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Abstract
Opportunistic networks provide the underlying 

foundations to enable collaborative and distribut-
ed applications close to users. These applications 
exploit the temporal and spatial availability of 
proximal devices to share the execution of dif-
ferent tasks ranging from sensing to networking. 
A key limitation of these networks is its short life 
span and limited coverage. In this article, we pres-
ent a research vision in which spatiotemporal holes 
between opportunistic networks are filled through 
the deployment of autonomous drones acting as 
intelligent proxies. By doing this, it is then possible 
to augment the coverage of these networks as well 
as to improve the availability of opportunities to find 
collaborators. Through a rigorous analysis that con-
siders a dataset captured by a cellular operator, we 
demonstrate the feasibility of the vision and high-
light a road map of research challenges that have 
to be fulfilled to achieve it. Our results suggest that 
while several opportunistic networks emerge during 
the day in different urban locations, these networks 
tend to be of small size and isolated. However, by 
using autonomous drones to interconnect these 
networks, it is possible to augment the surrounding 
availability of proximal devices by almost 3x times.

Introduction
Opportunistic networks are formed by intercon-
necting devices sharing the same spatial and 
temporal characteristics [1, 2]. Proximal devices 
interconnect via short range communication net-
works, e.g., device-to-device (D2D); reducing the 
need to rely on the Internet backbone. The most 
common opportunistic networks exploit human 
mobility and personal social devices from individ-
uals to establish networks in which devices can 
share distributed resources and collaborate with 
the execution of tasks. Different tasks can be 
accomplished between interconnected devices 
ranging from sampling data using sensors to rout-
ing network packages [3]. While disaster manage-
ment and transient infrastructure are important use 
cases supported by these networks, emerging par-
adigms, such as edge intelligence [4], federated 
learning [5] and the Metaverse [6] can improve the 
performance of their applications through these 
networks. However, as these depend on human 
mobility to emerge, a key limitation is that the con-
nectivity is intermittent and can terminate unex-

pectedly — even if delay-tolerant mechanisms are 
adopted. As a result, solutions that improve and 
foster larger coverage and higher availability of 
opportunistic networks are required. 

Existing solutions have investigated the forma-
tion of opportunistic networks to enable collabora-
tions between distributed computing, networking 
and sensing resources [2]. The static deployment 
of IoT and smart devices has been envisioned as 
a way to provide distributed infrastructure on the 
edge of the network [1]. Similar to this, cloudlets, 
fog solutions and frameworks to distribute tasks 
among multiple devices has been explored exten-
sively [7]. A key problem with these solutions is 
that they require fixed deployments, which are 
not dense enough in the wild. In addition, there is 
a lack of trust towards these devices. As a result, 
social-aware, multi-party and security mechanisms 
are required to be used instead, which increases 
the complexity of usage. Likewise, a combination 
of Cloud-Edge orchestration also has been pro-
posed to improve the continuous availability of 
resources. This however reduces the performance 
benefits of distribution and collaboration between 
devices. Since the uptake of autonomous drones 
is increasing and those are blended within urban 
areas, it is possible to envision them as a way 
to improve higher availability and coverage of 
opportunistic networks.

This article presents a research vision of oppor-
tunistic multi-drone networks. As depicted in Fig. 
1, in this vision, autonomous drones that operate 
within urban areas are piggybacked or scheduled 
to act as intelligent gateways that interconnect 
opportunistic networks. By doing this, auton-
omous drones can then augment the scope of 
these networks and increase the opportunities of 
finding collaborators. Through a rigorous analysis 
that considers a dataset captured by a cellular 
operator, first, we quantify the amount of oppor-
tunistic networks that can be formed during differ-
ent time intervals during a day using smartphones. 
With this information, we then characterize the 
amount of devices that can be harnessed in
1. Individual networks
2. Interconnected networks through autono-

mous drones.
In addition to this, we also present multiple appli-
cation use cases that can benefit from this vision. 
We also reflect back on current state-of-the-art 
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solutions and discuss the implications and limita-
tions of our work. 

Emerging Use Cases and Applications
Opportunistic networks are key to build the 
underlying infrastructure supporting collaborative 
and distributed applications. Below we briefly dis-
cuss representative examples of applications that 
benefit from improving the availability of finding 
collaborators in these networks. 

Metaverse applications: AR/VR applications 
provide the basis for a Metaverse [6]. These 
applications are resource intensive and individual 
devices drain their batteries when running them 
continuously, e.g., video rendering. Distributed 
and collaborative processing can facilitate reduc-
ing the complexity of executing these applica-
tions as well as minimizing the need of relying 
on remote infrastructure. For instance, image pro-
cessing applications can speed up 2x and more 
when using additional devices to execute them 
[2, 5]. By using autonomous drones to reach 
other opportunistic networks, there is a larger 
amount of opportunities to interconnect devices 
in proximity, such that Metaverse applications can 
sustain longer through low-latency infrastructure 
available in their surroundings.

Vehicular services: Advancements in auton-
omous cars are quickly hampered by the large 
amount of computation required to analyze the 
data produced by the vehicles, e.g., autonomous 
cars generate in average 5T of data per hour 
[8]. While 6G networks are envisioned to accel-
erate data transferred, distributed computation 
in the surrounding of vehicles is also required to 
reduce the computational latency of data process-
ing. Autonomous drones can exploit surround-
ing infrastructure to pre-process large amounts 
of data asynchronously, such that pre-computed 
functionality is available to vehicles. For instance, 
pedestrian counting is necessary to regulate car 
speed in a location and this can be fetched by 
surrounding vehicles from autonomous drones. 

Edge intelligence: Distributed AI services in 
proximity to end devices require a robust low-la-
tency network to ensure continuous connectiv-
ity between devices deployed on the edge [4]. 
Autonomous drones acting as gateways to inter-
connect transient networks can improve the 
availability of devices. Besides this, autonomous 
drones can facilitate the training and execution of 
AI models by acting as coordinators. In this man-
ner, autonomous drones can help in acquiring 
data contributions to train models by selecting the 
most suitable devices.

Challenges and Opportunities
Autonomous drones are rapidly automating sev-
eral activities performed by humans, e.g., grocery 
and delivery. As their adoption increases, these 
autonomous devices are starting to have their 
own mobility patterns and emerging routes, which 
can be exploited for establishing and intercon-
necting opportunistic networks. This section starts 
by reflecting on current state-of-the-art methods 
and solutions, and then presents the challenges 
and opportunities to enable multi-drone support 
for opportunistic networks.

Multi-drone capacity planning: Autonomous 
drones have designated routes to move across dif-

ferent locations. These routes can be exploited; 
such that autonomous drones can become intelli-
gent gateways to interconnect different opportu-
nistic networks [1]. Indeed, even if autonomous 
drones are in constant movement, their operations 
within specific locations can be scheduled to move 
in and out based on their available number, e.g., 
drone churn. A key challenge is to have stable 
availability of autonomous drones to maintain con-
tinuous and consistent communications between 
interconnected opportunistic networks. The sta-
ble availability of autonomous drones as gateways 
can aid in preserving network functions active, 
such that it is easy to find collaborators for users. 
To estimate optimally the amount of autonomous 
drones that are required to interconnect different 
networks, it is necessary to apply capacity planning 
techniques that consider different factors [9], such 
as type of drone, operational time, surrounding 
infrastructure and expected workload to mention 
some. While over-provisioning of autonomous 
drones in area can also support continuous com-
munication, the number of drones allowed in an 
area is commonly restricted such that human-per-
ception of the surrounding is not perturbed. This is 
another challenge surrounding the deployment of 
autonomous drones in the wild.

Swarm and network intelligence: Besides hav-
ing awareness about their surroundings and con-
texts, autonomous drones are also expected to 
work as a collective swarm that further optimizes 
network service provisioning [10]. For instance, 
when transferring low priority packages, to save 
energy, some drones may prefer to offload data 
to proximal 5G stations rather than rely on device-
to-device communications. Another example is to 
regulate the formation of opportunistic networks 
through autonomous drones. Here, autonomous 

FIGURE 1. Our vision of opportunistic multi-drone networks — Isolated networks are 
interconnected through autonomous drones acting as intelligent proxies.
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I. INTRODUCTION

Opportunistic networks are formed by interconnecting de-
vices sharing the same spatial and temporal characteristics [1],
[2]. Proximal devices interconnect via short range communi-
cation networks, e.g., device-to-device (D2D); reducing the
need to rely on the Internet backbone. The most common
opportunistic networks exploit human mobility and personal
social devices from individuals to establish networks in which
devices can share distributed resources and collaborate with
the execution of tasks. Different tasks can be accomplished
between interconnected devices ranging from sampling data
using sensors to routing network packages [3]. While disaster
management and transient infrastructure are important use
cases supported by these networks, emerging paradigms, such
as edge intelligence [4], federated learning [5] and the Meta-
verse [6] can improve the performance of their applications
through these networks. However, as these depend on human
mobility to emerge, a key limitation is that the connectivity is
intermittent and can terminate unexpectedly - even if delay-
tolerant mechanisms are adopted. As a result, solutions that
improve and foster larger coverage and higher availability of
opportunistic networks are required.

Fig. 1: Our vision of opportunistic multi-drone networks
- Isolated networks are interconnected through autonomous
drones acting as intelligent proxies.

Existing solutions have investigated the formation of oppor-
tunistic networks to enable collaborations between distributed
computing, networking and sensing resources [2]. The static
deployment of IoT and smart devices has been envisioned
as a way to provide distributed infrastructure on the edge
of the network [1]. Similar to this, cloudlets, fog solutions
and frameworks to distribute tasks among multiple devices
has been explored extensively [7]. A key problem with these
solutions is that they require fixed deployments, which are
not dense enough in the wild. In addition, there is a lack
of trust towards these devices. As a result, social-aware,
multi-party and security mechanisms are required to be used
instead, which increases the complexity of usage. Likewise,
a combination of Cloud-Edge orchestration also has been
proposed to improve the continuous availability of resources.
This however reduces the performance benefits of distribution
and collaboration between devices. Since the uptake of au-
tonomous drones is increasing and those are blended within
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drones can coordinate the use of opportunistic 
networks for certain tasks, e.g., distributed and 
collaborative computing for rending videos or 
processing large amounts of distributed data. 
The use of advanced machine learning opens 
a plethora of opportunities for swarm optimiza-
tion. A key challenge is to have representative 
and large enough data that can model the coor-
dination between autonomous drones. In addition 
to this, autonomous drones are also expected to 
adopt resilient typologies, in which multi-paths 
are always available even in the present of drone 
failures. Multi-paths are especially important for 
multiverse-like applications (AR/VR) [3].

Security and privacy-preserving mechanisms:
Autonomous drones can become a source for 
attacks and threats for users transferring data 
[11]. This is specially problematic for opportunistic 
networks harnessing computing power for edge 
applications and intelligence [12]. Indeed, compro-
mised autonomous drones can be easily utilized to 
perform attacks over model and data of applica-
tions, e.g., data poisoning and model evasion. As 
a result, autonomous drones require to be authen-
ticated before forming part of the network. Thus, 
a key challenge is to make autonomous drones 
trustworthy. Notice that other infrastructure like 
cloudlets and edge servers suffer the same prob-
lem. To overcome the issue, deployment of these 
technologies is typically powered by well-known 
providers, such that the trust of users in using them 
increases. Naturally, attackers can also impersonate 
service providers to steal personal information or 
digital entities. As a result, privacy preserving meth-
ods need to ensure no sensitive data is transmitted 
to this type of infrastructure. 

Recurring issues: Battery life of autonomous 
drones is a recurring problem that prevents long 
term usage of the technology. As autonomous 
drones acquire more sophisticated autonomy, the 
demand for heavy processing increases, resulting 
in short life span of batteries. Thus, a key chal-
lenge is energy consumption and optimization of 
tasks of autonomous drones. Anchor stations to 
re-charge autonomous drones periodically have 
been proposed to overcome this problem. Other 
solutions rely on the use of solar panels and har-
vesting energy mechanisms [13], e.g., wind and 
tidal. Power-based wireless solutions are becoming 
a reality and can be also envisioned to aid in over-
coming this issue. Charging times can potentially 
be piggybacked to easily interconnect opportunis-
tic networks. Besides this, other recurring issues are 
the augmentation of autonomous drones with plug 

and play components [9], and the robust training 
of models to support different autonomous func-
tionalities, e.g., navigation. Another key issue to 
overcome is related to the interoperability between 
autonomous drones and other devices. This can 
be addressed by adopting well-known standards to 
route information, e.g., forwarding protocols; and 
state-of-the-art algorithms to disseminate data, e.g., 
epidemic protocols.

thE EXpErImEnt
The potential of the proposed vision is demon-
strated through the rigorous analysis of a mobile 
operator dataset. We rely on this dataset to quan-
tify the amount of opportunistic networks that 
emerge during a day on an hourly basis. With this 
information, we then analyze how autonomous 
drones acting as intelligent gateways can fill the 
gaps between individual opportunistic networks 
to interconnect them. Lastly, as users look for col-
laborators, we quantify the augmented amount of 
collaborators that is available through intercon-
nected opportunistic networks. In the following, 
a detail description of the experiment is provided.

Dataset and preparation: The dataset contains 
real-world crowd-sensed measurements of app 
usage and mobility patterns, depicting real world 
situations. The dataset is anonymized and gathers 
data over the period (August 21, 2017) for 24 hrs 
from a cellular operator in Shanghai. The data-
set was released in Applens workshop in 2019. 
As our goal is to identify crowded areas where 
opportunistic networks can be established, the 
dataset captures suitable insights about human 
mobility and behavior. The dataset contains infor-
mation from users connecting to base stations 
as a consequence of calls, messaging, and data 
transfer activities associated with mobile applica-
tion usage. Each sample contains the device iden-
tifier, the start and end time of a session to the 
level of seconds, the amount of data exchanged 
during the session (in bytes), the identifi er of the 
base station that handles the connection, and the 
GPS coordinates of the base station. The dataset 
comprises information from 998 unique devices 
and 7663 base stations. The IDs of devices are 
anonymised to guarantee the privacy of users.

Pre-processing: Before our analysis, we vali-
date the base stations in our data using the Open-
cellid database.1. The Opencellid project is the 
largest collaborative open-data repository world-
wide of GPS positions of cell towers. The project 
aims to off er GSM localisation from data gathered 
from various sources, including mobile apps and 

FIGURE 2. Dataset pre-processing and preparation; a) dataset validation with urban locations; b) region of interest (ROI) selected for the analysis; 
c) types of locations in the ROI and d) mobility of users obtained from the dataset.

(a) (b) (c) (d)

1 https://opencellid.org/
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network providers. Figure 2a shows the base sta-
tions (using blue dots) and Opencellid database 
(using green dots). From Fig. 2a, it can be clearly 
observed that not all base stations in the dataset 
are overlaying geographically over the Opencel-
lid dataset. To make a proper matching between 
these two datasets, we used radial distance to 
overlay the GPS coordinates of our operator data-
set. In particular, we used a maximum 500-meter 
radial distance to verify and calibrate base station 
location. The resulting dataset contains 8,248,775 
samples from 826 devices and 4011 base stations. 

Region of Interest: Our analysis focuses on 
the most dense area in the dataset as it captures 
better human mobility in different urban scenar-
ios. We focus our analysis on the 20 km2 area 
(Region Of Interest — ROI) with the highest densi-
ty of base stations located in the northeast part of 
the city (Fig. 2b), which allow us to evaluate data 
gathering over various spatiotemporal levels. The 
selected area contains 3,425,014 samples from 
548 devices and 1198 base stations. 

Methodology: Before quantifying opportu-
nistic networks, we first model the mobility of 
individuals users. We rely on grid-like structure 
that overlaps the ROI to analyze the mobility of 
all the users available in that location. Figure 2c 
clearly illustrates the grid overlapping the ROI. 
Our grid structure consists of 100 cells and each 
cell represents a region containing a set of base 
stations in which devices connect to. By looking 
at devices connecting to the same base station 
during a specific interval of time, it is possible 
to identify devices that are at one-hop distance 
between each other. This is important to quanti-
fy the amount of devices that can interconnect 
together in an opportunistic network. In addition 
to this, we also built the trajectories of individual 
users. These trajectories depict user mobility as 
transitions between cells. With this information, it 
is then possible to analyze the multiple opportu-
nistic networks that are formed by different com-
bination of users as they encountered each other.

Our grid-like structure uses 100 cells for the 
grid as it provides an optimal cell area to merge 
base stations while retaining enough descriptive 
information to differentiate multiple regions. Each 
cell depicts an area of 2 km2. Our grid is placed 
on the ROI as it represents the busiest part of the 
city, hence more descriptive patterns that cap-
ture human mobility can be discovered. To avoid 
abnormal trajectories that depict very short or 
long mobility patterns, the dataset is pruned down 
further. The pruning is done by removing all con-
nectivity sessions below the 10th percentile or 
above the 90th percentile. To estimate sessions of 
users, we model sessions on hourly basis intervals. 
An example to illustrate this, it’s a session of a 
device connecting to the base station B1. Assum-
ing that the device starts its session at 09:20 AM 
and ends at 10:10 AM, this leads to two sessions 
in our analysis, one at 9:00 AM and another at 
10:00 AM. Moreover, multiple sessions that are 
identified during the same hour are combined. 
For instance, a device connecting to base station 
B2 with a starting session at 09:30 AM and end-
ing at 09:40 AM; and then a subsequent session 
of the same device starting at 09:45 AM and end-
ing at 09:55 AM, leads to one session at 9:00 AM. 
After applying this final data pruning and refining, 

our dataset contains 1,655,271 samples for 512 
devices with 1,171 base stations.

Land usage mapping: Lastly, to have an intui-
tive view of human behavior and patterns in the 
city, we also identify land uses and locations in 
the ROI. We rely on general areas (Residential, 
Commercial, Green land, Industrial, Transport and 
Others) that are inherent in any urban structural 
planning of a city. The land use is extracted using 
OpenStreetMap. The selected areas, include: 
commercial areas representing all the offices, 
shopping centres, warehouses, or retail stores; the 
residential areas depicting all the residential sites 
like buildings, and private houses; the green land 
depicting all the available forests, nature reserves 
and public parks; the industrial areas represent-
ing all the sites that are used for industrial devel-
opment and the transport area representing the 
sites that users use to commute using bus or train. 
Another reason to choose these areas is that they 
are representative examples of locations that peo-
ple encounter as part of everyday routines on a 
daily basis. For example, commercial and indus-
trial areas expose working hours’ patterns, a train 
and bus stations describe users’ transportation 
mobility, and residential areas describes habitual 
housing patterns. Figure 2d shows the trajecto-
ries that can be calculated from all the 512 users 
in our dataset and consider the mobility of users 
for the whole day. The intensity of the cell color 
quantifies the amount of users available in that 
cell, where white color is the lowest and darker 
(green) color the highest. 

Evaluation and Results

Quantifying Opportunistic Networks
Analysis: Our goal is to identify the amount of 
opportunistic networks that emerge at different 
times during the day in different (cell) locations 
in our ROI. After that, autonomous drones are 
deployed in locations to interconnect isolated 
opportunistic networks to augment their cover-
age. To perform this, it is first necessary to define 
a human daily routine. This is important to iden-
tify opportunistic devices that can be harnessed 
together. As a result, we selected a human rou-
tine that divides the day into 8 intervals. This rou-
tine is selected from [2] and depicts a fine-grained 
level of human activities that can be realistically 
performed during the day by individuals. Routines 
with low amount of time intervals are not selected 
as it is difficult to observe clear mobility patterns 
between time periods. Likewise, routines with high-
er amount of intervals do not depict an average 
human routine. Our selected routine divides the 
day into fairly intuitive intervals, including, Rest 
(early morning) 1:00 a.m. to 5:59 a.m.; Rush hours 
(morning) 6:00 a.m. to 7:59 a.m.; Work (morning) 
8:00 a.m. to 11:59 a.m.; Lunch break 12:00 p.m. 
to 2:59 p.m.; Work (afternoon) 3:00 p.m. to 5:59 
p.m.; Rush hours (evening) 6:00 p.m. to 8:59 p.m.; 
and Leisure (evening) 9:00 p.m. to 12:59 a.m. 

Results: Figure 3 shows the results. The inter-
val Rest (early morning) is not presented as the 
amount of possible opportunistic networks to 
be formed is low. This is reasonable as this time 
depicts sleeping patterns of users, providing low 
opportunities for the execution of collaborative 
and distributed tasks. Previous research has also 

Our grid-like struc-
ture uses 100 cells 

for the grid as it pro-
vides an optimal cell 
area to merge base 

stations while retain-
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tive information to 

differentiate multiple 
regions. 
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reported low human mobility within this time 
intervals [14]. To identify the opportunistic net-
works, we quantify the amount of users connect-
ing to base stations within a cell. Devices in the 
same cell can form opportunistic networks eas-
ily by interconnecting to each other using short 
range communications or by connecting to the 
same base station [2]. Here, cells with darker 
(green) colors depict higher concentration of 
users while lighter (green) tonalities depict a few 
or none users (white). In addition, we also con-
struct trajectories from individual mobility traces 
for each user (blue lines). The key insight of these 
trajectories is to show that even though there are 
moving users through cells, there is not enough 
time for devices to collaborate [2]. Overall, from 
Fig. 3, it is possible to observe a diff erent number 
of networks during different time intervals. It is 
possible to observe higher number of networks 
emerging during Work and Lunch hours (Fig. 3b, c 
and d). Moreover, despite users moving between 
cells, we can also observe time intervals of activ-
ities where a low amount of networks can be 
formed (Fig. 3a and f). This indicates that devices 
are moving around, but there is not enough time 
to establish meaningful collaborations between 
them as connectivity is intermittent and encounter 
between devices spontaneous. All in all, while our 
results suggest that several opportunistic networks 
can be discovered, these networks are isolated 
from other networks. Interconnecting these net-
works can potentially improve the availability of 
distributed resources, and enable a large variety 
of collaborative applications [5], reducing the 
need to rely on the main Internet backbone infra-
structure to access the resources.

fIllIng thE holEs
Opportunities to users: Besides Fig. 3 showing 
the results of quantified opportunistic networks, 
we also include in the fi gure how these networks 
can be interconnected and what are the bene-
fits of doing this. Thus, we next show how the 
interconnecting of opportunistic networks can 
improve the opportunities to establish collabora-
tions between users. We ranked all the cells in our 
ROI based on two factors,
1. Total amount of users in that cell
2. Adjacent number of users in neighbor cells. 
From this list of candidate networks, two users 
(user A and user B) are selected and evaluated in 
diff erent situations. The selection criteria is that a 
user should belong to an opportunistic network 
ranked in the 50th percentile; each user is cho-
sen randomly from the list of candidate networks, 
and the two users cannot belong to the same net-
work. This ensures that users can be conceptually 
treated as workers [15], such that workers are 
required to establish collaborators to perform a 
task and do not engage into collaborators from 
networks that are very sparse and highly volatile, 
e.g., very oscillating churn rate. Notice that other 
situations for augmenting opportunistic networks 
could be adopted, however, we focus on situ-
ations that make it feasible and reasonable to 
establish collaboration between devices. Indeed, 
in these situations, the churn of devices is stable 
enough to guarantee that users will benefi t from 
collaborating rather than deplete their resources 
from non-benefi cial collaborations [2].

Network model and assumptions: After select-
ing the users in the opportunistic networks, we 
next illustrate how the amount of collaboration 

FIGURE 3. Opportunistic networks that emerge at different locations during different times of the day; and 
tentative deployments of autonomous drones that can be used to interconnect opportunistic networks: a) rush 
hours (morning) 6:00–7:00 am; b) work (morning) 8:00–11:59 am; c) lunch break 12:00 am–2:59 pm; b) work 
(afternoon) 3:00–5:59 pm; e) rush hours (evening) 6:00–8:59 pm; f) leisure (evening) 9:00 pm–12:59 am.

(a) Rush hours (morning) 6:00-7:00 a.m. (b) Work (morning) 8:00-11:59 a.m (c) Lunch break 12:00 a.m.-2:59 p.m.

(d) Work (afternoon) 3:00-5:59 p.m. (e) Rush hours (evening) 6:00-8:59 p.m. (f) Leisure (evening) 9:00 p.m.-12:59 a.m.

Fig. 3: Opportunistic networks that emerge at different locations during different times of the day; and tentative deployments
of autonomous drones that can be used to interconnect opportunistic networks.

this time depicts sleeping patterns of users, providing low
opportunities for the execution of collaborative and distributed
tasks. Previous research has also reported low human mobility
within this time intervals [14]. To identify the opportunistic
networks, we quantify the amount of users connecting to base
stations within a cell. Devices in the same cell can form
opportunistic networks easily by interconnecting to each other
using short range communications or by connecting to the
same base station [2]. Here, cells with darker (green) colors
depict higher concentration of users while lighter (green)
tonalities depict a few or none users (white). In addition, we
also construct trajectories from individual mobility traces for
each user (blue lines). The key insight of these trajectories is
to show that even though there are moving users through cells,
there is not enough time for devices to collaborate [2]. Overall,
from Figure 3, it is possible to observe a different number
of networks during different time intervals. It is possible to
observe higher number of networks emerging during Work
and Lunch hours (Figure 3(b), (c) and (d)). Moreover, despite
users moving between cells, we can also observe time intervals
of activities where a low amount of networks can be formed
(Figure 3(a) and (f)). This indicates that devices are moving
around, but there is not enough time to establish meaningful
collaborations between them as connectivity is intermittent

and encounter between devices spontaneous. All in all, while
our results suggest that several opportunistic networks can be
discovered, these networks are isolated from other networks.
Interconnecting these networks can potentially improve the
availability of distributed resources, and enable a large variety
of collaborative applications [5], reducing the need to rely
on the main Internet backbone infrastructure to access the
resources.

B. Filling the holes

Opportunities to users: Besides Figure 3 showing the results
of quantified opportunistic networks, we also include in the
figure how these networks can be interconnected and what
are the benefits of doing this. Thus, we next show how the
interconnecting of opportunistic networks can improve the
opportunities to establish collaborations between users. We
ranked all the cells in our ROI based on two factors, 1) total
amount of users in that cell, and 2) adjacent number of users in
neighbor cells. From this list of candidate networks, two users
(user A and user B) are selected and evaluated in different
situations. The selection criteria is that a user should belong
to an opportunistic network ranked in the 50th percentile; each
user is chosen randomly from the list of candidate networks,

Here, cells with 
darker (green) colors 

depict higher con-
centration of users 

while lighter (green) 
tonalities depict a 
few or none users 

(white). 
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opportunities can be augmented by using auton-
omous drones as proxy to interconnect isolated 
networks. To make our results intuitive to under-
stand, we proceed to interconnect the previous 
selected users A and B. We assume that networks 
with large concentrations of devices in adjacent 
cells can interconnect automatically, while cells 
with fewer or none (white and lighter-green back-
grounds) require the deployment of autonomous 
drones. In addition, we also highlight stable paths 
that are created by exploiting cells with denser 
(darker-green) amount of devices to intercom-
municate users A and B. Notice that other paths 
and networks can be considered, however, other 
paths may be less stable or require more jumps 
to establish intercommunication, making the net-
work paths more difficult to follow.

Results: Figure 3 overlaps the deployment 
of autonomous drones required to intercon-
nect users A and B in different networks as well 
as highlights the communication path between 
them. From the figure, we can observe that the 
deployment of autonomous drones can augment 
the amount of opportunities to find collaborators 
for individual users. Table 1 quantifies the number 
of devices that are accessible for each user A and 
B in their respective surrounding area (within the 
same cell), and adjacent cells as these devices 
can be accessed by any device in the opportu-
nistic network. In parallel to this, by using auton-
omous drones as intelligent gateways, it is also 
possible to observe the amount of devices that 
are in reach when interconnecting different net-
works (Path A-B). Here, we can observe that the 
deployment of an autonomous drone facilitates 
the access to other devices in more distant cells. 
Our results suggest that the amount of devices in 
average increases 3x times when interconnecting 
networks using autonomous drones. For instance, 
during Lunch break for User A and B, the number 
of devices in average increases from 97 to 352, 
suggesting that a higher amount of devices can be 
considered as underlying infrastructure of collabo-
rative and distributed applications. Despite this, 
Fig. 3 also shows that there are several locations 
(cells) with fewer number of devices. For instance, 
Figure 3a and 3f shows the locations with the less 
concentration of devices. In this case, the deploy-
ment of autonomous drones can be used instead 
for caching content and assignation of training 
tasks that are asynchronously delivered to users 
rather than enabling synchronous execution of 
distributed and collaborative applications [5]. 

Discussion
Multi-drone deployment size: In our analysis, the 
area of each cell in reality depicts a 2 km squared 
area in the ROI. A deployment of autonomous 
drones is required in each cell to enable gate-
way connectivity services that interconnect the 
opportunistic networks. The amount of autono-
mous drones required in each cell can be select-
ed based on a large spectrum of aspects, such 
as drone modality (aerial, aquatic, land), drone 
capacity (resource payload), connectivity range, 
drone stationary time, battery life, and amount of 
users in the location to mention some. While our 
results demonstrate the potential of using autono-
mous drones for interconnecting networks, further 
modelling and analysis of the problem using mul-

tiple parameters is required to select the optimal 
deployment of autonomous drones in complex 
urban contexts. Our previous work [9] explores 
this selection simply by using the amount of users 
available in a location as a single parameter. 

Re-designing urban areas: Currently, urban 
areas are not designed for the easy integration 
of autonomous drones. Existing solutions oper-
ate in sidewalks or within specific locations, e.g., 
University campus. Moreover, certain modalities 
of autonomous drones are also preferable for 
operating in specific areas. For instance, auton-
omous ground drones are preferable for oper-
ating in urban areas when compared with aerial 
drones as ground drones produce less noise. As 
the deployment of drone technology increases, it 
is possible that cities may re-design urban spaces 
to blend their deployments more transparently. 
This implies that in future city designs, it is easy to 
exploit autonomous drones in our surroundings, 
e.g., in a bus stop and metro.

Stakeholders: Service and content providers 
would be the main stakeholders of our solution. 
Similarly, vendor of apps can lease autonomous 
drones to support the performance of their appli-
cations. For instance, Pokemon Go and Metaverse 
apps. Governmental institutions and municipalities 
would also be interested in maintaining ready-
to-use communication infrastructure for disaster 
management powered by autonomous drones. 

Room for improvement: While our work uses 
a grid-like method with cells of fixed dimensions 
for mobility analysis between areas, we are inter-
ested in exploring whether optimal selection of 
autonomous drones is possible when considering 
different area sizes (smaller cells). Besides this, 
we are also interested in mapping better the land 
usage of a city to a specific modality of autono-
mous drone. For instance, in a park area with a 
lake, underwater drones could be a more ener-
gy-efficient option to interconnect networks as the 
underwater drone can float on the surface. In par-
allel to this, we are also interested in verifying our 
results further with datasets from other cities. It is 
possible that different cities have slightly different 
urban structure characteristics, suggesting that the 
use of autonomous drones may not be possible 
to be piggybacked transparently in some cases, 
requiring instead, dedicated autonomous drones 
for performing network routing and forwarding 
tasks in a specific location.

Data collection at scale: Our work demon-
strates that a deployment of multiple autonomous 
drones can be exploited to fill the gaps between 
networks, supporting better collaborative and dis-
tributed applications. While autonomous drones 
to deliver services on the edge have been envi-

TABLE 1. Number of distributed devices that are 
available in individual and interconnected net-
works.

Routine (activities) User A User B Path (A-B)

Work (morning)
Lunch break
Work (afternoon)
Rush hours (evening)
Leisure (evening)
Total

130
100
116
93

151
118

118
95
78
80

136
101.4

369
352
366
240
252

315.8

While our work uses 
a grid-like method 
with cells of fixed 

dimensions for 
mobility analysis 

between areas, we 
are interested in 

exploring whether 
optimal selection of 
autonomous drones 

is possible when 
considering different 

area sizes (smaller 
cells). 
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sioned in the art [9], autonomous drones can 
also be utilized to support a variety of data col-
lection applications. For instance, crowdsensing 
and crowdsourcing methods could be initiated by 
an autonomous drone instead of a central server. 
The collected data can then be transmitted asyn-
chronously between autonomous drones until 
reaching its destination. At the same time, auton-
omous drones can be used to cache data. This 
cached data can be delivered in other locations 
to bootstrap the performance of smartphone and 
wearable applications.

Micro-mobility infrastructure: Another type 
of smart infrastructure that can be exploited to 
interconnect opportunistic networks is micro-mo-
bility one. Micro-mobility vehicles, e.g., scooters 
and bicycles; can integrate packet forwarding 
interfaces to disseminate network data. Moreover, 
micro-mobility infrastructure inherently follows 
human mobility patterns, making it more suitable 
to interconnect opportunistic networks. Micro-mo-
bility may provide better area coverage and more 
adaptability and flexibility to different cities with 
different urban structure characteristics. Naturally, 
a combination of multiple solutions (micro-mobil-
ity vehicles and autonomous drones) can provide 
more robust performance of the gateways and 
better coverage at city-scale. 

Summary and Conclusions
In this article, a research vision of opportunistic 
multi-drone networks is presented. This vision 
builds on the idea of using autonomous drones to 
improve the coverage and the process of finding 
collaborators in opportunistic networks. Through 
a rigorous analysis that consider a dataset cap-
tured by a cellular operator, the feasibility of the 
vision is demonstrated. Our results suggest that 
autonomous drones can fill the holes between 
individual networks to overcome their limited cov-
erage and short life span. By doing so, our find-
ings also indicate that it is possible to augment 
the surrounding availability of proximal devices 
up to 3x times. Our work paves the way towards 
new solutions that can advance further the usage 
of opportunistic networks to support emerging 
application domains, such as the Metaverse and 
edge intelligence.
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