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Abstract—A Motzkin shift is a mathematical model for constraints
on genetic sequences. In terms of the theory of symbolic dynamics,
the Motzkin shift is nonsofic, and therefore, we cannot use the Perron-
Frobenius theory to calculate its topological entropy. The Motzkin
shift M(M,N) which comes from language theory, is defined to be the
shift system over an alphabet A that consists of N negative symbols,
N positive symbols and M neutral symbols. For an x in the full shift,
x will be in the Motzkin subshift M(M,N) if and only if every finite
block appearing in x has a non-zero reduced form. Therefore, the
constraint for x cannot be bounded in length. K. Inoue has shown that
the entropy of the Motzkin shift M(M,N) is log(M + N + 1). In this
paper, a new direct method of calculating the topological entropy of
the Motzkin shift is given without any measure theoretical discussion.
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I. INTRODUCTION

ADYNAMICAL system is an abstract mathematical model
describing the time dependence of point’s position in its

space. This is conventionally modeled by a map whose iterates
denote the passage of time.

Broadly, a dynamical system is a set with a map T : X −→
X . This is discrete time. Continuous time considers a flow
ϕt : X −→ X .

Symbolic dynamics is a powerful tool used in the study
of dynamical systems. Its advantage lies in the fact that
this technique reduces a complicated system into a set of
sequences, the latter of which being much easier to analyze!
We will see various instances of this simplification.

Let A = {1, 2, . . . , n− 1} be a finite set called alphabet.
The dynamical system σ : AZ −→ AZ is defined to be
the set of all functions f : Z −→ A, and is called a shift
dynamical system. The field of symbolic dynamics is referred
to the study of the shift dynamical systems. In symbolic
dynamics, subshifts of sequences are defined as sets of bi-
infinite sequences of symbols over a finite alphabet avoiding
a given set of finite factors (or blocks) called forbidden factors.
Well known classes of shifts of sequences are shifts of finite
type which avoid a finite set of forbidden factors and sofic
shifts which avoid a regular set of forbidden factors. Sofic
shifts may also be defined as labels of bi-infinite paths of a
finite-state labelled graph where there are no constraints of
initial or infinitely repeated states. We refer to [1] and [3] for
an introduction to this theory.

Let A be an n × n adjacency matrix with entries in
{0, 1}. Using these elements we construct a directed graph
G = (V,E) with V the set of vertices, the set of edges E
defined with A. Let Y be the set of all infinite admissible
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sequences of edges, where by admissible it is meant that the
sequence is a walk of the graph. Let σ be the shift operator
on such sequences; it plays the role of the time-evolution
operator of the dynamical system. A subshift of finite type
is then defined as a pair (Y, σ) obtained in this way. If the
sequence extends to infinity in only one direction, it is called
a one-sided subshift of finite type, and if it is bilateral, it is
called a two-sided subshift of finite type.

Formally, one may define the sequence of edges as

Σ+
A =

{
(x0, x1, . . .) : xj ∈ V,Axjxj+1

= 1, j ∈ N
}
.

This is the space of all sequences of symbols such that
the symbol p can be followed by the symbol q only if the
(p, q)th entry of the matrix A is 1. The space of all bi-infinite
sequences is defined analogously:

ΣA =
{
(x0, x1, . . .) : xj ∈ V,Axjxj+1

= 1, j ∈ Z
}
.

The shift operator σ maps a sequence in the one- or two-
sided shift to another by shifting all symbols to the left, i.e.

(σ(x))j = xj+1.

Clearly this map is only invertible in the case of the two-
sided shift.

A Motzkin shift (first suggested by [2]) is a mathematical
model for constraints on genetic sequences. In terms of the
theory of symbolic dynamics, the Motzkin shift is nonsofic,
and therefore, we cannot use the Perron-Frobenius theory to
calculate its topological entropy. The Motzkin shift MM,N

which comes from language theory, is defined to be the
shift system over an alphabet A that consists of N negative
symbols, N positive symbols and M neutral symbols. For an
x in the full shift AZ, x is in MM,N if and only if every finite
block appearing in x has a non-zero reduced form. Therefore,
the constraint for x cannot be bounded in length. A beautiful
way to describe the Dyck shift is in terms of its syntactic
monoid.

Let A = {�1, �2, · · · , �N , r1, r2, · · · , rN , 11, 12, · · · , 1M},
M,N ∈ Z

+. Let M be a monoid (with zero) with generators
�i, ri, 1 ≤ i ≤ N , 1j , 1 ≤ j ≤ M and 1. The defining relations
on the monoid are:Malaysia (e-mail: fahd331@gmail.com, msn@ukm.edu.my).
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�i ◦ rj = 1 if i = j 1 ≤ i, j ≤ N,

1i ◦ 1j = 1 if 1 ≤ i, j ≤ M,

�i ◦ rj = 0 if i �= j 1 ≤ i, j ≤ N,

α ◦ 1 = 1 ◦ α = α α ∈ A ∪ {1},
α ◦ 1i = 1i ◦ α = α 1 ≤ i ≤ K, α ∈ A ∪ {1},
α ◦ 0 = 0 ◦ α = 0 α ∈ A ∪ {1},
0 ◦ 0 = 0.

We use a mapping red() : A∗ −→ M such that for

ω = ω1ω2 · · ·ωn ∈ A∗(n ≥ 1),

red(ω) = ω1 ◦ ω2 ◦ · · · ◦ ωn, and red(ε) = 1.

where A∗ denotes the set of all finite sequences with letters
taken from A.

Definition 1: The Motzkin shift MM,N [2] is defined by

MM,N =
{
x ∈ AZ : if i ≤ j, then red(x[i,j)) �= 0

}
,

where x[i,j) = xixi+1 · · ·xj−1.
Therefore, the Motzkin shift can be regarded as a shift

defined by a simple directed graph G which has one vertex
and (2N + M)-loops named by the elements of the set A,
and the loop named �i, ri, 1 ≤ i ≤ N carry the labels �, r
respectively, the loop named 1j , (1 ≤ j ≤ M) carries the
label 1, that is, MN is the Dyck type inverse monoid. And
such a presentation of subshifts is called S-presentation, where
S is an inverse semigroup of Dyck type. Note that if M = 0,
the monoid is the Dyck monoid DN and the subshift MN,0

is the Dyck shift DN .
Example 1: The following point is an element of the

Motzkin shift over the alphabet A = {�1, �2, r1, r2, 11, 12, 13}.

x = · · · �2�113r1�1�2 · · ·

Example 2: Let A = {(, [, ], ), 11}. Then the following
words are allowed

[(())][11][(

[(([([([(

()()()11()()

while these are forbidden

[((])][][(

[(([(]11([(

()(()11()])

The Motzkin constraint: the symbol ( is matched with ), the
symbol [ is matched with a ]

II. THE TOPOLOGICAL ENTROPY

The topological entropy of a dynamical system (X,T ),
denoted by h(T ), is a nonnegative real number that measures
the complexity of the orbits in the system. For a system given
by an iterated function, the topological entropy represents the
exponential growth rate of the number of distinguishable orbits
of the iterates. For shifts, it is defined as the asymptotic growth
rate of the number of occurring blocks of large sequences. That
is, the number |Bn(X)| of n-blocks appearing in points of a
shift space X gives some idea of the complexity of X . Instead
of using the individual numbers |Bn(X)| for n = 1, 2, . . ., we
can summarize their behavior by computing their growth rate
in the following definition.

Definition 2: Let X be a shift space. The entropy of X is
defined by

h(X) = lim
n−→∞

1

n
log |Bn(X)| .

We will always use the base 2 for the logarithms, so that
log means log2.

Recall the Perron-Frobenius Theorem which asserts every
non-negative irreducible matrix A has a positive eigenvalue
λA such that λA = |μ| for any other eigenvalue μ and also
that Av = λAv for some vector v all of whose entries are
positive, and that no other eigenvalue has an eigenvector with
all positive entries.

As is well known the topological entropy of a one-
dimensional subshift is completely determined by an adja-
cency matrix of the shift if the shift is of finite type or sofic by
using the Perron-Frobenius theory. Unfortunately, this method
is no longer available to calculate the entropy of the Motzkin
shift MM,N as it is nonsofic. K. Inoue in [2] has shown
that the entropy of the Motzkin shift is log(M + N + 1).
In the following we have found a method of calculating
the topological entropy of MM,N by counting possible paths
without any theoretical discussion.

A. Main Result

The topological entropy of the Motzkin shift MM,N , com-
puted in [2] is as follows:

Proposition 1: [2] The entropy of the Motzkin shift
(MM,N , σ) is

htop(σ) = log(M +N + 1).

Proof: The proof in details can be found in [2].

In the following, we will provide an alternative proof of the
topological entropy for the Motzkin shift. This proof is similar
to the proof of Niteckis’ topological entropy proof in [4]. In
order to give the proof, we need first to know what is meant
by the notion of Motzkin balanced words.
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Recall the following fact from [4]. In the Dyck shift [5], a
word ω = ω0ω1 . . . ωn of even length is called balanced if its
entries can be paired subject to

• a pair of entries consists of a left delimiter to the left of a
matching right delimiter: if ωα is paired with ωβ , where
0 ≤ α < β ≤ n, then ωα = �i for some index i and
ωβ = ri for the same index;

• distinct pairs are nested or disjoint: given α < β as above,
every intermediate ωι, (α < ι < β) is paired with some
other intermediate ωκ, (α < κ < β).

Definition 3: A finite sequence α = α0α1 . . . αn, is called
a Motzkin balanced if α satisfies one of the following:

• α = ω, where ω is a Dyck balanced word;
• α = a, where a ∈ A∗

1 = {11, 12, · · · , 1M}∗;
• α = a0ω0a1ω1 . . . anωnan+1, whereby the word

ω0ω1 . . . ωn is a Dyck balanced word and (possibly
empty) ai ∈ A∗

1, 0 ≤ i ≤ n+ 1.
We regard the empty word ε as balanced. Now, we specify

the (infinite) list of disallowed words.

F = {�ibrj : b is a Motzkin balanced word and i �= j} .
The subshift on the set of sequences MM,N ⊂ AZ in which

no element of F appears is the (two-sided) Motzkin shift.
The alternative proof of the Motzkin topological entropy is

given as follows.
Theorem 1: The Motzkin shift (MM,N , σ) has

htop(σ) = log(M +N + 1).

Proof:
An admissible word has the general form

ω = b0ri1b1ri2 . . . bk−1rikbk�j1bk+1 . . . bk+m−1�jmbk+m

where each bα, α = 0, . . . , k + m, is a (possibly empty)
Motzkin balanced sub-word, and the k ≥ 0 right delimiters
which are not matched in ω all occur to the left of the
m ≥ 0 unmatched left delimiters in ω. This leads to a natural
decomposition of any admissible word as a concatenation of
three (possibly empty) sub-words

ω = ABC

where B = bk is balanced, while A = b0 . . . rik (resp.
C = �j1 . . . bm+k) ends (resp. start) with an unmatched right
(resp. left) delimiter.

To calculate the topological entropy, note first that every
admissible word ω is the initial sub-word of at least M+N+
1 admissible words of length |ω| + 1: the N and M words
ω�i, i = 1, . . . , N , ω1j , j = 1, . . . ,M are always admissible,
and ωrjm is admissible if m ≥ 0 while all words ωri are
admissible if m = 0. Thus

|Bn+1(X)| ≥ (M +N + 1) |Bn(X)| , for all n,

where, Bn(X) equals the set of admissible words ω ∈ An.
So

htop(f) = lim sup
n

1

n
log |Bn(X)| ≥ log(M +N + 1).

To handle the opposite inequality, we first estimate the
cardinality of the sets An, Bn, Cn of admissible words of
length n whose decomposition has only one nonempty factor,
of the type indicated by the letter.

We begin with Motzkin balanced words: It is well known
that from [4] the set of all length n Dyck balanced words has
cardinality

|Bn| ≤ (N + 1)n.

Thus, the details given about the Motzkin balanced words
assures that the cardinality of the set of all Motzkin balanced
words of length n is

|Bn| ≤ (M +N + 1)n.

We now consider the set Cn of words beginning with an
unmatched left delimiter, noting that the initial length k sub-
word of any ω ∈ Cn itself belongs to Ck. Given ω ∈ Cn,
we immediately have ω�i, ω1j ∈ Cn+1 for i = 1, . . . , N ,
j = 1, . . . ,M and ωri ∈ Cn+1 provided that ω has at least
two unmatched left delimiters, the last of which is �i. This
gives us

|Cn+1| ≤ (M +N + 1) |Cn| ,
and since

|C1| = N,

this implies
|Cn| ≤ (M +N + 1)n.

A similar estimate can be obtained for |An|, either by
repeating the argument or by noting the bijection between |An|
and |Cn| obtained by reversing letter order and interchanging
� with r (keeping indices).

Finally, to estimate |Bn(X)| we consider, for each ordered
triple (i, j, k) of nonnegative integers summing to n, the set
of words of the form ω = ABC with |A| = i, |B| = j and
|C| = k. Since an arbitrary factoring is possible, the number
of such words is

|Ai| · |Bj | · |Ck| ≤ (M +N + 1)i+j+k = (M +N + 1)n.

But the number of possible triples (i, j, k) summing to n is
less than (n+ 1)3, so

|Bn(X)| ≤ (n+ 1)3(M +N + 1)n.

The asymptotic growth rate of the right-hand quantity is
log(M +N + 1), so

htop(σ) = log(M +N + 1).
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III. CONCLUSION

In this paper, we have found an alternative proof of the
topological entropy of the Motzkin shift.
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