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The resources available to stakeholders managing disease epidemics across plant, animal and human systems are limited. Optimization
techniques can guide stakeholders on where and when these resources should be allocated to maximize their impact but different
optimisation approaches are demonstrated on different systems which makes it difficult determine the current state of the art for any
new system of interest. This limits both progress in the field and applicability for managers. We propose that a wider range of simple
heuristic controls should be considered as baselines for evaluation of more complex control approaches and the validity of the
optimisation assumptions should be tested when feasible. The utility of simple baselines is demonstrated with an example evaluating
continuous optimal control on a stochastic metapopulation model of geographical spread of a plant disease.

Baselines are important

Selecting baselines is difficult

“Baseline: A minimum or starting point used for comparisons.” [Oxford Languages]

If we want to demonstrate that a new
optimisation method represents
genuine progress in the field, direct
comparisons to older or simpler
algorithms are essential. In
computational fields such as
machine learning, a combination of
standard benchmarks, reference
baseline implementations of common
algorithms and open source code
have enabled rapid progress and
provided flagship results which
encourage adoption [1][2]. In
comparison, many papers optimising
epidemic control present no baseline
results or use a very simple baseline.
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The latest baseline for epidemic control is difficult to
determine because of the diversity of problems:

Many analytical solutions can be shown to be theoretically optimal
but this only holds when assumptions are met for the underlying
model and when simplifying approximations are sufficiently
accurate. Do the solutions still beat the baseline when subject to...
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Target system is a simple stochastic
metapopulation SIR model with spatial spread
across nodes in an nxn grid (shown for 2x2). The
control actions to be optimised are the rates
roguing and thinning and there is a limited
budget per year. Budget was set to be generous
such that eradication was possible. Management
goal was to maximise the integral number of
susceptible hosts over a fixed horizon..
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When eradication is
feasible, the
continuous optimal
control can be
outperformed by
simple prioritisation-
based baselines.
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The expected
behaviour removes all
infected hosts and no
further control is
required. In the
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removing “just enough”
leaves infected hosts
in a significant
proportion of
simulations
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