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ABSTRACT
Automatic human action recognition is a research topic that
has attracted significant attention lately, mainly due to the
advancements in sensing technologies and the improvements
in computational systems’ power. However, complexity in
human movements, input devices’ noise and person-specific
pattern variability impose a series of challenges that still
remain to be overcome. In the proposed work, a novel
human action recognition method using Microsoft Kinect
depth sensing technology is presented for handling the above
mentioned issues. Each action is represented as a basis vec-
tor and spectral analysis is performed on an affinity matrix
of new action feature vectors. Using simple kernel regres-
sors for computing the affinity matrix, complexity is reduced
and robust low-dimensional representations are achieved.
The proposed scheme loosens action detection accuracy de-
mands, while it can be extended for accommodating multiple
modalities, in a dynamic fashion.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—3D/stereo scene analysis; I.5.5 [Pattern Recog-
nition]: Implementation—Interactive Systems

General Terms
Algorithms, Human Factors, Design

Keywords
Action recognition, Gesture Recognition, Kinect data anal-
ysis

1. INTRODUCTION AND RELATED
WORKS

The Microsoft Kinect depth sensor has attracted a lot of
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attention, thanks to its ability to capture and release,
in real time, 2.5D data with registered RGB information.
Moreover, human motion can be easily extracted in the form
of moving skeletons [2]. Thanks to the above reasons, var-
ious methodologies have been proposed in recent bibliogra-
phy, in the area of human action recognition [7]. In the pro-
posed work, a novel, skeleton-based human action recogni-
tion method, is introduced. The framework approaches the
problem by taking into account constraints imposed by spon-
taneous environments, as well as high amounts of noise and
data, usually resulting into high complexity problems. In
particular, a low-dimensional representation of large dimen-
sionality feature vectors is utilized, by following a landmark-
based spectral analysis scheme. In this way, low-dimensional
subspaces, encoding valuable information, are built and new,
unknown actions are projected on them. Moreover, the em-
ployed features are of global character, modeling qualitative,
expressive characteristics and, thus, the ability of utilizing
the proposed system for loosening demands in accurate tem-
poral segmentations is also handled.

In recent literature, Dynamic Time Warping (DTW) [12]
is one of the most well-known schemes in human action anal-
ysis. One of the major advantages of the method is its ad-
justability to varying time lengths, but it usually requires
a very large number of training examples, as it is basically
a template matching technique. Models describing statisti-
cal dependencies have also been used extensively, mainly in
order to encode time-related dependencies. One of the clas-
sical approaches, in this vein, are the Hidden Markov Models
(HMMs) [6]. Authors in [14], propose a discriminative pa-
rameter learning method for hybrid dynamic network in hu-
man activity recognition. They showcase results on walking,
jogging, running, hand waving and hand clapping activities.
The probabilistic behavior of human motion-related features
has also been widely used through SVMs, which seek hyper-
planes in the feature space for separating data into classes.
Authors in [9] use non-linear SVMs for the task of recog-
nizing daily activities of small temporal length (answer the
phone, sit down/up, kiss, hug, get out of car). The output
of an Artificial Neural Network (ANN) can also be used for
modelling the probability P (y|x) of an activity y to occur,
given input feature vector x. Typical is the work in [4],
where the authors perform indoors action recognition, using
wearable and depth sensors. Using ANNs, special attention
should be paid to high complexity during training and over-
fitting. Classical classification schemes, such as k-Nearest
Neighbors (k-NNs) and binary trees have also been widely
used in the bibliography. The authors in [8] employ Dis-



crete Fourier Transform (DFT) as their representation and
feed the corresponding parameters to a k-NN. The main
drawback of these systems is that they are quite sensitive
to parameter fine tuning and tend to generalize poorly for
unknown subjects.

The rest of the paper is structured as follows: Section 2
provides the technical details of the proposed low-dimensional
embedding method, section 3 outlines the feature extraction
strategy, while section 4 presents experimental results. Sec-
tion 5 concludes the paper and describes future directions.

2. LANDMARK-BASED ACTION RECOG-
NITION

Based on the idea that similar, person-independent activ-
ities lay close to each other on a manifold space, a feature
vector xi∈Rm representing a certain action can be approx-
imated by the linear combination of representation vectors
zi∈Rk (k<<m) with a set of basis vectors lj∈Rm. A natu-
ral assumption is that basis vectors lj correspond to action-
specific descriptors, in an action recognition problem. Thus,
the problem becomes an optimization problem of minimiz-
ing ||X − LZ||, with X=[x1, ...,xn]∈Rm×n being a set of
n instances, L=[l1, ..., lk]∈Rm×k the table of feature vec-
tors of landmark-activities and Z=[z1, ..., zn]∈Rk×n the low-
dimensional representation of X.

A common approach of finding low-dimensional represen-
tations of data points xi∈Rm in a manifold space, is to
apply classical spectral clustering [13]. According to this
method, all n data vectors are compared to each other, us-
ing a distance metric, leading to the construction of the ad-
jacency matrix W=(wi,j)

n
i,j=1. From W , the degree ma-

trix D is built, which is a diagonal matrix whose elements
are the column (or row) sums of W . Subtracting W from
D gives the graph Laplacian matrix L, and the eigenvec-
tors corresponding to its k smallest eigenvalues are the low
(k)-dimensional representation of the initial dataset. How-
ever, large datasets lead to time consuming construction and
eigen-decomposition of the Laplacian. Moreover, real-time
action classification, using a spectral clustering scheme, re-
quires a per-frame unfolding of local submanifolds, as well
as the use of a pre-defined number of closest feature points
in it. We hereby make use of the idea introduced in [3] for
solving the optimization problem of finding low-dimensional
representations, taking advantage of basis vectors lj . In [3],
the authors introduce the idea of Large Scale Spectral Clus-
tering with Landmark-based representation (LSC). Instead
of finding point-to-point distances for constructing the ad-
jacency matrix, they make use of a small number of feature
(basis) vectors and the adjacency matrix is constructed by
them. According to this method, the n data points xi∈Rm

can be represented by linear combinations of k (k�n) rep-
resentative landmarks (basis vectors). This representation
can be used in the spectral embedding. The new representa-
tions are k-dimensional vectors bi∈Rk while the landmarks
are the result of random selection or a k-means algorithm.

In the proposed work, it is straightforward to extract land-
mark basis vectors, as feature vectors representing whole ac-
tions. Each of these k classes of a training dataset can con-
stitute a basis for building the landmark matrix L∈Rm×k.
Here, we consider each action-specific landmark as the aver-
age of the correspondingm-dimensional feature vectors. The
original data matrix X=[x1, ...,xn]∈Rm×n can be approxi-

mated by the product of L and the representation matrix
Z∈Rk×n as X≈LZ. Each element zji of the representation
matrix Z can be found as the output of a kernel function
kh(·) (here, we use the Laplacian Kernel) of feature vector
xi and landmark lj normalized with the sum of the corre-
sponding values for all landmark vectors:

zji =
e
−‖xi−lj‖

σ∑
j

e
−‖xi−lj‖

σ

(1)

with ‖ · ‖ being a vector distance metric, while σ is the
width of the kernel. Z represents the similarity values be-
tween data vectors and actions’ representative landmarks
and defines an undirected graph G = (V,E) with graph ma-

trix W = ẐT Ẑ, where:

Ẑ = D−1/2Z (2)

with D being a diagonal matrix whose elements are the
row sums of Z. Since each column of the representation
matrix sums up to 1, it is straightforward to check that the
degree matrix of W is the identity matrix. Consequently
[10], the eigenvectors of W are the same as those of the
corresponding Laplacian matrix.

Then, the eigenvectors A=[a1...ak]∈Rk×k and eigenval-

ues σ2
j of ẐẐT are calculated. It is obvious that σj are

the singular values of Ẑ and A consists of the left singular
vectors of Ẑ, found through singular value decomposition
(3), while B=[b1...bk]∈Rn×k are the eigenvectors of matrix

W = ẐT Ẑ. Each row of B is a low-dimensional representa-
tion of the original, high-dimensional feature vectors.

Ẑ = AΣBT (3)

Consequently, and since AT = A−1, B can be computed
directly from (3), as:

B = (Σ−1AT Ẑ)T (4)

Σ is a diagonal with elements σj , in decreasing order, and

A=[a1...ak]∈Rk×k are the eigenvectors of ẐẐT .

2.1 Classification of new instances
For classifying a new data instance x′ to an activity, the

elements z′j of the representation vector z′∈Rk defined by
the similarities between x′ and L = [l1...lk] is found as:

z′j =
e
−‖x’−lj‖

σ∑
j

e
−‖x’−lj‖

σ

(5)

The representation b′ of the new feature vector in the low
dimensional domain is given by:

b′ = Σ−1ATD−1/2z′ (6)

Classification result is given as the label C of the action
with low-dimensional representation matrix Ba (as calcu-
lated in training) that minimizes a distance metric d(·) from
b′:



C = argminad(b′, Ba) (7)

Thus, for new data vectors, no local sub-manifold unfold-
ing is necessary and, for inference, simple matrix operations
are needed. This is of great significance, since it allows for
real-time action recognition. Consequently, the proposed
method allows for online evaluation of whether the projec-
tion of extracted expressivity features over the course of an
action is close to the subspace classes of a trained model.

3. FEATURE EXTRACTION
Tracked skeletal joints used in this work refer to the head,

neck, shoulders, elbows, hands, torso, hips, knees, feet. Their
x, y, z positions are dependent on sensor position and us-
ing them directly would yield unreliable results. One in-
tuitive feature representation would be to consider a coor-
dinate system with origin on a body joint and re-calculate
all joints’ positions with reference to this. However, this
would impose a demand to a classifier that joints belonging
to different individuals follow the same path for reproducing
the same gestures. Thus, it is desired to consider features
that describe salient qualities of the actions, expected to
be uniform among different individuals or different action
reproductions. Moreover, the skeletal representation con-
sidered should be invariant to sensor’s position or subject’s
orientation, so that different actions can be recognized inde-
pendently of extrinsic parameters.

The authors in [11] propose a set of features, structured in
a hierarchical manner, by considering three separate sets of
body positions: Torso, first and second order joints. Based
on this scheme, they describe dance movements by a series of
19-dimensional vectors containing Tait-Bryan angular data.
This representation is appropriate for our proposed method-
ology since it fulfills our criteria while, at the same time,
it guarantees signal continuity and stability (e.g. feature
representation does not suffer from the gimbal lock effect).
In particular, joints belonging to the torso (neck, shoulders,
heaps and torso) can be used for the calculation of the overall
body orientation. For this, Principal Components Analysis
(PCA) is applied on the matrix composed of the correspond-
ing joints’ x, y, z positions. The first principal component
u has the same directionality with the longest dimension of
the torso, while, directionality r is directly calculated by the
shoulders’ position, and t is found as the cross product of
u and t. The above basis fully describes torso orientation.
Here, the average first derivative of the corresponding an-
gles is also considered, throughout the course of an action;
in this way, the feature representation is view-independent,
while qualitative measurements, related to body direction-
ality and speed of an action are captured.

The calculation of hierarchical features for the first-order
(elbow, knees) joints is made as follows: A spherical coor-
dinate system is defined at each parental joint (torso) with
u and r being the zenith and the azimuth axis, respectively.
The position of the child joint is described by radius R, in-
clination θ (the angle between u and the vector connecting
the two joints) and its azimuth φ, which is the angle be-
tween r and the projection of the child joint on the plane
whose normal is the u basis vector. In the second-order case
(hands, feet), the zenith axis becomes the vector b connect-
ing the parental joint (elbow, knee) with its adjacent torso
joint. Azimuth φ is calculated as the angle between the pro-

Figure 1: Example from the Huawei/3DLife Dataset
1 [1].

jection of r onto the plane S whose normal is b, rp and the
vector defined by the parental joint and the projection of
the second-order joint onto plane S. Inclination θ is the an-
gle between b and the vector defined by the second and the
first-order joints. As in [11], we ignored R, since it is fixed
for all joints. In our experiments, the relative differences
between successive values of the hierarchical features were
considered as feature representation, similar to the case of
the torso orientation, and time segments corresponding to
actions are described by the corresponding average values.

The average speed vj=(vjx, vjy, vjz) for all joints j, its
standard deviation, as well as the differences of speeds be-
tween the first and the second half of the duration of each
action were also employed as features modelling expressiv-
ity parameters [5]. The above feature representation leads
to 154-dimensional feature vectors for each action.

4. EXPERIMENTAL EVALUATION
In order to have its accuracy validated, the proposed method-

ology has been tested on the publicly available Huawei/3DLife
Dataset, Session 1 [1], in which 17 subjects participated,
each performing a set of 16 repetitive actions. These actions
are either sports-related activities, or involve some standard
movements (e.g. knocking on the door), as shown in Fig.
1. Each action was performed at least 5 times by each sub-
ject (apart from one person who performed 15 out of the 16
repetitive actions). Subjects’ motion was captured using a
series of depth sensors (Microsoft Kinect), while wearable
inertia sensors information is also available. In order not
to bias the parameters of the subspace vectors, the same
amount of actions (i.e., 5) was used for all users, during the
extraction of the training data.

Prior to training, all data were normalized between -1 and
1 and a leave-one-subject-out cross validation protocol was
followed. More specifically, for each user, a subset Strn of 11
different users was employed for training subspace parame-
ters for different kernel widths (1). The resulted parameters
were applied on validation data Sval of 5 users and the ker-
nel for which the highest accuracy for Sval was achieved,
was used for the user. Throughout all experiments, the Ma-
halanobis distance was employed for inferring the correct
classification labels in (7). Recognition accuracy, on all 16
repetitive actions of the dataset reaches a total of 83.6%.

In real life problems, different individuals perform the
same action at different durations or, many times, action
detection algorithms fail to accurately detect the exact time
boundaries of an action. To this aim, uncertainty was in-
troduced into the time an action is expected to be com-
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Figure 2: Average accuracy achieved on the
Huawei/3DLife Dataset 1, for different considera-
tions of action duration.

pleted, by shortening and extending it by a certain amount
of time. Representation features were considered for each
time segment T and classification followed, as previously.
In particular, for every representation b′t corresponding to
time t, its distances from every cluster of the trained model
were considered. The cluster and time that correspond to
the smallest distance (8) are considered as the final estimate
and duration of the action.

{C, t} = argmina,t∈T d(b′t, Ba) (8)

Figure 2 shows the system’s accuracy at estimating correct
actions when inserting uncertainty with respect to the time
an action is expected to be completed (as a percentage of
the real duration).

5. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this paper, we used action-dependent basis vectors for
projecting large-dimensionality feature vectors to low - di-
mensional spaces. An affinity matrix between feature vec-
tors and basis vector was constructed, instead of the full
adjacency matrix. Initial results showed that the method is
promising, even at discriminating between similar actions in
the dataset (e.g. knocking on the door versus hand waving
or throwing an object). Using features describing global ex-
pressivity showed the robustness of the system to varying
temporal boundaries of an action’s duration, achieving high
accuracy results when there exists fuzziness in the estimate
of the time an action is completed. Future work will cater for
different action styles among different individuals (or within
the same person), as sub-classes of an activity.Moreover,
multiple modalities, dynamically and adaptively weighted,
over the duration of an action, will be considered in the
representation matrix.
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