaccurate Not provided Not provided Not provided Not provided Not provided 

Data 

Volume 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 

Veracity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 
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Bib key he2021towards [116] rossi2019horizontal 

[117] 

khaleq2021intelligent 

[118] 

zalokostas2022experi

mental [119] 

oshea2018modulation

class [120] 

Jentzsch2022quantized

modclass [34] 

rosa2022bacalhaunet 

[121] 

N
e

tw
o

rk
 R

e
la

te
d

 

Networking 

problem 

Resource 

management 

Resource 

management 

Resource 

management 

Resource 

management 

Radio Resource 

Management 

Radio Resource 

Management 

Radio Resource 

Management 

Application 

Area 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and control 

Network Optimization 

and control 

Network Optimization 

and control 

Micro-

domain 

Core Cross-domain Core Cross-domain Access Access Access 

Algorithm 

Location 

Control Plane Control and 

Orchestration Plane 

Control Plane Control and 

Orchestration Plane 

Control Plane Control Plane Control Plane 

Operation 

Timescale 

Short timescale (ms-s) Not provided Not provided Long timescale (min-h) Short timescale (ms-s) Short timescale (ms-s) Short timescale (ms-s) 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Synthetic Real Synthetic Real Synthetic Synthetic Synthetic 

Dataset 

Generation 

Setup 

They use MoonGen, a 

DPDK based packet 

generator 

event-based system to 

process geo-spatial 

data of the taxi trips in 

New York city. 

The traffic represents 

the amount of tweets 

that contain words 

related to disasters.  

multi-source dataset of 

urban life in the city of 

Milan and the province 

of Trentino 

GNU radio was used to 

generate the 

waveforms 

GNU radio was used to 

generate the 

waveforms 

GNU radio was used to 

generate the 

waveforms 

Dataset 

Availability 

Private Open Private Open Public Public Public 

Data 

Velocity 

MB/sec 2000 events per 

second  

Not provided ~1200 events per day Not provided Not provided Not provided 

Data Variety Structured Data Structured Data Unstructured Data Structured Data Structured Data Structured Data Structured Data 

Data Volume Not provided 130MB Not provided Not provided 20GB 20GB 20GB 

Data 

Veracity 

Accurate Accurate Inaccurate Accurate Accurate Accurate Accurate 
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Bib key fu2019 [122] koo2019deep [123] DalgkitsisGarrido2022 

[124] 

SantosLynn2021 [125] khan2020real [126] minovski2021throughp

ut [127] 

teixeira2023wi [128] 
N

e
tw

o
rk

 R
e

la
te

d
 

Networking 

problem 

Service function chain 

embedding 

Service function chain 

embedding 

Service Function Chain 

(SFC) orchestration for 

multi-domain networks 

Service Function Chain 

placement considering 

availability and energy 

consumption 

Link Evaluation, 

Throughput Prediction 

Link Evaluation, 

Throughput Prediction 

Link Evaluation, 

Throughput Prediction 

Application 

Area 

Network slicing Network slicing Network slicing Network slicing Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Micro-

domain 

Not provided Not provided Not provided Not provided Edge Edge Edge 

Algorithm 

Location 

Control Plane Control Plane Control Plane Control Plane Control plane Control plane Control Plane 

Operation 

Timescale 

Long timescale (s-min) Long timescale (s-min) Short timescale (ms-s) Long timescale (s-min) Short timescale (ms-s) Short timescale (ms-s) Short timescale (ms-s) 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Two typical SFCs to be 

embedded 

Artificial and real 

traces 

Synthetic Synthetic Synthetic and Real Real Real 

Dataset 

Generation 

Setup 

Not provided Not provided Not provided Not provided Real: Network traces 

obtained through 

Wireshark. 6 Wi-Fi 

stations and an access 

point. 

Synthetic: Using Mininet 

Wi-Fi. 10 Wi-Fi stations 

and an access point 

Only one mobile 

phone is connected to 

the 5G network. They 

used active testing for 

labeling the dataset. 

The transmission 

alternates between UL 

and DL with intervals of 

500ms being idle.  

only one vehicle 

connected to one 

stationary access point  

Dataset 

Availability 

Private Not provided Not provided Not provided Private Private Open 

Data 

Velocity 

Not provided Not provided Not provided Not provided 54Mbps Not provided 1 sample per second 

Data Variety Not provided Not provided Not provided Not provided Structured Data Structured Data Structured Data 

Data Volume Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 

Veracity 

Not provided Not provided Not provided Not provided Accurate Accurate Accurate 
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Bib key busseGrawitz2019 [129] Xieli2022 [130] Zhengzang2022 [131] begagramaglia2019 

[132] 

begagramaglia2020 

[133] 

Zhangpatras2018 [134] Zhangfiore2019 [135] 
N

e
tw

o
rk

 R
e

la
te

d
 

Networking 

problem 

Traffic classification Traffic classification Traffic classification Capacity prediction Capacity prediction Traffic Prediction Traffic Prediction 

Applicatio

n Area 

Network Diagnostics 

and Security 

Network Diagnostics 

and Security 

Network Diagnostics 

and Security 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Network Optimization 

and Control 

Micro-

domain 

Transport Transport Transport Edge/core Edge/core Edge/core Edge/core 

Algorithm 

Location 

Data Plane Data Plane Data Plane Control and 

Orchestration Plane 

Control and 

Orchestration Plane 

Control and 

Orchestration Plane 

Control and 

Orchestration Plane 

Operation 

Timescale 

Very short timescale 

(us-ms) 

Very short timescale 

(us-ms) 

Very short timescale 

(us-ms) 

Long timescale (min-h) Long timescale (min-h) Long timescale (min-h) Not provided 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Real  Real  Real Real Real Real Real 

Dataset 

Generation 

Setup 

Testbed network with 

12 hosts attacked by 2 

hosts 

Multiple datasets  Multiple datasets Real data from 470 4G 

eNBs of a mobile 

network deployed in a 

large metropolitan 

region of around 100 

km^2 and collected at 

the gateway of an 

operational mobile 

network by monitoring 

the GPRS Tunneling 

Protocol (GTP). 

Real data from 470 4G 

eNBs of a mobile 

network deployed in a 

large metropolitan 

region of around 100 

km^2 and collected at 

the gateway of an 

operational mobile 

network by monitoring 

the GPRS Tunneling 

Protocol (GTP). 

Real Data from 

Telecom Italia Dataset 

for Milan 

large-scale mobile 

traffic dataset 

collected by a major 

operator in a large 

European metropolitan 

area during 85 

consecutive days.  

24,482 traffic snapshots 

for individual service. 

Each mobile traffic 

snapshot comprises the 

traffic demand 

accommodated by 

792 antennas 

aggregated every 5 

minutes.  

Dataset 

Availability 

Open  Open  Open Private Private Private Private 

Data 

Velocity 

MB/seconds  Variable  Variable Each 5 minutes Each 5 minutes Not provided Traffic aggregated 

every 5 minutes 

Data 

Variety 

Unstructured Data  Structured  Structured Structured Data Structured Data Structured Data Structured Data 

Data 

Volume 

PCAP file of about 8 GB Not provided Not provided Not provided Not provided Not provided 36 services x 24,482 

traffic snapshots x 792 

antennas x 24*60/5 

measurements x 85 

days 

Data 

Veracity 

Accurate  Accurate  Accurate Accurate (but used for 

forecasting, future may 

not be known from 

current samples) 

Accurate (but used for 

forecasting, future may 

not be known from 

current samples) 

Accurate (but used for 

forecasting, future may 

not be known from 

current samples) 

Accurate 
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Bib key Trinhgiupponi2018 

[136] 

camelo2022TrafficC

lassSpect [57] 

oshea2016TraffClas

sSpec [137] 

camelo2019TechCl

assSpect [138] 

camelo2020TraffCla

ssSpec [139] 

Dalgkitsis2021Trans

actionsITS  [140] 

Ma2020Transaction

sWC [141] 

Grasso2022Transact

ionsNSM [142] 

N
e

tw
o

rk
 R

e
la

te
d

 

Networking 

problem 

Traffic Prediction Radio Resource 

Management 

Radio Resource 

Management 

Radio Resource 

Management 

Radio Resource 

Management 

Resource 

management 

Resource 

management 

Resource 

management 

Application 

Area 

Network 

Optimization and 

Control 

Network 

Optimization 

and control 

Network 

Optimization 

and control 

Network 

Optimization 

and control 

Network 

Optimization 

and control 

Network 

Optimization 

and control 

Network 

Optimization 

and control 

Network 

Optimization 

and control 

Micro-

domain 

Edge/core Access Access Access Access Edge Edge Edge 

Algorithm 

Location 

Control and 

Orchestration Plane 

Control Plane Control Plane Control Plane Control Plane Control and 

Orchestration Plane 

Control and 

Orchestration Plane 

Control and 

Orchestration Plane 

Operation 

Timescale 

Not provided Short timescale (ms-

s) 

Short timescale (ms-

s) 

Short timescale (ms-

s) 

Short timescale (ms-

s) 

Short timescale (ms-

s) 

Short timescale (ms-

s) 

Short timescale (ms-

s) 

D
a

ta
se

t 
R

e
la

te
d

 

Dataset 

Generation 

Real Real traces of L2 

were used to 

generated 

synthetic L1 Wi-Fi-

compliance 

packets in an 

emulator 

Real traces of L2 

were used to 

generated 

synthetic L1 packets 

Emulated Synthetic Online dataset (taxi 

traffic in San 

Francisco Bay Area) 

Online dataset ( 

real-world trace of 

mobile users 

using Twidere, an 

open-source 

Android Twitter) 

Online dataset 

(CIFAR-10 dataset) 

Dataset 

Generation 

Setup 

one-month of 

scheduling 

information 

gathered by 

monitoring different 

eNBs located in the 

city of Barcelona, 

Spain 

A Wi-Fi access point 

and one client for 

generating real L2 

and Matlab for L1 

GNU radio was used 

to generate the 

waveforms 

DARPA Colosseum ns3+Matlab Online dataset Online dataset Online dataset 

Dataset 

Availability 

Private Public Private Private Private Yes Yes Yes 

Data Velocity 1 ms 20 Mega samples 

per second (Msps) 

1Mbps at L2 20 Msps 20 Msps Not provided Not provided Not provided 

Data Variety Structured Data Structured Data Structured Data Structured Data Structured Data Not provided Not provided Not provided 

Data Volume Not provided 20GB Not provided Not provided Not provided Not provided Not provided Not provided 

Data Veracity Accurate Accurate Accurate Accurate Accurate Not provided Not provided Not provided 
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B.2 Research question related to Machine Learning algorithms 

 

Bib Key sotocamelo2021atari [25] ayalagarcia2021 [40] sotocamelo2021 [26] sotocamelo2023 [43] goez2022quantizedmodclass [47] 

ML Method Supervised Learning (SL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Deep Learning 

ML Problem Prediction Control Decision Making Decision Making Classification and regression 

Algorithm Graph Neural Networks Deep deterministic policy gradient Deep Q-Learning Proximal Policy Optimization CNN 

Resource 

Awareness 

No Yes No No Yes 

Model 

Description 

Input: Node Type, Node 

positioning, Channel 

Configurations, RSSI, SINR, Airtime, 

Interference among BSSs, Distance 

between Nodes, Bandwidth per 

deployment 

Output: Throughput per Node per 

deployment 

input: UL and DL channel  

quality indicator and the  

"new" bit presence 

output: configuration  

policies 

State: Number of VNF Replicas, avg 

CPU usage, peak latency  

Actions: increase, decrease 

number of VNFs.  

State: Number of VNF Replicas, avg 

CPU usage, peak latency  

Actions: increase, decrease 

number of VNFs. 

Input: In-phase and Quadrature 

(IQ) samples of a modulated RF 

signal, Output: Modulation, Model: 

VGG10 CNN with different level of 

quantization at each layer., 

running platform: FPGA 

Loss / Reward 

Function 

Root Mean-Squared Error (RMSE) Balance performance 

and cost in one case, being 

performance maximization 

the alternative 

adapted from cartpole 

environment. 

minimize the weighted sum of the 

performance and resource cost 

Categorical Cross-entropy 

Baseline 

Comparison 

CNN, FNN and GB 

Heuristic: Truncated Normal 

Distribution 

Only evaluation available Threshold-based algorithm; PID 

controller 

PI controller VGG10 CNN with 32-bits floating 

point; VGG10 CNN with equal 

quantization value across all layers 

(2 to 8 bits) 

Limitations of 

ML vs. 

benchmark 

GNNs require more research when 

operating with edge features. 

Regularization and normalization 

do not work out-of-the-box.  

Compute intensive  

inference 

Slightly increased tradeoff 

between number of created VNFs 

and delay 

slightly increased tradeoff between 

number of created VNFs and delay 

Same quantization level is applied 

to all the layers, limiting the trade-

off between model size and model 

performance. 

Advantages 

of ML vs 

benchmark 

GNNs exploit the graphs’ 

topological information, 

independently of how many nodes 

the graph has. 

Data efficient. Algorithm  

converges with a  

small number of samples 

adaptability in defining the 

thresholds 

adaptability in defining the 

thresholds 

Lower energy consumption with 

higher accuracy since tailor-made 

selection of the quantization level 

finds solutions that are not possible 

with the traditional approach.  

Optimality 

Gap 

No optimal results. GNN 

outperformed ML methods and the 

Random guesser by 55% and 64%, 

respectively.   

Not provided No optimal results are available No optimal results are available No optimal results are available 

Tradeoff ML 

vs. 

Benchmark 

Not provided Not provided The ML method keeps the delay 

under control at expenses of 

creating more VNFs than the 

baseline methods. The SLA 

violations are reduced 

The behavior of the RL algorithm 

can be tuned depending on the 

weights of the reward function. The 

PI controller turned out to be 

insensitive to those weights. 

Selecting the best quantization 

level per layer obtains higher 

accuracy with the highest level of 

quantization possible. 
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Bib Key akembutun2023 [16] akemgucciardo2023 [77] loschiavofiore2022 [28] colletbanchs2022 [37] colletbazco2023 [38] 

ML Method Supervised Learning (SL) Supervised Learning (SL) Joint Deep Learning and Statistical 

Modelling 

Forecasting/Regression 

Supervised Learning 

Supervised Learning (SL) 

ML Problem Classification Classification Control Loss-Metric Mismatch Forecasting / Prediction 

Algorithm Random Forest Random Forest Recurrent Neural Networks with 

LSTM 

Deep Neural Networks Deep Neural Network 

Resource 

Awareness 

Yes   Yes   No No No 

Model 

Description 

Input: packet-level features (data 

extracted from ethernet, ip, 

tcp/udp headers). Output: 

classification of packets 

Input: packet-level features (data 

extracted from ethernet, ip, 

tcp/udp headers) and flow-level 

features (mean, max, min values 

computed over interarrival time 

and packet length). Output: 

classification of flows of packets 

Input: Past traffic 

Output:  Traffic / Capacity / 

resources forecast 

Input: Past states and decisions 

Output: Next action 

Input: Past samples from several 

time series and/or other variables 

Output: Directly the MANO 

decision to realize in order to 

optimize a certain MANO objective 

Loss / Reward 

Function 

Precision, Recall, F1 score  Precision, Recall, F1 score MSE of forecasted traffic 

or 

SLA violations 

Self-learned Self-learned 

Baseline 

Comparison 

Monolithic Random Forest classifier State-of-the-art packet-level 

classifier (Zhengzang2022) 

Not provided MAE, MSE and  

ML with Expert-defined loss function 

MAE, MSE and 

ML with Expert-defined loss function 

Limitations of 

ML vs. 

benchmark 

A two-stage hierarchical classifier 

consumes more switch resources 

than a monolithic classifier 

A flow-level classifier consumes 

more switch resources than a 

packet-level classifier 

Not provided Slightly more complexity Slightly more complexity 

Advantages 

of ML vs 

benchmark 

The classification performance in 

terms of F1-score, Precision and 

Recall of the hierarchical classifier is 

better than the monolithic classifier 

The classification performance in 

terms of F1-score, Precision and 

Recall of the flow-level classifier is 

better than the packet-level 

classifier 

Adapts to data with high variation 

and close-to-zero values 

 

Stability 

It is able to characterize a complex 

or even unknown loss function 

during training. This knowledge can 

be transferred to other cases and 

allows explainability. 

It is able to characterize a complex 

or even unknown loss function 

during training. This knowledge can 

be transferred to other cases and 

allows explainability. 

Optimality 

Gap 

3% more resources are used by the 

solution 

from 12% to 18% more resources are 

used by the solution 

Not provided No optimal. It performs better than 

the "trainer" for standard loss 

functions. 

No optimal. It performs better than 

the "trainer" for standard loss 

functions. 

Tradeoff ML 

vs. 

Benchmark 

7%, 21%, 27% better Precision, 

Recall, F1-score 

From 2% to 39% better F1-score, 

Precision and Recall in four 

different use cases 

Not provided For complex or unknown loss 

functions, a small increase of 

complexity provides significant 

gains 

An internal structure designed with 

the generic problem in mind 

(anticipatory decision making) 

improves considerably the 

performance and allows to learn 

how to behave in cases where the 

optimal solution is not known 
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Bib Key NinaSK2023CCNC [21] Zhu2021[78] ayalagarcia2020 [17] nakanoyasato2019 [79] xiaozhang2019 [80] 

ML Method Supervised Learning (SL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) 

ML Problem Regression Learning resource management 

policy (pricing policy with DDPG, 

and offloading policy with 

MADDPG) 

Control Control Control 

Algorithm Support Vector Regression and The 

Technique for Order of Preference 

(TOPSIS)  

Deep Deterministic Policy Gradient 

(DDPG), and Multi-Agent DDPG 

(MADDPG) 

Neural networks (DDPG) Gradient Boosting Decision-Tree - 

Monte Carlo Value Iteration 

Deep Policy Gradient  

Resource 

Awareness 

No Yes Yes No No 

Model 

Description 

Input: CPU, RAM, storage, and end-

to-end latency.  

Output: Predicted end-to-end 

latency that will be experienced by 

users 

Deep Reinforcement Learning 

Resource Management (DRLRM) 

input: Encoded representation of 

the  

scheduler context 

output: scheduling policy 

State: VNF presence at PoPs, 

allocated CPU and memory per 

VNF. Action: VNF scaling and 

migration 

State: resource utilization across all 

servers, links, resource demands of 

VNs Action: server to host the VNF 

Loss / Reward 

Function 

R-squared Reward of client/server Minimize operational cost when 

CPU capacity is sufficient or meet  

performance target when there is  

computing deficit 

Step1: throughput/latency, Step2: 

utility/cost 

minimize OPEX, maximize 

throughput 

Baseline 

Comparison 

No forecasting Not provided 1. CVrain-Rlegacy: Proposed CPU 

orchestrator and legacy scheduler 

2. R-Optimal: knows the required 

CPU and scheduling policies that  

maximizes the reward 

3. T-Optimal: similar to R-Optimal 

but maximizing throughput 

4. Heuristic: lineal model between 

MCS and CPU load 

Conventional RL (without 

performance profile) 

greedy algorithms and a Bayesian 

learning method 

Limitations of 

ML vs. 

benchmark 

Limited number of edge nodes, 

possibility to obtain conflicting 

decisions made at edge and cloud 

levels 

sample efficiency and stability No optimality guarantees Additional effort to profile SFCs in 

terms of performance 

neural networks inherently reduce 

the explainability capacity 

compared to, e.g., a heuristic 

method, parameter tuning, training 

Advantages 

of ML vs 

benchmark 

Awareness of quality perceived by 

the end clients (vehicle), improved 

end-to-end latency 

unstable training of DDPG Supports non-linear contextual  

traffic and mobility patterns 

Faster convergence and 

adaptability  

adaptability to varying network 

environment, fast decision-making  

Optimality 

Gap 

Increase service reliability to 

99.999%, decrease service latency 

for 105ms 

Not provided 2% below  

optimal 

Not provided Not provided 

Tradeoff ML 

vs. 

Benchmark 

Increase service reliability to 

99.999%, decrease service latency 

for 105ms 

Not provided Not provided Not provided Not provided 
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Bib Key quanghadjadj-aoul2019 [81] peihong2019 [82] zhengtian2019 [83] solozabalceberio2019 [84] foukasradunovic2021 [85] 

ML Method Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Supervised Learning (SL) 

ML Problem Control Control Control Control Prediction 

Algorithm Deep Deterministic Policy Gradient 

based on the Actor-Multiple Critics 

paradigm 

Double deep Q-network (DDQN) Q-learning (e-greedy) Neural combinatorial optimization Decision Tree (quantile decision 

tree) 

Resource 

Awareness 

No No No No Yes 

Model 

Description 

State: resource requirements 

across all VNFs, Vlinks, Action: 

ranking of node-to-node and link-

to-link pairs.  

State: average available 

bandwidth, memory, CPU and 

#cores on links, nodes, VNFIs across 

each region. Action: region 

combination 

State: SFC type to be deployed, 

Action: server to place the SFC 

State: sequence of VNFs (SFC), 

Action: mapping of VNFs to servers 

input: Set of features describing the 

state 

of the base station (number of 

scheduled  

UEs and their transport 

block sizes, number of layers) 

Loss / Reward 

Function 

acceptance rate weighted cost  weighted cost  minimize energy consumption with 

constraint violation penalization 

N/A 

Baseline 

Comparison 

DDPG  MGSAS (primarily introduced to 

accelerate embedding solvers by 

limiting the solution space), Eigen-

decomposition (operations on 

adjacency matrices)  

ILP, Bicriteria approximation 

algorithm, greedy  

MILP, First-Fit heuristic Benchmark for the prediction 

model: 

1. linear regression  

2. (non-linear) gradient boosting 

model 

Limitations of 

ML vs. 

benchmark 

computational complexity (MCN), 

incorporation of tailored heuristic 

repetitive re-training, region 

selection (not PoP selection) is a 

strong simplification  

optimality gap, memory 

consumption (conventional Q-

learning) 

benchmark performs better on 

small sized problems; constraint 

satisfaction is not guaranteed - but 

the probability of occurrence is 

reduced 

Not provided 

Advantages 

of ML vs 

benchmark 

improved performance improved performance no need for a-priory knowledge of 

resource requirements  

informative guidance to heuristic 

for improved performance on large 

scale networks 

Ability to predict task 

execution times 

Optimality 

Gap 

Not provided Not provided 32% worse than the optimal within 10% Not provided 

Tradeoff ML 

vs. 

Benchmark 

Not provided Not provided Not provided Not provided Not provided 
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Bib Key zhaoliang2019 [86] Bakri2021 [87] tripathipuligheddu2021 [88] mismarchoi2019 [89] xiongZilberman2019 [90] 

ML Method Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Supervised Learning (SL) 

ML Problem Prediction Classification /Control Prediction Prediction Classification 

Algorithm Dueling Double DQN Deep Q-Learning / Regret 

Matching 

SARSA Deep neural networks / Deep Q-

learning 

Decision Tree, SVM, Naive Bayes, K-

means 

Resource 

Awareness 

no No Yes No No 

Model 

Description 

input: List of allowed actions to be  

taken by all UEs 

output: Optimal sequence of 

actions to achieve QoS 

requirements 

of all UEs 

Input: Slices input: SNR, buffer state, and  

the status of aggregate traffic load 

already hosted on the available 

links 

output: policy to select the best  

available link and transmission  

parameters for packet transfer 

Input: Initial downlink SINR and 

target  

SINR for the voLTE downlink  

closed loop power control and a 

set of  

handling actions in a network for 

the Fault  

management solution 

input: 11 flow features (e.g., size of 

the packet, source and destination 

ports, etc);  

output: classification of the type of 

device (e.g., sensor, video, etc) 

Loss / Reward 

Function 

The reward function focus on  

guaranteeing the quality of service  

(QoS) requirement of UEs. 

Not provided The reward function focus on  

accomplish the packet loss and 

latency requirements, being as  

close as possible to the optimal  

value 

VoLTE PC: the reward function 

ensures base station’s radio link 

power is constantly tuned to meet 

the target SINR. 

Fault management: solves the 

impact of impairments on DL 

throughput as experienced by UEs 

F1 score, where F1 = 

2(precision*recall)/(precision+recal

l) 

Baseline 

Comparison 

Optimal policy QL- DQL-RM 1. Modified version of the proposed 

solution where the reward 

 is evaluated by averaging the 

reward over all the RL agents 

1. Fixed power allocation 

2. Maximum SINR 

DT model with tree depth equal to 

11, is implemented in a bmv2 

software switch and compared 

against: 1) the same 

implementation with a smaller tree 

depth; 2) an hardware 

implementation in a NetFPGA with 

only 5 levels.  

Limitations of 

ML vs. 

benchmark 

Not provided Not provided No optimality guarantees Not provided Loss of accuracy due to a reduced 

three depth in both cases 

Advantages 

of ML vs 

benchmark 

near-optimal solution with a  

small number of iterations 

Not provided Effectively addresses the need for 

a solution that can swiftly adapt to 

the underlying channel network  

dynamics for context-aware radio  

resource allocation 

in heterogeneous vRANs 

Effectively tunes downlink SINR 

and number of active faults  

through exploration and 

exploitation 

without the interaction of the UE 

Better accuracy  

Optimality 

Gap 

Near-optimal  

results 

Not provided Not provided Not provided Loss of accuracy of: 1) 1-2% per 

each level of the tree; 2) about 9%. 

Tradeoff ML 

vs. 

Benchmark 

Not provided Not provided Not provided Not provided Not provided 
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Bib Key gijon21_longterm [91] gutterman19 [92] yangcao2020 [93] liuyu2020 [94] camelomennes2020 [95] 

ML Method Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) Unsupervised Learning (UL); 

Reinforcement Learning (RL) 

Semi-Supervised Learning (SSL); 

Supervised Learning (SL) 

ML Problem Forecasting Forecasting Classification Clustering; Decision Making Recognition; Forecasting 

Algorithm DT, SARIMA, AHW, RF, ANN, ANN–

LSTM, SVR. 

Hybrid (X_LSTM: ARIMA+LSTM) Convolutional Neural Network 

(CNN) 

K-Means; DQN CNN and Context Tree Weighting 

(CTW) 

Resource 

Awareness 

No No No No No 

Model 

Description 

Input: Past Traffic volume 

Output: Predicted Traffic Volume 

Input: Past Traffic volume 

Output: Predicted Traffic Volume 

Master-CNN 

Input: IQ samples of RF traces 

Output: Number of colliding STAs 

 

Slave-CNN 

Input: IQ samples of RF traces 

Output: ID of the colliding STAs 

K-Means 

Input: User Priority  

Output: Which devices must 

perform local task computation. 

DRL 

Actions: transmission power of the 

device 

States: channel gain, task queue, 

remaining computation capacity 

of each device. 

Technology Recognition 

Input: RF traces of different radio 

technologies and idle noise 

Output: technology presence in a 

given spectrum voxel 

Spectrum Usage Pattern Predictor 

Input: The transmission pattern of 

an incumbent 

Output: Forecast the pattern of 

future incumbent transmission 

Loss / Reward 

Function 

MAE REVA: combining the amount of 

average Physical Resource Blocks 

with individual channel bearer 

conditions 

Cross-entropy K-Means: Silhouette Coefficient 

and the sum of squared error (SSE) 

for selecting the number of clusters. 

DRL: weighted sum of energy 

consumption and task execution 

latency of computing the tasks 

locally or at the edge  

Technology Recognition 

Binary Cross-Entropy 

Spectrum Usage Pattern Predictor 

N/A 

Baseline 

Comparison 

Among themselves simple LSTMs IEEE802.11 DCF implemented in ns-

2 

Heuristics Not provided 

Limitations of 

ML vs. 

benchmark 

longer to converge/train Not provided Trade-off between the 

performance gain and the 

inference accuracy. 

No optimality guaranteed Not provided 

Advantages 

of ML vs 

benchmark 

Better MAE/MAPE degree of prediction accuracy 

with a MAPE 

The colliding transmissions can be 

rescheduled, improving the overall 

throughput (performance gain 

w.r.t. standard IEEE802.11 DCF) 

adaptability to varying network 

environment; independent 

decision-making 

Fast Fourier Transform (FFT) 

representation instead of raw IQ 

samples reduces the amount of 

samples to be processed in the TR. 

The CTW has low time and space 

complexities with theoretical 

performance guarantees; the 

algorithm does not require offline 

training 

Optimality 

Gap 

Not provided Not provided Not provided Not provided Not provided 

Tradeoff ML 

vs. 

Benchmark 

Not provided Not provided Not provided the DRL optimizes the system cost 

but does not outperform baselines.  

The execution time of the two-step 

approach can be easily 

implemented in a RIC.  
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Bib Key yange2020 [96] wangmao2021 [97] jiayang2021 [98] nakashimakamiya2020 [99] xucheng2018 [100] 

ML Method Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Unsupervised Learning (UL) 

ML Problem Control Control Control Decision Making Clustering 

Algorithm A3C and GCN Double Deep Q-network A3C Deep Q-Learning; Graph 

Convolutional Neural Network 

Non-parametric Bayesian Model 

Resource 

Awareness 

No No No No No 

Model 

Description 

State: max CPU and BW on each 

node, residual CPU and BW on 

each node, virtual node CPU and 

BW requirements, remaining virtual 

nodes to be placed 

Action: physical node to embed 

current virtual node 

State: initial, occupied, reserved 

resources of each DC, similar state 

of each link, features of current 

SFC.                                                     

Action: (a,b) pair where a is the DC 

for actual deployment and b is the 

DC for the standby SFC instance 

State: VNF type, number of VNFs 

remaining in the chain, length of 

SFC chain, VNF computation load, 

remaining length of the chain, 

remaining time to deadline.  

Action: defer rate, i.e., the 

probability that a VNF scheduling 

will be deferred for the next 

scheduling event. 

State: adjacency matrix and 

current channel allocation 

Actions: new channel allocation  

Input: Timeseries of spectrum 

sensing data of different 

Secondary Users (SUs) 

Output: Number of spectrum states  

Loss / Reward 

Function 

Shaped reward that combines 

acceptance ratio, revenue, cost, 

load balancing, and eligibility 

traces 

{1, if SFC is placed, -1 otherwise} based on whether the SFC 

execution occurred prior to its 

deadline  

The reward function is the average 

throughput of the lower 40% APs 

Not provided 

Baseline 

Comparison 

MCTS (MCVNE), relaxed MILPs (R-

Vine, D-Vine), NodeRank, GRC 

Random greedy, best-fit greedy, 

near optimal sorting greedy, deep 

q network 

Earliest Finish First, Earliest Start First, 

DQN 

1. Random Allocation 

2. DQN + CNN 

3. Potential game-based 

1. Energy Detection 

2. Gaussian Mixture Model - 

Expectation Maximization 

3. Gaussian Mixture Model - 

Bayesian Information Criterion 

4. Mean Shift 

Limitations of 

ML vs. 

benchmark 

The proposed algorithm requires 

lots of computational resources for 

its parallel implementation.  

offline training, neural networks 

reduce explainability 

A3C typically trains multiple agent 

workers to improve stability, which 

requires many computational 

resources. 

Not provided The spectrum sensing performance 

degrades when more Primary Users 

(PUs) are present for all proposed 

methods  

Advantages 

of ML vs 

benchmark 

Improved performance and 

adaptability w.r.t. varying VN 

request types  

fast decision making faster convergence compared to 

the DQN, improved acceptance 

rate 

Using GCN instead of CNN the 

learning performance improves. 

The proposed method is more 

robust since it takes advantages of 

the spatial-temporal 

characteristics of the timeseries 

data. 

Optimality 

Gap 

Not provided slightly worse than a near-optimal 

method 

in terms of reliability (which is the 

scope of the paper), at least 5% 

better 

No optimal results are available Not provided 

Tradeoff ML 

vs. 

Benchmark 

Not provided Not provided Not provided The proposed method achieves 

better reward. 

Not provided 
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Bib Key manousis2021 [101] perinoyang2020 [102] iyerli2018 [103] navarrohuet2021arxiv, 

navarrorossi2020 [104], [105] 

kattadigeraman2021 [106] 

ML Method Unsupervised Learning (UL) Supervised Learning (SL) Likely supervised (not clearly 

indicated) 

Unsupervised Learning (UL) Supervised Learning (SL) 

ML Problem Prediction Classification Classification and regression Classification Classification 

Algorithm Gaussian Processes XGBOOST Multi-task learning with ensembles 10 anomaly detection algorithms 

(based on distance, density, 

clustering, subspace) for batching 

and stream and feature scoring 

algorithms. 

XGBOOST 

Resource 

Awareness 

No No No No No 

Model 

Description 

Not provided Input: features built on alarms from 

cell site and additional information 

(e.g., weather, location, power 

supply type)  

Output: failure permanent or 

temporal. 

Input: features built on bearer 

records, signaling records, TCP flow 

level statistics, network elements 

records. PCA is then used for 

grouping of datasets across 

different cells.  

Output: cell drop rate classification 

or throughput prediction. 

Input: router KPIs 

Output: tickets for anomalies 

Input: features derived from packet 

level traces or TCP flow level 

information and video session level. 

Output: is the flow a 360 video 

streaming or regular streaming 

Loss / Reward 

Function 

Not provided Not provided weighted sum of the component of 

a given base station and the 

component of the group of base 

stations (defined by the PCA) 

Not provided Not provided 

Baseline 

Comparison 

Not provided 1. Original policy 

2. LSTM 

3. Experience-based threshold 

4.  probability -based threshold 

1. per base station modelling 

2. different spatial grouping 

methods for cells 

3. grouping only 

The paper compares the 10 AD 

algorithms and the 10 FS algorithms.  

1. Heuristics based on threshold on 

input fields 

2. Different ML models as CNN, 

Multi-layer Perceptron, KNN, naive 

bayes 

Limitations of 

ML vs. 

benchmark 

Not provided The ML approach is more 

expensive than heuristics 

It requires a more complex design 

than the benchmarks 

Not provided The ML approach is more 

expensive than heuristics based on 

thresholds 

Advantages 

of ML vs 

benchmark 

Not provided The approach is simpler and less 

computational expensive than 

LSTM while providing the same 

benefits. 

Superior performance with limited 

data available. Best 

delay/performance tradeoffs 

Not provided XGBOOST performs the best 

among different other models 

tested.  

Optimality 

Gap 

Not provided Not provided Not provided Not provided Not provided 

Tradeoff ML 

vs. 

Benchmark 

Not provided Not provided Not provided Not provided Not provided 
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Bib Key manglahalepovic2020 [107] subramanya2021centralized [108] rahman2018auto [109] huang2021scalable [110] zhang2020tiki [111] 

ML Method Supervised Learning (SL) Supervised Learning, Federated 

Learning 

Supervised Learning (SL) Reinforcement Learning; 

Federated Learning 

Joint Deep Learning and Statistical 

Modelling 

ML Problem Classification Forecasting Classification Control Classification 

Algorithm SVM, k-NN, XGBoost, RF and MLP FNN; LSTM; CNN-LSTM DT; RF; MLP and Bayesian Networks Deep Q-Learning DNN, CNN, C-LSTM, DSE 

Resource 

Awareness 

No No No No No 

Model 

Description 

Input: features derived from TLS 

flow level information and video 

session level. Output: target QoE 

metric (i.e., video quality, rebufferig 

ratio, combined QoE) 

input: avg traffic load per second 

or number of VNF in a given time. 

Output: expected avg traffic load 

in next prediction window or the 

number of VNFs in the next 

prediction window 

Input: traffic load and traffic load 

change between time intervals.  

Output: instances in the next time 

interval.   

State: information of all network 

resources and configurations 

(remaining and demanded 

capacity of nodes and links) 

Actions: VNF deployment and 

perception and allocation 

Input: flow features   

Output: one-to-all classification: 

binary (attack vs no attack) and 

one-to-one classification (which 

attack type of 14 available) 

Loss / Reward 

Function 

Not provided Huber and MSE Not Provided, probably cross-

entropy.  

Minimize the total weighted cost of 

deploying an SFC. The cost is 

composed of the communication, 

setup and operation of SFC.  

cross-entropy 

Baseline 

Comparison 

1. the different ML methods 

2.  packet level traces (still based 

on ML techniques) 

Naïve approach: the expected 

avg traffic load in the next 

prediction window is the same as 

the previous one.  

Moving Average Neural Combinatorial Optimization 

and Branch and Bound 

DNN, CNN and C-LSTM 

Limitations of 

ML vs. 

benchmark 

The approach based on packet 

level is 5-7% superior. But it is also 

based on ML. 

CNN-LSTM model outperforms 

purely LSTM since the use of the 

CNN provides extra information 

and learn internal representation of 

the time-series data 

No optimality guaranteed The utilization margin of the ML 

method compared to the baseline 

reduces as the SFC length and 

number increases. 

The new method requires 

implementing a voting scheme, re-

train the NNs and implement a new 

DSE neural network 

Advantages 

of ML vs 

benchmark 

The approach based on flow level 

information is amenable to actual 

usage, while packet level traces 

one do not scale. 

All the ML algorithms outperform 

the baseline 

All the ML algorithms outperform 

the baseline 

The ML method achieves maximal 

utilization ratio. The  

The new approach fully prevents 

five mainstream black-box 

adversarial attacks 

from compromising deep learning-

based NIDS 

Optimality 

Gap 

Not provided Not provided Not provided Regarding network cost, the BandB 

method perform the best, but the 

ML method closely follows. The 

deviation is not big  

No optimal results are available 

Tradeoff ML 

vs. 

Benchmark 

Not provided The FL approach does not perform 

better than the centralized. The 

model average does not provide 

better results than not averaging 

the weights but to using them for 

the next node.  

Random Forest provides higher 

precision highest ROC area and 

lowest false positives. The pattern of 

data and feature set favors 

decision tree algorithms. More 

features do not imply better 

accuracy due to repetitive 

patterns in the input data.  

The ML method exhibits better 

convergence performance, higher 

average reward, and smaller 

average resource consumption 

than the baseline policies over a 

variety of network scenarios 

Not provided 
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Bib Key zhu2021network [113] yan2021acc [114] wang2022Hive [115] he2021towards [116] rossi2019horizontal [117] 

ML Method Deep Reinforcement Learning Multi-agent Deep RL Split graph transformation (actually 

not ML) 

Reinforcement Learning (RL) Reinforcement Learning (RL) 

ML Problem Decision Making Decision Making multi-split ML problem Control Decision Making 

Algorithm Actor-Critic 

algorithm 

Deep Q-learning, four-layer NN distributed min-cost graph 

algorithm (actually not ML) 

GNN + A3C Modified Q-Learning 

Resource 

Awareness 

No No No No No 

Model 

Description 

states: work topology and the node 

features, actions: action 

representation indicates which 

link to select to add capacity and 

how much capacity to add 

states: collectible statistics, actions: 

ECN setting (i.e., high marking 

threshold, low marking threshold, 

and marking probability) 

Input: nodes and ML layers, Output: 

mapping of layers to be executed 

in which node, Actions: deploy the 

layers in the nodes 

Input: VNF's status (input and 

output traffic rate, latency, 

memory and CPU utilization), NS 

chain. 

Output: scaling decisions (scale up, 

down or not) 

Model: A3C 

Actions: Scaling in/out or do 

nothing  

State: number of containers, CPU 

utilization, CPU share 

Action: Vertical (increase or 

decrease the CPU share) or 

horizontal scaling (increase or 

decrease the number of replicas) 

Loss / Reward 

Function 

the goal is to minimize the cost of 

the network, the ultimate reward is 

the cost of a network plan 

trade-off between high link 

utilization and low queue buildup 

for each switch 

Not provided reward based on minimizing the 

overall system cost (packet loss 

and VNF instance cost) 

minimize the weighted sum of the 

performance, adaptation and 

resource cost 

Baseline 

Comparison 

ILP vanilla and ILP + heuristic static ECN settings in the switches non-splitable ML models Other ML approaches including a 

NN and a decision tree 

Deep Q-Learning, Model-based RL 

Limitations of 

ML vs. 

benchmark 

NeuroPlan requires training, 

optimality is not guaranteed 

ACC requires offline training, and 

requires specific DRL agents in the 

switches 

the ML splitting is not done through 

ML itself, but using graph theory 

The baseline was compared 

against the GNN. The method for 

control in the proposed method 

and the baseline is the same (an RL 

algorithm) 

This set of experiments has shown 

the importance of providing system 

knowledge to improve the learning 

task. This is exploited by the Model-

based RL, which shows better 

performance above the others 

Advantages 

of ML vs 

benchmark 

NeuroPlan overcomes the 

scalability issues existing in ILPs 

Dynamic ECN settings that improve 

application performance 

lower latency, lower energy 

consumption 

The GNN is able to capture the 

interdependencies between VNFs 

(in the form of graphs) while the 

other methods not.  

Not provided 

Optimality 

Gap 

ILP fails to scale to large topologies. 

NeuroPlan outperforms ILP + 

heuristic on large topologies and 

avoids human efforts to tune the 

heuristics 

Not provided Not provided Not provided Not provided 

Tradeoff ML 

vs. 

Benchmark 

the relax factor provides a 

convenient and tunable knob for 

the trade-off between optimality 

and tractability 

Not provided Not provided From the figures of the results, the 

proposed method reduces around 

30% the overall cost compared to 

baselines 

Increasing the action space size 

(considering more actions) difficult 

the learning convergence of the 

agent.  
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Bib Key khaleq2021intelligent [118] zalokostas2022experimental 

[119] 

oshea2018modulationclass 

[120] 

Jentzsch2022quantizedmodcla

ss [34] 

rosa2022bacalhaunet [121] 

ML Method Reinforcement Learning Supervised Learning (SL) Deep Learning Deep Learning Deep Learning 

ML Problem Control Prediction Classification and regression Classification and regression Classification and regression 

Algorithm Several RL algorithms including SARSA, DQN, PPO 

and Actor Critic 

ARIMA, XGBoost, LSTM CNN CNN CNN 

Resource 

Awareness 

No No No Yes Yes 

Model 

Description 

State: min/max/current num of replicas, current 

resource utilization (e.g., CPU utilization) and 

current response time. 

Actions: Scaling in/out or do nothing 

Input: incoming requests to a 

web server 

Output: number of requests to 

the web server in a future time 

interval 

Input: In-phase and 

Quadrature (IQ) samples of a 

modulated RF signal, Output: 

Modulation, Model: VGG10 

and ResNet. Running platform: 

GPU/CPU 

Input: In-phase and 

Quadrature (IQ) samples of a 

modulated RF signal, Output: 

Modulation, Model: VGG10 

CNN with equal quantization 

value on all layers., running 

platform: FPGA 

Input: In-phase and 

Quadrature (IQ) samples of a 

modulated RF signal, Output: 

Modulation, Model: CNN using 

Depth-wise Separable 

Convolutions with quantization 

+ pruning, running platform: 

FPGA 

Loss / Reward 

Function 

Reward if response time is below a target, 

otherwise penalize 

MAE Categorical Cross-entropy Categorical Cross-entropy Categorical Cross-entropy 

Baseline 

Comparison 

Generic auto-scaler module (HPA) from 

Kubernetes 

Kubernetes off-the-shelf 

horizontal pod auto-scaler 

based on a custom specific 

metric 

XGBoost with features 

extracted from higher order 

moments 

Same model but using 32-bits 

floating point, or quantized and 

compiled to run on GPU 

Same model but using 32-bits 

floating point 

Limitations of 

ML vs. 

benchmark 

Not provided ARIMA uses raw data, while for 

the other models, data must be 

prepared accordingly 

DNN is more computational 

expensive and requires 

accelerated hardware.  

Models quantized to run on 

FPGA are more energy efficient 

than the ones on GPU. 

Models quantized and pruned 

are more energy-efficient. In 

addition, Depth-wise Separable 

Convolutions help to reduce 

the size of the network with 

lower impact on accuracy 

compared to traditional CNN 

Advantages 

of ML vs 

benchmark 

The RL auto-scalers can autonomously identify the 

autoscaling values or thresholds. The default HPA 

auto-scaler cannot determine such thresholds 

autonomously, since they are determined by 

expert knowledge. 

As the scaling is based on 

forecasting, the scaling 

decisions happen earlier,  

achieving better CPU utilization 

No need of expert knowledge 

and it achieves higher 

accuracy 

Not provided Not provided 

Optimality 

Gap 

The response time was improved 20% regarding 

the baseline 

Not provided No optimal results are available No optimal results are available No optimal results are available 

Tradeoff ML 

vs. 

Benchmark 

Not provided The HPA is reactive but simpler.  DNN provides higher accuracy 

but computational are more 

expensive.  

Contrary to expectations, the 

model quantized at 8 bits 

outperform the one with 32 bits 

floating point representation in 

accuracy. This may be an 

indication that the baseline is 

overparametrized or the 

representation is robust to 

support quantization.  

Minimal impact in accuracy 

while reducing up to 63x the 

model size.  
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Bib Key fu2019 [122] koo2019deep [123] DalgkitsisGarrido2022 [124] SantosLynn2021 [125] khan2020real [126] 

ML Method Reinforcement learning Reinforcement learning Reinforcement learning Reinforcement learning Supervised Learning (SL) 

ML Problem decision making decision making decision making decision making Prediction 

Algorithm DRL RL (Policy Gradient) RL RL Multi-Layer Perceptrons; Support 

Vector Regressor; Decision Trees; 

Random Forest 

Resource 

Awareness 

yes yes Yes (energy consumption) Yes (energy consumption) No 

Model 

Description 

Input: the current state of the 

substrate network  

Output: the allocated server for a 

given VNF 

The resource allocation problem is 

formulated as an MDP. They model 

a network service as a set of 

compute and transport resources 

without additional structure. 

Multiple RL agents instantiated in 

each domain that perform VNF 

orchestration. Distributed decision 

engine with auction mechanism to 

decide the intra-domain offloading 

of VNFs  

The input is the available resources 

(set of servers, etc.) and the output 

is a SFC placement composed of 

several VNFs. 

Input: number of 

transmitting/receiving stations, RSSI, 

MCS, Data rate, Interarrival time, 

Channel Bandwidth 

Output: predicted throughput per 

station 

Loss / Reward 

Function 

reward for successful embedding 

of the SFC 

reward on successful embedding Maximal sum of rewards in each 

domain, considering energy 

consumption and latency 

Reward on fulfilling the SFC 

requirements, successful 

placements, and reduced 

consume of energy 

Mean Absolute Error, Mean 

Squared Error, R-squared 

Baseline 

Comparison 

Not provided Not provided Not provided Not provided Actual throughput values from the 

synthetic and the real dataset 

Limitations of 

ML vs. 

benchmark 

embeds one VNF at the time and 

rolls back if there is a failure 

models a network slice as one 

workload 

Only considers VNF deployments 

on servers (not edge or IoT Devices) 

Limitations in the resource 

modeling (not consider link 

bandwidth, memory or storage). 

The 

energy consumption model is very 

simple 

Different models must be defined 

depending on the number of 

stations and number of features. 

Advantages 

of ML vs 

benchmark 

Not provided Not provided Considers multi-domain SFC 

deployments using an Auction 

mechanism to allow inter-domain 

VNF migration 

The RL agents learn to place VNFs 

in those nodes with more available 

resources and minimizing the 

energy consumption 

ML learns and adapts to the 

varying environment and network 

conditions. 

Optimality 

Gap 

Not provided Not provided reduce average service latency by 

103.4% and energy consumption 

by 17.1%compared to a 

centralized RL solution 

Not provided Not provided 

Tradeoff ML 

vs. 

Benchmark 

Not provided Not provided reduce average service latency by 

103.4% and energy consumption 

by 17.1%compared to a 

centralized RL solution 

Compare the acceptance rate of 

SFCs with PPO, A2C and greedy 

Highly accurate prediction of 

transmission throughput in real-

time. However, the results showed 

that the models were 

overestimating the throughput.  
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Bib Key minovski2021throughput [127] teixeira2023wi [128] busseGrawitz2019 [129] Xieli2022 [130] Zhengzang2022 [131] 

ML Method Supervised Learning (SL) Not provided Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) 

ML Problem Prediction Not provided Classification Classification Classification 

Algorithm MLPs; Support Vector Regressor; 

XGBoost; Random Forest 

Symbolic Regression + Unscented 

Kalman Filter 

Random Forest Random Forest Random Forest 

Resource 

Awareness 

No Yes Yes    Yes  Yes 

Model 

Description 

Input: RSSI, RSRP, RSRQ, SINR, Band, 

Num of carriers, RSPath loss, cell 

load, CQI, CRI, etc. 

Output: available throughput per 

UE in UL and DL 

Input: mean throughput, RSSI, 

speed, location, transmission data 

rate 

Output: predicted throughput 

Input: more than 80 flow features 

(e.g., size of the packet, inter-arrival 

time, etc); Output: classification as 

malware or benign flow 

 Input: packet-level features (data 

extracted from ethernet, ip, 

tcp/udp headers). Output: 

classification of packets 

Input: packet-level features (data 

extracted from ethernet, ip, 

tcp/udp headers). Output: 

classification of packets 

Loss / Reward 

Function 

Mean Squared Error, R-squared Root-Mean-Squared Error F1 score   Classification accuracy  Classification accuracy 

Baseline 

Comparison 

Not provided Multiple Linear Regression (MLR); 

Support Vector Regression (SVR); 

Decision Tree (DT); Random Forest 

(RF); and Shallow Neural Network 

(SNN) 

1) the same model in a floating-

point-operation system and 2) an 

offline system (running on a server) 

that operates over the full flow 

Offline model that does not 

perform any "knowledge 

distillation"; packet-level classifier 

 The in-switch classifier is compared 

with the same classifier running on 

a server 

Limitations of 

ML vs. 

benchmark 

No optimality guarantees The best performing model must be 

chosen manually, while for the 

other ML models, Bayesian 

optimization can be used for 

hyperparameter tunning. 

Loss of accuracy due to 

compression techniques for 

memory optimization; no floating 

point 

 Loss of accuracy due to the 

distillation process 

The in-switch classifier has almost 

the same accuracy than the 

benchmark 

Advantages 

of ML vs 

benchmark 

Two of the models were deployed 

on real devices to perform 

throughput prediction 

Given their simplicity, the proposed 

model is especially suited for 

embedded systems, such as those 

that, due to CPU and memory 

limitations, are unable to leverage 

more advanced machine learning 

algorithms. 

The classification is performed at 

line-rate (directly at the switch) 

 The distilled model consumes less 

resources than the benchmark 

The classification is performed at 

line-rate (directly at the switch) 

Optimality 

Gap 

Not provided Not provided 2% below optimal (in accuracy)  1% less accuracy in some use 

cases with respect to the 

performance benchmark 

 Almost no gap 

Tradeoff ML 

vs. 

Benchmark 

The predictions are made during 

the idle period and not during the 

connected period, also the 

patterns seen during these two 

periods are very different which 

hinders the prediction accuracy.  

Throughput measurement via 

active probes might introduce 

unwanted congestion. The 

proposed model passively 

observes the variables to produce 

an outcome 

 The in-switch classifier performs 

slightly worse than the offline 

classifier, but it classifies at line-rate 

Up to 60% memory saving with 

respect to the resource benchmark 

There is a trade-off memory vs 

performance 
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Bib Key begagramaglia2019 [132] begagramaglia2020 [133] Zhangpatras2018 [134] Zhangfiore2019 [135] 

ML Method Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) 

ML Problem Forecasting / Prediction Forecasting / Prediction Forecasting / Prediction Forecasting / Prediction 

Algorithm Deep Neural Network Deep Neural Network Deep Neural Network LSTM 

Resource 

Awareness 

No No No No 

Model 

Description 

Input: Previous traffic measurements (But it 

allows other inputs, e.g., signal quality, 

occupied resource blocks, computational 

load of VNF) 

 

Output: forecast of the capacity required to 

accommodate the future demands for a 

specific network slice 

Input: traffic generated by each slice during 

the preceding N re-orchestration 

opportunities. Data structured as a 3D matrix, 

where base stations represent different 

"pixels" and different slices represent different 

"color channels". 

Output: Allocated resources for each slice. 

Two-timescales: long-term resources, short-

term readaptation. 

Input: Traffic volume   

Output: Traffic Volume 

Input: traffic measurements per 5 minutes 

over many antennas for different services 

Output: Forecast of those same time series 

Loss / Reward 

Function 

Tailored loss function for capacity forecasting 

(asymmetric cost between overprovisioning 

and under provisioning, because the latter = 

SLA violation) 

The loss functions are tailored to capacity 

forecasting with different hyperparameters 

for each of the cases (e.g., one to avoid 

under provisioning, other restricting 

overprovisioning, etc.) 

Least Square error (L2 Loss function) MSE 

Baseline 

Comparison 

- Same ML architecture without tailored loss 

function (just Mean Absolute Error) 

- Naïve (Replicate last week value) 

- Infocom17 (first DL approach for mobile 

traffic prediction) 

- MobiHoc18 (SoA Network demand 

prediction) 

- Previous cases with overprovisioning 

- wangtang2017: Custom-built DNN, 

traditional demand predictor, agnostic of all 

resource management costs 

- begagramaglia2019: Custom-built DNN, it 

takes anticipatory decisions on capacity 

allocation that aim exclusively at minimizing 

the trade-off of overprovisioning and non-

serviced demands 

Machine Learning, ARIMA HW-ExpS  Other NN configurations: MLP, CNN, LSTM 

Limitations of 

ML vs. 

benchmark 

Loss function (single) parameter needs to be 

tuned (also advantage) 

 - More hyperparameter configuration Not provided None (benchmarks are simpler ML models) 

Advantages 

of ML vs 

benchmark 

- Tailored Loss function allows to obtain much 

better performance because it adapts to the 

problem (of capacity allocation) 

 - Considers and optimizes instantiation costs, 

re-configuration costs, and two different 

hierarchical time-scales 

More accuracy than with other 

methodologies 

 Much higher accuracy 

Optimality 

Gap 

Not provided Not provided Near optimal results Mean absolute error w.r.t. real future traffic is 

only 13KBps 

Tradeoff ML 

vs. 

Benchmark 

Not provided Solution cuts management costs down to 35-

41% vs. an optimal static provisioning of 

resources. 

Solution reduces SLA violations due to 

insufficient available resources by 80% (0.7-

1.21% of the re-orchestration opportunities 

versus at least 5.80% 

Not provided Not provided 
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Bib Key Trinhgiupponi2018 [136] camelo2022TrafficClassSpect [57] oshea2016TraffClassSpec [137] camelo2019TechClassSpect [138] 

ML Method Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) Semi-Supervised Learning (SSL) 

ML Problem Forecasting / Prediction Classification Classification Classification 

Algorithm LSTM Deep Neural Network Deep Neural Network Deep Neural Network 

Resource 

Awareness 

No No No No 

Model 

Description 

 Input: aggregated cell traffic measurement 

over several TTI 

Output: Multiple timesteps forecast of such 

traffic per cell 

Input: In-phase and Quadrature (IQ) samples 

of a modulated RF signal, Output: Type of 

traffic at different layers (L1 up to L7), Model: 

a CNN and a RNN, running platform: GPU 

Input: In-phase and Quadrature (IQ) samples 

of a modulated RF signal, Output: Type of 

traffic at different layers (L1 up to L7), Model: 

a RNN, running platform: GPU 

Input: In-phase and Quadrature (IQ) samples 

of different radio technologies, Output: 

Radio Technologies, running platform: GPU 

Loss / Reward 

Function 

Normalized Root Mean Square Error (NRMSE) Categorical Cross-entropy Categorical Cross-entropy Categorical Cross-entropy 

Baseline 

Comparison 

- Ground truth 

- ARIMA 

- Deep Feedforward Neural Network 

(FFNN) 

CNN classifying byte-based packets Not provided CNN trained using SL 

Limitations of 

ML vs. 

benchmark 

Not provided ML models are mainly based on DNN, so they 

act as black boxes and are computational 

expensive.  

ML models are mainly based on DNN, so they 

act as black boxes and are computational 

expensive.  

The SSL approach depends on finding 

models that can accurately extract features 

(unsupervised step) that later on will be used 

for the classification part.  

Advantages 

of ML vs 

benchmark 

Much higher accuracy They can classify traffic using raw L1 packets 

(IQ samples), which can be modulated and 

encrypted.  

They can classify traffic using raw L1 packets 

(IQ samples), which can be modulated and 

encrypted.  

SSL allows using large amount of unlabeled 

data to reduce the need of labeled data 

and get high accuracy 

Optimality 

Gap 

Below 0.05 of NRMSE >90% accuracy in the hardest classification 

task 

>84% overall Almost zero since SSL provides solutions with 

accuracy closed to the SL approach 

Tradeoff ML 

vs. 

Benchmark 

 Error increases as the predictive step 

increases 

The more higher layer protocol and 

granularity, the hardest to classify correctly.  

The performance of RNN is good using short 

sequences of IQ samples. However, RNN 

consumed more resources that a CNN.  

Two steps training but It reduces the size of 

the labeled data set to achieve high 

accuracy.  
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Bib Key camelo2020TraffClassSpec [139] Dalgkitsis2021TransactionsITS [140] Ma2020TransactionsWC [141] Grasso2022TransactionsNSM [142] 

ML Method Supervised Learning (SL) Supervised Learning (SL) N/A Reinforcement learning 

ML Problem Classification Decision making Prediction Decision making 

Algorithm Deep Neural Network Deep Learning Two-timescale Lyapunov optimization Deep Reinforcement Learning, Neural 

network 

Resource 

Awareness 

No No No No 

Model 

Description 

Input: In-phase and Quadrature (IQ) samples 

of a modulated RF signal, Output: Type of 

traffic (TCP vs UDP) and traffic pattern, 

Model: a CNN, running platform: GPU 

Input: Resource consumption at the edge, 

Output: Average service delay in mobility 

scenarios with or without AI-assisted 

orchestration 

Input: Long term migration cost, Output: 

Average user perceived latency, Average 

queue backlog 

Input: Initial/Final exploration ratio, Number 

of hidden layers, minibatch size, discount 

factor, replay memory size; Output: Average 

processing delay and delay jitter (task 

execution at UAV level) 

Loss / Reward 

Function 

Categorical Cross-entropy Not provided Not provided Mean Squared Error 

Baseline 

Comparison 

CNN classifying byte-based packets Mobility + orchestration scenarios compared 

against Mobility only and Without mobility 

and orchestration 

Always Migration Algorithm (AM), No 

Migration (NM), Lazy Migration (LM), 

Predictive Lazy Migraton (PLM) 

Probabilistic Computation Offloading (PCO): 

each MEC server making independently 

online offloading decisions, and heuristics: 

Local Drone Only (LDO), and Uniform 

Selection (US) 

Limitations of 

ML vs. 

benchmark 

ML models are mainly based on DNN, so they 

act as black boxes and are computational 

expensive. It assumes L1 packets can be 

separated per user stream, which in reality is 

very hard at spectral level (user 

identification)  

Simulation study, decreasing orchestration 

time not taken into account 

Increased complexity Management of energy of UAVs not 

considered resource-awareness not 

included 

Advantages 

of ML vs 

benchmark 

They can classify traffic using images 

representing the spectrum (IQ, FTT, short time 

FFT), which can be modulated and 

encrypted.  

Measuring impact of service orchestration of 

challenging mobile services 

Service quality improvements based on real-

life datasets 

Significant improvements in task execution 

time on the MEC level (UAV) 

Optimality 

Gap 

>96% overall Average rejection rate of 

critical services reduced from 20.2% to 3.9% 

Latency reduction ratio of 30.4%, reduction 

of average queue backlog 19.3% 

Proposed solution meets requirements of 

various 6G applications 

Tradeoff ML 

vs. 

Benchmark 

Not provided Average rejection rate of 

critical services reduced from 20.2% to 3.9% 

Latency reduction ratio of 30.4%, reduction 

of average queue backlog 19.3% 

Proposed solution meets requirements of 

various 6G applications 

 

 

 


