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Abstract
This paper describes our team’s collaborative efforts in par-

ticipating in the Track1 of the Diarization of Speaker and Lan-
guage in Conversation Environments (DISPLACE) Challenge
2023. Our submission focuses on speaker diarization in mul-
tilingual scenarios, dealing with overlapping speech segments
with significant noise ratios. To achieve our goal, we fine-tuned
the parameters of two speaker diarization toolkits, Pyannote and
NeMo, and retrained some components using the DISPLACE
development sets and subsets from the MUSAN speech database.
The experiments show promising results, we managed to make
improvements over the pretrained voice activity detection (VAD)
model, as well as training the Multi-scale Speaker Diarization
Decoder (MSDD) by using the DISPLACE development datasets.
Best systems are combined using DOVER-Lap. Our approach
achieves a diarization error rate (DER) of 28.97% on Phase 1
Eval set, compared to the baseline diarization error rate of 40%.
Index Terms: speaker diarization, DISPLACE challenge, NeMo,
Pyannote, DOVER-Lap

1. Introduction
Speaker diarization is the process of identifying the different
speakers in an audio stream. It is a crucial research topic in
computational linguistics, with numerous challenges organized
to improve the performance of state-of-the-art systems in com-
plex scenarios. One such challenge, DISPLACE 2023 [1], is
focused on conversational environments with multiple speakers
who speak different languages, high levels of noise, reverbera-
tions, and overlapping speech. Other challenges in recent years,
such as DiHARD [2], CHIME [3], Ego4D [4], Fearless Steps
[5], Iberspeech RTV [6], and VoxSRC-20 [7], have tackled dif-
ferent aspects of the diarization problem, including audio-visual
diarization and recordings performed with far-field microphones.

Conventionally, a diarization system comprises three main
blocks: (i) a voice activity detector for speech segmentation, (ii)
a speaker representations extractor and (iii) a clustering module.
Voice activity detection can be achieved using several methods:
time delay neural networks (TDNN) [3] or convolutional neural
networks (CNN) combined with different mechanisms, such as
self attention (CNN-SA) [8] . The feature extraction block is
represented by a speaker embeddings extractor and it is popu-
larly achieved through methods such as: x-vectors [9], TDNN
modules [10] or neural networks. Lastly, in order to obtain
speaker labels, similarities between speaker embeddings at dif-
ferent timestamps are computed using clustering algorithms such
as: agglomerative hierarchical clustering [11] (AHC), k-means
or spectral clustering [12].

In this paper we develop a strong baseline system using state
of the art components: a voice activity detector based on Mar-

bleNet architecture [13] and a speaker representation extractor
based on TitaNet-L [14], a neural network with 1D depth-wise
separable convolutions. We employ spectral clustering and im-
plement the whole pipeline using NeMo toolkit [15].

A notable weakness of traditional clustering-only ap-
proaches is the fact that only one speaker can be assigned
per speech timestamp, meaning that diarization is not overlap-
aware. End-to-end solutions try to solve this problem and pro-
vide overlap-aware diarization, being designed similarly to a
multilabel classifier [16], using self-attention [17] or conformer-
transformer based architectures [18].

In our work, we employ a solution that allows for overlapped
detections by incorporating an additional neural diarizer module
on top of the traditional diarization pipeline. This Multi-scale
Speaker Diarization with Dynamic Scale Weighting (MSDD)
network [19] uses a dynamic scale weighting approach that can
adaptively select the best time scales to represent speaker em-
beddings. To enhance the performance of speaker diarization,
a common approach is to fuse the predictions of multiple di-
arization systems using late fusion methods like DOVER [20] or
DOVER-Lap [21]. Following this approach, we incorporate the
segmentation-based diarization approach from Pyannote [22, 23]
as a complementary system to our baseline approach. We use
Doverlap to integrate the two systems. By doing this, we aim to
improve the robustness and accuracy of our diarization system.

The rest of the paper is structured as follows. Section 2
describes our methodology and the used data resources, Section
3 presents the experimental results and, finally, Section 4 lists
the conclusions.

2. Methodology

2.1. Data resources

The DISPLACE speech dataset was made available by the orga-
nizers of the challenge. We used the entire development set for
fine-tuning or training specific parts of our system. For the in-
ternal ablation studies, we trained our system on the second and
third parts of the development set: dev2 (7h, 6m) and dev3 (6h,
33m), respectively. We then evaluated our system’s performance
on the first part, dev1 (2h, 5m).

MUSAN [24] is a freely available dataset containing au-
dio partitioned into speech, music and noise. We used a
MUSAN-freesound-background split (3h, 37m) for non-
speech data and a MUSAN-freesound-noise split (1h,
15m) to perform noise augmentation when training the voice
activity detection system.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

3572 10.21437/Interspeech.2023-1839



2.2. Diarization with NeMo

In our experiments, we fine-tuned the pretrained MarbleNet
multilingual VAD model and used the pretrained TitaNet-L for
speaker embeddings extraction. For clustering, we used the
multi-scale spectral clustering module [25] based on Normal-
ized Maximum Eigengap (NME) values to estimate the number
of clusters automatically. Finally, we trained from scratch the
MSDD neural diarizer on the DISPLACE development in order
to obtain overlap-aware diarization.

2.2.1. Voice activity detection: Fine-tuning

In order to improve the performance of the system, we fine-tuned
the pretrained VAD Multilingual MarbleNet [13] model on the
DISPLACE dataset. We follow the setting of Jia et al. [13]
and split the audio data into speech segments using a window
size of 0.63s, a step of 0.2s and an offset of 0.2s; the offset
means that we discard the first 0.2s of each speech segment (this
step is done to avoid the boundaries between speech and non-
speech segments, which are prone to being mislabeled). The
background audios were also split in 0.63s segments, but with a
0.05s step. The train–validation ratio was 80-to-20.

The audio files in the DISPLACE dataset contain
mostly speech, resulting in a highly imbalanced dataset.
To balance the two classes, we added audios from
MUSAN-freesound-background as non-speech. The
combination of MUSAN-freesound-background and
dev2+3 dataset resulted in 150K speech segments and 154K
background segments for training. The validation set consists of
37K speech segments and 42K background segments.

For data preprocessing, most of the techniques presented
in [13] were kept, with the exception of the input features: we
have used log-mel spectograms instead of cepstral coefficients.
We have also performed data augmentation using SpecAugment
[26] and SpecCutout [27], as well as adding noise from the
MUSAN-freesound-noise dataset to the speech segments.

We have trained the model for 250 epochs with a batch size
of 256, using the SGD optimizer with a learning rate of 10−2,
weight decay of 10−3, momentum of 0.9 and a second-order
polynomial hold decay annealing scheduler [28].

2.2.2. Voice activity detection: Hyper-parameter tuning

The VAD module assigns a probability of speech presence
to each audio frame, which is then binarized into discrete
speech or non-speech decisions based on a set of threshold
hyper-parameters. In order to fine-tune the VAD module’s
hyper-parameters, we started from the meeting configuration
provided by NeMo for speaker diarization tasks with three
to five speakers. We conducted a grid-search in order to
find the four main hyper-parameters (min duration off,
min duration on, offset threshold, onset threshold)
based on the DetER obtained by each setup on the develop-
ment set, while the rest of hyper-parameters were kept fixed
(overlap ratio set to 0.5, pad onset and pad offset
set to 0, filter speech set to FALSE).

The min duration off and min duration on
hyper-parameters refer to the minimum duration that a
non-speech or speech segment must have in order to not be
removed. The onset parameter represents a threshold for
detecting the beginning of speech, while the offset parameter
represents a threshold for detecting the end of a speech segment.

Hyper-parameter tuning on the pretrained VAD model. Fig-
ure 1 shows the performance of multiple hyperparamter config-

Figure 1: The impact of the hyper-parameters on the voice ac-
tivity detection (VAD) pretrained model illustrated as a parallel
coordinates plot. We have evaluated over four hyper-parameters
(min duration off, min duration on, offset, onset) and monitor the
false alarm (FA), miss error (MISS) and detection error (DetER).

urations evaluated for the pretrained VAD system on the devel-
opment dataset. We highlight the top-performing combinations
(corresponding to a DetER lower than 5.5%) and observe that
these combinations can be attained with multiple values for three
of the fours hyper-parameters, as long as the offset thresh-
old is set to 0. This setting means that once speech is detected,
the VAD will keep predicting “speech” unless it encounters a
frame with a score of zero, resulting in almost the entire audio
recording predicted as speech (with the exception of the silence
from the beginning and the end of the audio, which is correctly
marked as non-speech). As such, the best achieved results indi-
cate an almost null miss error (MISS), at the expense of false
alarm error (FA).

Hyper-parameter tuning on the fine-tuned VAD model. Ta-
ble 1 compares the hyper-paramter tuning for both the pretrained
and the fine-tuned model in terms of multiple performance met-
rics: false alarm, miss error and detection error. While we
observed a behaviour similar to the pretrained model, (namely,
that the offset threshold is the most sensitive hyper-parameter
and that it is important to take low values), we have also no-
ticed that the best-achieving configuration on the development
part did not generalize well on the evaluation recordings, which
presented longer intervals of non-speech. In the end, we have
opted for a hyper-parameter setup that offered a lower false
alarm error, to the detriment of the miss error, by slightly in-
creasing the offset threshold to 0.05. In the remainder of this
paper, we used the fine-tuned VAD model, together with the
tuned hyper-parameters, as the speech detector for the NeMo
systems, because it performed better in terms of diarization error
compared to the pretrained model on the evaluation set.

2.2.3. Multi-scale diarization decoder

The recordings in the development set exhibit a high percentage
of overlapped speech. In order to reduce the overlap error, we
used the MSDD neural diarizer after the spectral clusterization
step in order to generate overlap-aware diarization. The con-
figuration used in all experiments has 6 scales with a temporal
resolution ranging from 0.5s to 3s, with a 0.5 segment shift ra-
tio. This configuration is similar to the meeting configuration
detailed in the original paper [19].

The model was trained on the entire DISPLACE develop-
ment set, preparing the recordings with a step of 10 × 500 ms,
batch size of 7 and a train–validation split of 80-to-20. We used
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Table 1: VAD hyper-parameters fine-tuning configuration obtained through grid search. For the pretrained model, the ”Data” column
refers to the datasets on which we selected the VAD hyper-parameters (not the model weights), while for the fine-tuned model, the ”Data”
columns refers to the datasets on which we trained both the hyper-parameters and the model weights.

VAD Model Data Min Duration On Min Duration Off Onset Offset FA Miss DetErr

pretrained dev2+3 0 0 0.85 0 5.42 0 5.42
dev1+2+3 0 0 0.90 0 6.58 0.18 6.76

fine-tune dev2+3 0 0 0.60 0.05 4.05 3.03 7.08
dev1+2+3 0.45 0.40 0.80 0.05 4.97 0.70 5.68

the SGD optimizer with a learning rate of 0.08, weight decay of
2× 10−4 and cosine annealing [27] with a warm-up ratio of 0.1
as learning rate scheduler for 30 epochs. For inference on the
evaluation set, we tested using two sigmoid thresholds τ , one
corresponding to the smallest DER on the whole development set
(sigmoid threshold of 0.9), and one corresponding to the smallest
confusion error (CER) respectively (sigmoid threshold of 0.7).
The sigmoid threshold is a value between 0 and 1 that controls
the overlap detection sensitivity: a smaller threshold leads to
more speaker overlap segments. If the confidence that two seg-
ments overlap is greater than the sigmoid threshold, then those
two overlapping segments will both appear at that timestamp.

2.3. Diarization with Pyannote

Pyannote [22, 23] is a speaker diarization library that distin-
guishes itself through the use of a segmentation module. The
segmentation module is an end-to-end network that predicts the
probability of up to three speakers being active in a five-second
window. A threshold hyper-parameter is used to binarize the
segmentation predictions, which are further encoded using the
speaker representations extracted with the pretrained ECAPA-
TDNN [29] model. Finally, Pyannote applies an agglomerative
clustering algorithm to link the identities of the speakers across
segments and to generate a diarization output for the entire au-
dio. We fine-tuned the pretrained v2.1 model and systematically
evaluated over the following components.

Training. Apart from the pretrained model, we fine-tuned
the model on the DISPLACE data. We trained for 150 epochs
with a learning rate of 10−3 and using cosine annealing with
warm restarts for learning rate scheduling. Out of the 23 files in
the dev2 and dev3, we selected 21 files for training and two
for validation (B046 from dev2 and M026 from dev3).

Checkpoint. We monitored the performance of the model on
a validation set consisting of two randomly chosen audio files.
We keep the best ten models encountered during training and
we have experimented with three variants of choosing the final
weights: best (uses the weights from the best model), last (uses
the weights from the last of the ten models), average (averages
the weights of the ten checkpoints).

Threshold. We have tried four thresholds for segmentation
{0.45, 0.50, 0.55, 0.60}; these were selected to be around the
values of the pretrained model (0.62) and the best ones obtained
on the validation data (0.4–0.5).

3. Experimental results
3.1. Results using NeMo

Table 2 presents results for several configurations and diariza-
tion methods. We include the baseline model that uses AHC
clustering followed by VB-HMM resegmentation [30] and our
own NeMo systems based on either only spectral clustering or

Table 2: Impact of using the neural diarizer (MSDD) on top of
spectral clustering. The parameter τ is the sigmoid threshold.
The ”data” column lists the datasets used for both selecting the
VAD hyper-parameters and training the MSDD network. All
configurations use the VAD fine-tuned on the dev2+3 sets.

Method Data dev1 dev1+2+3 eval1

DISPLACE baseline [1] 27.70 32.57 40.08

Spectral dev2+3 22.61 26.39 29.22
clusetring (SC) dev1+2+3 – 25.91 29.11

SC+MSDD dev2+3 22.86 – -
τ : 0.7 dev1+2+3 – 26.08 29.49

SC+MSDD dev2+3 23.06 – –
τ : 0.9 dev1+2+3 – 25.50 29.07

spectral clustering followed by the MSDD module. On the dev1
dataset that was initially provided in the challenge, we obtain
the best performance when fine-tuning the parameters of the
pretrained model on dev2+3, reducing the baseline DER from
27.7% down to 22.61%. In addition, on the eval1 dataset, we
are able to improve the performance over the baseline model by
fine-tuning the VAD model and training the MSDD model: we
lower the baseline system DER from 40.08%, down to 29.07%.

The results across datasets indicate that the dev1 results
do not correlate well with the performances on the eval1 set.
However, the results on dev1+2+3 are much more in-line with
the performance obtained on the evaluation set (we are aware
that these latter results might be overly optimistic since these
models were fine-tuned on part of this data). This behaviour may
be caused by the fact that dev2 and dev3 sets have a distri-
bution that is closer to the one of the eval1 set; so, in future
we recommend using the K-fold cross-validation technique to
prevent the data mismatch and obtain more accurate results.

3.2. Results with Pyannote

In Table 3 we show the results obtained using Pyannote. First,
we note that we are able to improve the performance over the
pretrained model: from 23.85% to 21.79% DER on dev1 and
from 37.01% to 35.33% DER on eval1.

As observed in the previous subsection, we again see that
the performance does not necessarily correlate across various
splits. For example the (fine-tuned, average, 0.55) combination
obtains a sizeable improvement over (fine-tuned, last, 0.50) on
the eval1 split, but the results on the dev1 are much closer.

Finally, we observe that the segmentation threshold can im-
pact the results (three points difference in the fine-tuned, best
case), but its value is not as critical when we average the check-
points (about 0.7 difference for the fine-tuned, average case).
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Table 3: Results with Pyannote library on the dev1 and eval1
sets. We compare across three axes of experimentation: the
training procedure, the checkpoint for the model’s weights, the
segmentation threshold. See the text for more details.

DER (%)
Training Checkpoint Thresh dev1 eval1

pretrained – 0.62 23.85 37.01

fine-tuned best 0.45 28.70
fine-tuned best 0.50 27.86
fine-tuned best 0.55 26.91
fine-tuned best 0.60 25.75

fine-tuned last 0.45 22.87
fine-tuned last 0.50 22.24 36.85
fine-tuned last 0.55 21.98
fine-tuned last 0.60 21.79

fine-tuned average 0.45 22.88
fine-tuned average 0.50 22.24
fine-tuned average 0.55 22.16 35.33
fine-tuned average 0.60 22.17

3.3. Model combinations

After evaluating several systems and setups on the development
set, we aimed to improve diarization performance by combining
their results. We used the official implementation of DOVER-
Lap [21] using both the greedy and Hungarian label mapping
techniques, in order to reduce the diarization error.

Table 4 presents the results after the DOVER-Lap on both the
development and evaluation datasets respectively. We combine
five of our systems (three systems based on NeMo and two
systems based on Pyannote) in two variants: all five systems
and only the three NeMo-based systems. On dev1, we decrease
the DER using the first variant and both label mapping methods
presented in the paper and obtain better results compared to
the system average, as well as the best system DER by more
than 1%. On eval1, we use both varaints with greedy label
mapping and manage to obtain our best overall result, 28.97%
DER (previously, MSDD with τ of 0.9 achieved the best result
of 29.07%), on eval1 when using only the NeMo systems.
Using the MSDD with a sigmoid threshold of 0.7, corresponding
to the smallest CER (instead of the sigmoid threshold of 0.9
corresponding to the smallest DER), resulted in better results on
DOVER-Lap, as it contained more overlapping segments.

3.4. Hardware requirements

For NeMo, training both the VAD model, as well as the MSDD
model, was done on a multi-GPU configuration with 5 Nvidia
Tesla T4 GPUs. For VAD fine-tuning on dev2+3, an epoch
takes approximately 30s. For the MSDD model training on
dev1+2+3, an epoch takes around 45 minutes. VAD hyper-
parameter tuning was performed on CPU and it takes around
15s per iteration. The inference using spectral clustering takes
43 min for 15h and 44 min of recordings from eval1, while
inference using MSDD takes 46 min, on a single Testa T4 GPU.

4. Conclusions
In this paper we presented our speaker diarization solution for
the DISPLACE 2023 challange. We employed two different

Table 4: DER on dev1 and eval1 for five of our systems (three
based on NeMo, two on Pyannote) and their combinations using
DOVER-Lap. We also report the average performance of the
input systems.

DER (%)
Toolkit Configuration dev1 eval1

NeMo VAD pretrained 21.48 30.20
NeMo VAD fine-tuned 22.60 29.11
NeMo VAD fine-tuned + MSDD (τ : 0.7) 22.86 29.49

Pyannote pretrained 23.85 37.01
Pyannote avg. thresh. 0.55 22.16 35.33

Systems average (w/ Pyannote) 22.59 32.23
Systems average (w/o Pyannote) 22.31 29.60

DOVER-Lap greedy (w/ Pyannote) 20.44 31.39
DOVER-Lap greedy (w/o Pyannote) 22.51 28.97
DOVER-Lap Hungarian (w/ Pyannote) 20.40 –
DOVER-Lap Hungarian (w/o Pyannote) 22.53 –

approaches, namely the multi-scale spectral clustering method
from the NeMo library and the neural segmentation approach
developed in Pyannote. We conducted a comprehensive study on
the impact of training data and various hyper-parameters. Our
experiments demonstrated that the pretrained spectral clustering
model from NeMo provides robust results.

We showed that incorporating the neural diarizer into the
normal clusterization pipeline in NeMo can lead to further im-
provements in the results, as it enables our system to be aware
of overlaps. This component was trained on the development
data provided and we observed a decrease in the diarization error
even after a few training epochs.

Our results highlight the sensitivity of the voice activity
detector (VAD) to its hyperparameters, which persists even after
careful fine-tuning on the development set. However, a multi-
scale approach was shown to enhance the model’s robustness in
challenging conversational environments featuring high levels of
noise and multiple speakers, by reducing the trade-off between
the quality of speaker representations and temporal resolution.

In order to improve over the baseline systems, we combined
five configurations of the most promising systems from both
toolkits using DOVER-Lap system fusion and reported better
results on both dev1 and eval1 datasets. We observed that
using MSDD with a lower sigmoid threshold as input for the
DOVER-Lap algorithm leads to better results, as the MSDD
inputs contain more overlapping segments. Our final system
achieved a DER value of 28.97%, while the baseline system
achieved the best performance of 40.08%.

Finally, for both the individual system performances, as well
as the models combination step, the NeMo toolkit obtained better
performance than Pyannote. Our two best results were achieved
using the MSDD diarizer and the combination of three NeMo
systems. Surprisingly, even though NeMo and Pyannote were
comparable in terms of performance on the dev1 data, the re-
sults of Pyannote did not translate on the evaluation eval1 data,
indicating again a possible mismatch of their data distributions.
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