
A Platform for Time-Sensitive Networking in
Converged IoT-Cloud Environments

George Papathanail, Ilias Sakellariou, Lefteris Mamatas, and Panagiotis Papadimitriou
University of Macedonia, Greece

{papathanail, iliass, emamatas, papadimitriou}@uom.edu.gr

Abstract—IoT-enabled applications benefit from various forms
of digital twinning, such as the so-called Virtual Objects (VOs). A
crucial requirement in the communication among IoT devices and
their associated VOs is low latency. In this respect, we showcase
a software platform for Time-Sensitive Networking (TSN), which
enables the rapid computation of TSN schedules, based on flow
demands, and the configuration of Gate Control Lists (GCLs) on
the TSN bridges that reside between IoT Gateways and VOs.

I. INTRODUCTION

Over the last years, we have seen an increasing need
for the deployment of distributed applications that interact
with Internet-of-Things (IoT) devices, paving the way for
the convergence of IoT and edge computing technologies. In
this respect, digital twinning is gaining traction across such
environments, where various forms of IoT middleware, such
as Virtual Objects (VOs), can be instantiated on-demand for
the execution of IoT-specific or generic functions, alleviating
their computational burden from IoT devices [1].

A crucial requirement in converged IoT-cloud environments
is low latency in the communication between IoT devices and
their associated VOs. Even if VOs are deployed in proximity
to IoT devices, interference from cross-traffic may still cause
undesirable implications, such as latency inflation and packet
loss. To guarantee bounds on latency and jitter for IoT-
VO traffic, we leverage on the principles of Time-Sensitive
Networking (TSN), which provides a solid underpinning for
sustaining bounded latency and reliability for high-priority
traffic [2].

To this end, we showcase a software platform for TSN,
which is oriented to the dynamicity of converged IoT-cloud
environments, stemming from the relatively short lifetime of
cloud-native applications and the fact that VOs are orchestrat-
able (i.e., they are subject to migration or scaling). As such,
TSN schedules (that essentially designate the transmission
periods for each traffic class) should be computed at short
timescales, ensuring adaptability to fluctuations in terms of
traffic patterns and demands. In the following, we briefly dis-
cuss the architecture of the TSN platform to be demonstrated,
which is based on our previous work [1]–[4].

II. TSN PLATFORM

Our TSN platform represents a holistic TSN approach that
couples a Centralized Network Controller (CNC) with a Time-

Fig. 1: TSN platform overview.

Aware Shaper (TAS) compliant software TSN bridge (Fig. 1).
In a nutshell, the TSN platform supports the computation of
TSN schedules and the population of Gate Control List (GCL)
configurations onto the TSN bridges that reside between the
IoT Gateway and the compute node that hosts the VO.

A. Control Plane

The CNC consists of three internal modules: (i) Flow &
Path Model, (ii) Schedule Engine, and (iii) GCL Controller:

Flow & Path Model. The Flow and Path Model module
supports two functionalities. The first one is the categorization
of incoming flows into distinct traffic classes, such as high-
priority and best-effort. This is achieved based on some prede-
fined rules that can match applications’ network requirements
to traffic classes and determine whether the request should be
categorized as critical or non-critical. The second functionality
of this module is the path configuration, which corresponds to
the sequence of TSN bridges between the IoT Gateway and
the VO. The path is used as an input to the Schedule Engine
module.

Schedule Engine. The main objective of the Schedule Engine
is to determine a feasible scheduling pattern for a set of
incoming flows with respect to their specified requirements.



Fig. 2: Simulation of CNC interaction and port topology.

In this respect, we consider a set of periodic flows, each
flow being associated with a valid path from a talker to a
listener, and having a deadline, a packet size and period. The
problem can be considered as a classic job-shop scheduling
problem with a set of additional constraints (i.e., restricting the
transmission to a single packet at each time, ensuring proper
ordering in the reception of frames in the queues, ensuring
ordering constraints between transmissions of the same packet
along the path). The current implementation of the model
(described in detail in [4]) relies on the ECLiPSe Constraint
Logic Programming system, harvesting on its support of the
disjunctive global constraint for scheduling, reified constraints,
flexible and efficient search strategies, and variable/value or-
dering general heuristics.

GCL Controller. The GCL Controller module receives the
output of the Schedule Engine as its input and is responsible
for configuring time intervals on the GCL, and determining
the duration over which each queue is open for transmission.
The GCL Controller utilizes YANG in order to populate the
GCL configurations onto the TSN bridges.

B. Data Plane

For TSN data plane activation, we rely on Time-Aware
Priority Packet Scheduler (TAPRIO), a powerful queuing
discipline available in the Linux kernel’s traffic control (tc)
tool. TAPRIO plays a crucial role in simulating the behavior of
IEEE 802.1Qbv, which is a standard for enhancing time-aware
scheduling in Ethernet networks. By integrating TAPRIO, we
allow the configuration of a series of gate states, each one
responsible for enabling outgoing traffic for specific subsets
of traffic classes based on the concept of time slices.

To ensure proper packet classification into the appropriate
traffic class, TAPRIO uses the priority field of the socket buffer
(skb) employed by the network stack of the Linux Kernel. This
enables TAPRIO to effectively assign time-sensitive flows to

their respective priority queues. In our implementation, we
map traffic classes to queues by modifying the Differentiated
Services Code Point (DSCP) field of the packet header. To
achieve the modification of the skb priority field before packets
are directed to the queuing discipline, we utilize iptables (see
[3] for further details).

C. Interfaces and Interactions

The TSN control plane incorporates the following inter-
faces: (i) a Northbound API, implemented using a well-defined
JSON schema, which is capable of processing requests related
to application configuration and requirements (this informa-
tion can be conveyed from a Service Orchestrator), and (ii)
a technology-specific Southbound API, utilizing NETCONF,
which is responsible for transmitting the GCL configuration
to each TSN bridge via Remote Procedure Calls (RPC).

The interaction between the CNC and a TSN bridge using
NETCONF is illustrated in Fig. 1. A NETCONF plugin
runs at the CNC as a management client and establishes
communication with the NETCONF server that is operational
on each TSN bridge. CNC establishes communication through
the NETCONF plugin by utilizing a YANG-TSN data model.
A YANG Parser, deployed at the userspace of the TSN bridge,
translates the YANG-TSN model to a set of actions that can
be applied directly to the queuing disc layer of Linux kernel.

III. DEMO DESCRIPTION

Our demonstration includes a simulation of IoT-VO com-
munication in a port context, where we consider IoT devices
mounted on trucks, the latter transporting cargo containers
from cargo terminals to warehouses in the port. IoT devices
are associated with a VO located at the edge and communicate
via a path on a topology depicted in Fig. 2. The scenario
involves dynamically re-configuring TSN switches on newly
associated paths that depend on the location of the trucks
(e.g., cargo terminal or warehouse positions). For instance,



Fig. 3: Schedule Engine output.

in Fig. 2, the truck IoT at time point t1 is connected to the
cargoTerminal3, and the corresponding flow is forwarded
via the cargo_hub switch, whereas at time point t2 connects
to warehouse2 with the associated path going through
wh_hub. Truck locations are obtained from a port road
traffic simulation model, implemented in Eclipse SUMO, as
shown in Fig. 2. In the specific scenario, we consider six
trucks transporting cargo containers from terminals to different
warehouses.

In brief, the demo begins with a call received on the
NorthBound API of the CNC. In practical terms, when a truck
arrives at a new location, an appropriate call is generated to the
CNC by the SUMO platform interface (Simulation Controller)
to (re)compute schedules for the data flows, according to
specified high-level intents of the overall application (for
example, achieving latency below 1 ms). A flow is identified
as either critical or best-effort by the Flow and Path model
component. The latter, which also maintains information on
the underlying network, transmits a JSON request with all
the necessary information to the Schedule Engine, which is
responsible for calculating the schedules of the flows.

The request contains details about the topology and flows.
More specifically, the topology information includes: (i) the
switches and end-points, and (ii) the links and their attributes,
such as delay and bandwidth. Flow information comprises a
distinct flowId, the deadline for each flow (i.e., the time by
which the packet must reach its destination), the packetSize,
and the period which sets the frequency of transmission
and is linked to a valid path. The Schedule Engine based
on the provided data computes schedules for each flow and
generates accordingly the corresponding GCL entries for each
switch. The output of the scheduling model is illustrated in
Fig. 3. In this instance, the scheduler generates an output of
type TAPRIO, which is applied to the switch wh_hub. This
instance further incorporates intervals for each schedule input.

The computed schedule is then transferred to the GCL
Controller. The primary function of the GCL controller module

Fig. 4: Remote Procedure Call.

is to generate a RPC using the IETF TAPRIO YANG model
and transmit it to the switch through the SouthBound API,
which acts as a NETCONF client. An instance of the RPC is
illustrated in Fig. 4. Eventually, this RPC is extracted from the
YANG parser module, which functions within the userspace
of the switch. This module is responsible for converting the
YANG format into the tc qdisc command and subsequently
applying this configuration to the egress interface of the
switch. The above workflow is repeated each time a simulation
truck arrival event is generated by the SUMO platform.

IV. CONCLUSIONS

In this paper, we presented the architecture of a software
TSN platform, tailored to the needs of emerging IoT-enabled
applications in conjunction with IoT VOs. The TSN plat-
form couples TSN schedule computation with TAS-compliant
scheduling using NETCONF, and it is showcased in the
context of a smart port use case.

ACKNOWLEDGMENTS

This work was funded by the European Union’s Horizon
Europe research and innovation program under grant agree-
ment No. 101070487 (NEPHELE).

REFERENCES

[1] G. Papathanail et. al, “A virtual object stack for iot-enabled applications
across the compute continuum,” in IEEE/ACM CEICO, 2023, pp. 1–6.

[2] G. N. Kumar, K. Katsalis, P. Papadimitriou, P. Pop, and G. Carle, “Failure
handling for time-sensitive networks using sdn and source routing,” in
7th IEEE International Conference on Network Softwarization (NetSoft),
2021, pp. 226–234.

[3] G. Papathanail, L. Mamatas, and P. Papadimitriou, “Towards the inte-
gration of taprio-based scheduling with centralized tsn control,” in IFIP
Networking, 2023, pp. 1–6.

[4] G. Papathanail, I. Sakellariou, L. Mamatas, and P. Papadimitriou, “Dy-
namic schedule computation for time-aware shaper in converged iot-cloud
environments,” in IEEE ICIN, 2024, pp. 1–8.


