Estudio de las propiedades del método de clustering k-modes.Aplicación a la toma de decisiones empresariales en el marco del covid en URUGUAY
- 1. Universidad de la República, Uruguay
Description
Within the framework of a study in the field of corporate finance, developed during
the pandemic in Uruguay, about the COVID-19 IMPACT ON COMPANIES URUGUA-
YAS in decision-making on downsizing, telecommuting, training and work environment,
among others, a typology of business decision making is elaborated using the modal pro-
file kmodes clustering method on binary type variables. Several scenarios are analyzed
that account for the number of decision-making profiles based on the number of groups.
In particular, it studies variability of some metrics that allow evaluating the homogeneity
of the groups and decide a possible solution to the number of groups. This variability is
studied based on the bootstrap method, which is random in the choice of centers, thus
seeing the dependency with the solution found and also in the structure of the data for
which we work with learning samples, varying its size using resampling methods.
Files
ddt_05_22_zenodo.pdf
Files
(667.6 kB)
Name | Size | Download all |
---|---|---|
md5:94e361848caa7501b42c1940097e1eca
|
667.6 kB | Preview Download |
Additional details
Additional titles
- Translated title (English)
- Study of the properties of the clustering method k-modes. Application to business decision making in the framework of covid in URUGUAY
Software
- Repository URL
- https://gitlab.com/GimeseIesta2/finanzas-de-empresas-iesta
- Programming language
- R
- Development Status
- Unsupported
References
- Álvarez-Vaz, R. y Massa, F. (2012). Determinación de tipologı́as de infecciones para- sitarias intestinales, en escolares mediante, técnicas de clustering sobre datos binarios. Documento de Trabajo Serie DT (12 / 05) - ISSN : 1688-6453, IESTA.
- Brealey, R., Myers, S., y Allen, F. (2011). Principles of Corporate Finance. McGraw- Hill / Irwin., New York.
- Graham, J. R. y Harvey, C. R. (2001). The theory and practice of corporate finance: Evidence from the field. Journal of Financial Economics, 60(2):187–243.
- Gower, J. C. (1971) A general coefficient of similarity and some of its properties, Biometrics 27, 857–874.
- Huang, Z. (1997). A fast clustering algorithm to cluster very large categorical data sets in data mining. in kdd: Techniques and applications. Technical report
- Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.(2021). cluster: Clus- ter Analysis Basics and Extensions. R package version 2.1.2.
- R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Ross, S., Westerfield, R., y Jaffe, J. (2012). Hill/Interamericana Editores, México.
- Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and valida- tion of cluster analysis Journal of Computational and Applied Mathematics, 20:53-65
- Tsekouras, G., Papageorgiou, D., Kotsiantis, S., Kalloniatis, C., y Pintelas, P. (2005). Fuzzy clustering of categorical attributes and its use in analyzing cultural data. World Academy of Science, Engineering and Technology, 1:87–91.
- Weihs, C., Ligges, U., Luebke, K., y Raabe, N. (2005). Klar analyzing german business cycles. En Baier, D., Decker, R., y Schmidt-Thieme, L., editores, Data Analysis and Decision Support, pp. 335–343, Berlin. Springer-Verlag.
- H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.