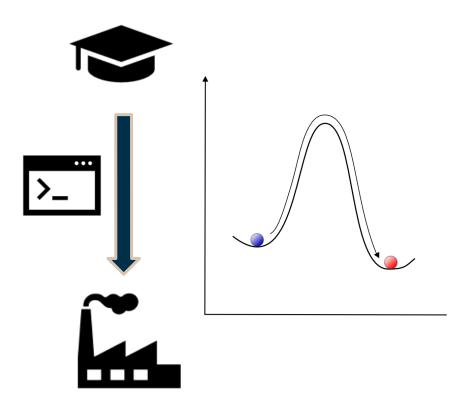
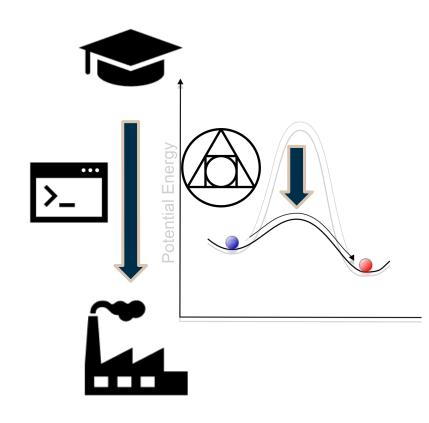

Open Free Energy: An open source ecosystem for alchemistry



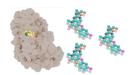
https://openfree.energy/

Problem: Gap between methods developed in academia and their application in industry


- Alchemical methods are successfully used in drug discovery projects
- Academia is continuously producing new methods for free energy calculations
- Academia is not incentivised to provide well tested & maintained tooling
 - "Lifetime of a postdoc" tooling
- Industry needs out of the box methods for large scale applications

The Open Free Energy project aims to bridge that gap

- Bridge the **application delivery** and **maintenance** gap
- reduce costs & duplication of efforts
- ensure a sustainable and competitive future for developed tools


Our vision is to create a decentralized ecosystem of interchangeable components

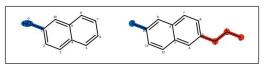
We are working with **academic groups** to enable their software to be compatible with this ecosystem.

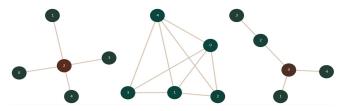
Benefits to them are: a) software engineering support in packaging/testing/performance b) visibility of their methods to a wider user base

OpenFE is leveraging different software tools and helps maintain software packages

Atom mappers

- LOMAP | Kartograf


Ligand networks:


- Radial | LOMAP | Minimal spanning tree

Different methods:

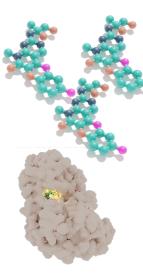
- OpenFF | GAFF
- OpenMM/Perses | OpenMM/ABFE

Your fancy new method?!

Easy free energy calculations

1. Plan the calculations

openfe plan-rbfe-network -m ligands.sdf -p protein.pdb


2. Run the calculations

openfe quickrun transformation -d ./ -o results/result.json

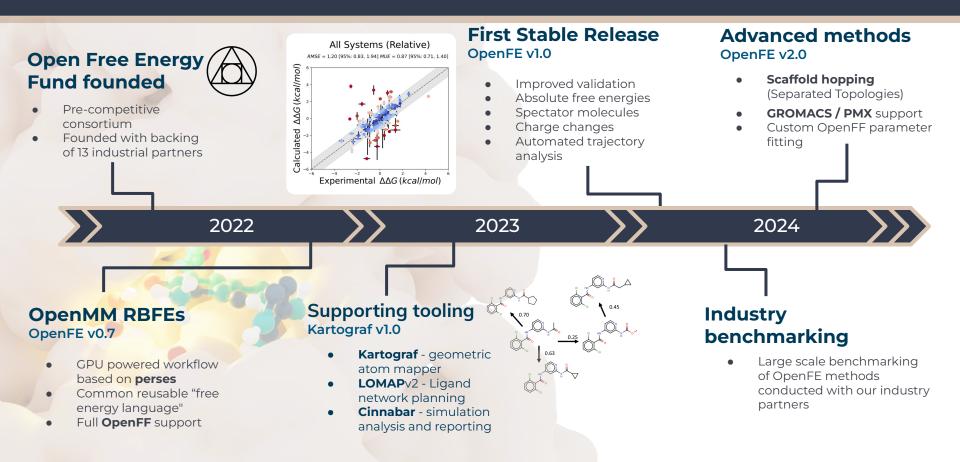
3. Analyze the calculations

openfe gather results/ -report dg -o final_results.csv

ligand	DG(MLE) (kcal/mol)	uncertainty (kcal/mol)
lig_ejm_31	0.05	0.05
lig_ejm_42	0.54	0.09
lig_ejm_46	-0.68	0.07
lig_ejm_47	0.1	0.1
lig_ejm_48	0.5	0.2
lig_ejm_50	0.98	0.08
lig_ejm_43	1.7	0.1
lig_jmc_23	-1.07	0.08
lig_jmc_27	-1.3	0.1
lig_jmc_28	-0.80	0.08

Customizable settings

1. Plan the calculations


openfeplan-rbfe-network -m ligands.sdf -p protein.pdb -s settings.yaml

settings.yaml

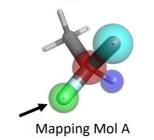
network: method: generate_radial_network settings: central_ligand: CHEMBL1078774

ligand	DG(MLE) (kcal/mol)	uncertainty (kcal/mol)
lig_ejm_31	0.05	0.05
lig_ejm_42	0.54	0.09
lig_ejm_46	-0.68	0.07
lig_ejm_47	0.1	0.1
lig_ejm_48	0.5	0.2
lig_ejm_50	0.98	0.08
lig_ejm_43	1.7	0.1
lig_jmc_23	-1.07	0.08
lig_jmc_27	-1.3	0.1
lig_jmc_28	-0.80	0.08

O Open Free Energy Roadmap

1. New tooling: Kartograf, a geometrically-accurate atom mapper

2. Benchmarking: Comparison of different ligand networks

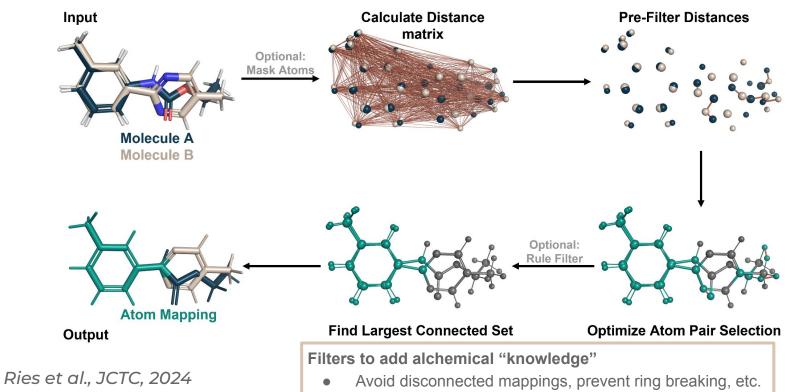


3. Exploring reproducibility problems: Partial charges

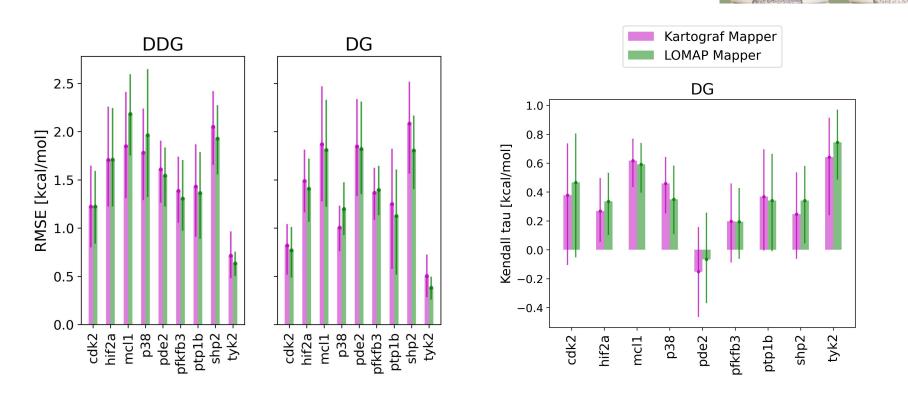
Atom mapping is a challenging problem

- MCS (2D) approaches can sometimes poorly handle things like stereochemistry
 - Manual inspections of mappings required → costly!
 - Need for better 3D aware mappers
- MCS algorithms can become very slow as the number of ligands becomes large
 - Need for faster algorithms

Ries et al., JCTC, 2024



Mapping Mol B

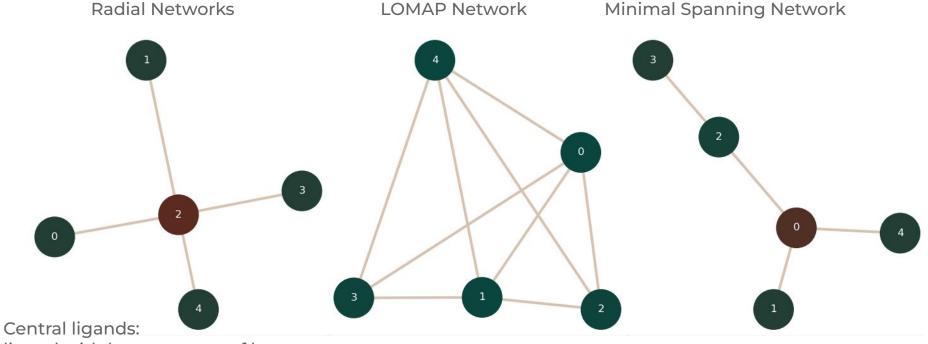

Structure overlay

Kartograf: geometrically accurate mappings

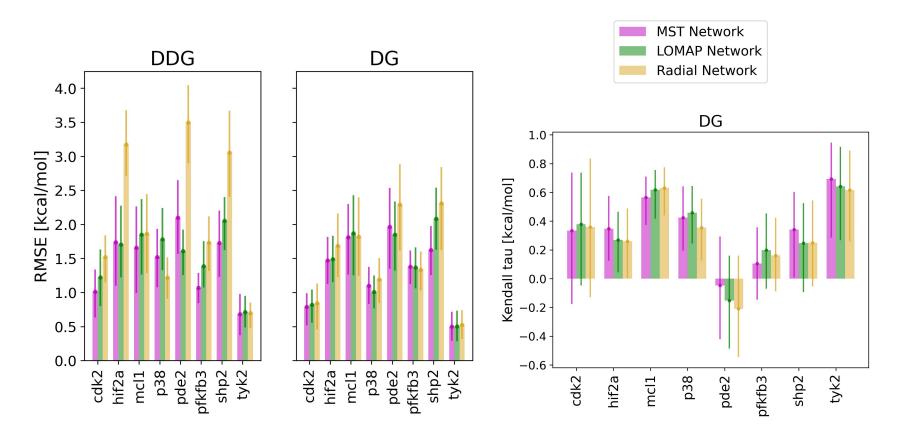
Benjamin Ries

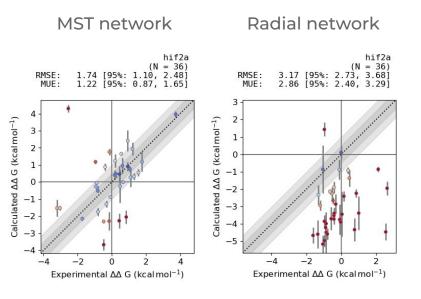
LOMAP and Kartograf atom mappers gave similar results for 9 systems

1. New tooling: Kartograf, a geometrically-accurate atom mapper

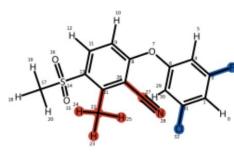

. Benchmarking: Comparison of different ligand networks

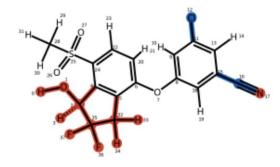
3. Exploring reproducibility problems: Partial charges


Benchmarking: Comparing different ligand networks



ligand with least amount of heavy atoms


MST and LOMAP networks gave comparable results, while radial networks performed poor on some systems



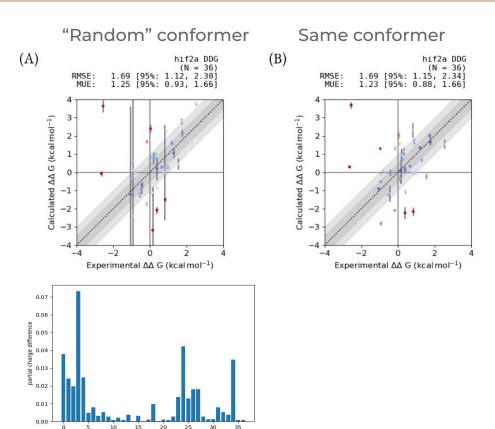
In some radial networks, transformation were very large, resulting in poor performance

Large transformations in the radial network

- Use as central ligand the ligand with highest similarity to all other ligands?
- Cluster ligands and run multiple radial networks

1. New tooling: Kartograf, a geometrically-accurate atom mapper

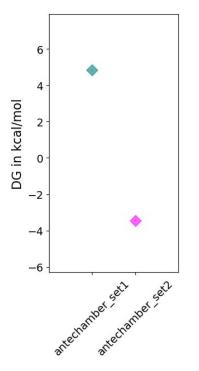
2. Benchmarking: Comparison of different ligand networks

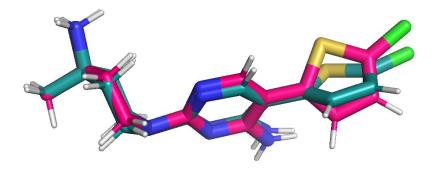

3. Exploring reproducibility problems: Partial charges

Partial charges impact free energies

- Partial charge generation known to be sensitive to input conformation
 - But how bad can small fluctuations really be?
- Default OpenFF Tk: pseudo-random conformer selection

Meghan Osato

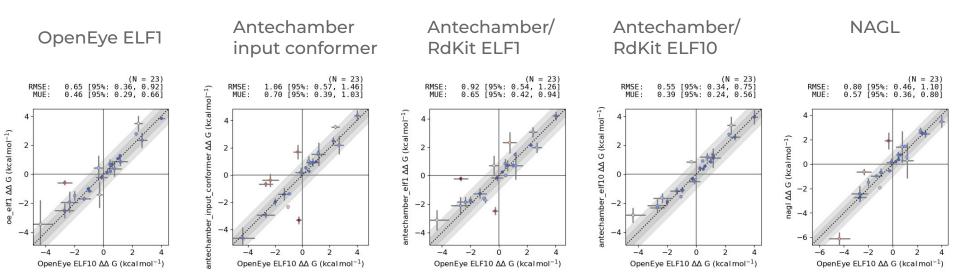



atom number

Using the same input conformer, antechamber can converge to different minima

Gas phase transformation ligand E3 \rightarrow ligand E4

SHP2 ligand E3: two different conformations from antechamber



Small change in float accuracy* leading to identification of different optimized conformation. *(down to choice of antechamber diagonalization routine)

With OpenFE, we can systematically compare different methods for partial charge generation

SHP2: Comparison of different partial charge methods **against OpenEye ELF10**

Getting Started:

- <u>https://docs.openfree.energy</u>
- Click "Installation"
- Next try "Tutorials"
- openfe fetch rbfe-tutorial

https://openfree.energy

OpenFE Documentation Installation Tutorials User Guide Cookbook

Installing openfe

When you install openfe through any of the methods described below, command line interface (CLI).

Installation with mambaforge (recommende

Some advertisement ...

Richard Gowers:

Distopia: A molecular geometry analysis MDAKit Poster Board #1828 08:00pm - 10:00pm EDT - March 19, 2024

James Eastwood: Open Force Field: Improving the accuracy and

applicability of open molecular models Poster Board #2041 08:00pm - 10:00pm EDT - March 19, 2024

Jenke Scheen:

ASAP Discovery: Open source structure-enabled drug discovery for pandemic preparedness 05:50pm - 06:15pm EDT - March 19, 2024

OpenFE team

- Irfan Alibay
- Richard Gowers
- Mike Henry
- Ben Ries
- James Eastwood
- David Swenson

OMSF, ASAP

- Jenke Scheen
- David Dotson
- Zachary Baker

Perses team

- Julie Behr
- Hannah Bruce Macdonald
- John Chodera
- Patrick Grinaway
- Mike Henry
- Iván Pulido
- Jaime Rodríguez-Guerra
- Dominic Rufa
- Ivy Zhang

Mobley lab

- Meghan Osato
- David Mobley

And many many more

This work was funded by the Open Free Energy fund, a pre-competitive consortium of 19 industrial partners.

Technical Advisory Committee

Oliver Beckstein - Arizona State University Phil Biggin - University of Oxford John Chodera - Memorial Sloan Kettering Zoe Cournia - Academy of Athens Peter Eastman - Stanford University Antonia Mey - University of Edinburgh Julien Michel - University of Edinburgh David Mobley - University of California, Irvine Bharath Ramsundar - Deep Forest Sciences Michael Shirts - University of Colorado Jonah Vilseck - Indiana University Emilio Gallicchio - The City University of New York Stefan Boresch - Universität Wien

