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151 Boulevard de l’Hôpital, 75013, Paris, France

e-mail: daniele.dilorenzo@esi-group.com

Abstract. To ensure the proper functioning of a structure, a monitoring during its life cycle
is necessary, with the objective of detecting in time any possible anomalies or damage of the
structure. To accomplish this, high fidelity numerical models that correctly capture the physics
of the system should be developed, so that this model can be further used to achieve a desired
design goal, as well as to ensure the longevity of the structure. However, the complexity of real
phenomena often makes it impossible for physics-based models to deliver a correct prediction
of reality, which limits their use. To overcome this limitation, one solution consists in building
a model based on experimental data to ensure correct predictability. Nevertheless, this imposes
technical limitations, since obtaining data is often scarce due to limited number of sensors or
high costs of experimental campaigns. In this context, hybrid twins emerge as an attractive
solution to this problem. Hybrid twins consists in enriching a physics-based model by building
an ignorance model, which corrects the predictions of the numerical model. This allows to
build a representative model of reality by using a limited number of sensors, since the global
behavior of the system is reproduced by the physical model, making the ignorance model to
be constructed in a coarse way. In this sense, the present work shows the implementation
of a hybrid twin, applied to the monitoring of a structure using Structural Health Monitoring
techniques. The performance of the developed hybrid twin is tested on synthetic data, where
the hybrid twin built from a simplified physics-based model allows to correct the latter and can
be used later to accurately predict damage location on a more complex structure.
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1 Introduction

In recent years, Structural Health Monitoring (SHM) has proven its effectiveness in monitoring
structures for localized damage detection. This technique consists in using the information of
the gap between an undamaged and a damaged response of the structure to identify where the
damage is located. The undamaged response is predicted by a physics-based model, involv-
ing the use of well-known techniques such as the Finite Element Method (FEM) [1], Finite
Difference Method [2], to best capture the actual phenomena under study. SHM works very
well, however a limitation of this method consists in the fact that the numerical model used to
simulate the undamaged system must be very well calibrated, if not, numerical errors in the
identification can appears.

To reduce these errors, data-based models built using machine learning [3] or deep learning
techniques [4], are used. These data-based models are denoted as digital twins, making possible
to approximate a real process and also gives real-time predictions in function of a parameter set.
However, its implementation requires large amount of data for their construction, something not
always possible in real-life, especially when experiment realizations are expensive.

For this reason, a new twin have been proposed in [5], the hybrid twin. The main idea con-
sists in using the fact that the physics-based model even if it doesn’t fit the real phenomena, it
captures most of the physics and behavior of it, making possible to enrich it by the use of an
ignorance model built using measured data. This allows the hybrid twin to gives close predic-
tions of a real phenomena by using less amount of measured data [6, 7, 8], since the enrichment
can be constructed in a coarse way, which is one of the key advantages of this technique. In
details, the main idea consists in first fitting the physics-based model with respect to the data
measured by sensors, allowing the numerical simulation to best predict the experience, such
that the difference between the numerical predictions and reality is as coarse as possible. To
next build a parametric regression of the ignorance model once some experimental realization
are performed. One of the limitation for the construction of the hybrid twin is the fact that this
model must be constructed and enriched “on the fly”, and for this purpose the numerical model
employed must give feedback in real-time for any parametric set.

This last is one of the big limitation in the context of SHM, especially when dealing with dy-
namics problems, since the computation of the dynamic response of the physic-based model
can be very costly, even more, when large number of parameters are considered. Due to the
reasons mentioned above, this paper propose at first, a solver able to compute at low-cost this
response called here harmonic-hybrid algorithm, secondly a parametric model of this physics-
based model is constructed using the model-order reduction technique sPGD when considering
as parameters the location of the damage. The parametric approximation is able to predict
in real-time the system’s response for any set of these parameters, which allows further de-
velopments in order to enrich this model under real-time constraints, following a hybrid twin
methodology. Once the hybrid twin is built, efficient deep learning techniques are used along
this twin to be able to later predict damage location in the real structure by considering then as
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input only experimental data.

The present paper is structured as follows, first, Section 2 introduces the reference problem con-
sidered in this work. Section 3 introduces the harmonic-hybrid algorithm that helps to reduce
simulations costs. Following Section 4 presents the construction of the hybrid twin, which main
objective consists in construct a model that gives close predictions with respect to a real pro-
cess. Section 5 introduces the deep learning architecture applied to the hybrid twin to construct a
surrogate model able to predict damage location using experimental data. In the following, Sec-
tion 6 introduces a numerical example that illustrate the performance of the proposed method.
Finally Section 7 gives conclusions and perspectives.

2 Reference problem

Let us consider a domain Ω ⊂ Rl with l ∈ {1, 2, 3}, on a time domain I = [0, T ] and with
constant boundary ∂Ω = ∂NΩ⊕∂DΩ over time, where ∂NΩ and ∂DΩ are the boundaries related
to the imposed Neumann and Dirichlet conditions respectively. This structure is submitted to
surface forces fN on ∂NΩ × I (Neumann boundary conditions), to imposed displacements uD

on ∂DΩ × I (Dirichlet boundary condition) and to volumetric forces ρf on Ω × I , where one
considers the hypothesis of small deformations.

Ω

fN

uD

ρf

|

0
|

TI

Figure 1: Mechanical domain under study.

The reference problem consists in finding a displacement field u(x, t) ∈ U and a stress field
σ(x, t) ∈ F verifying:

• Initial conditions:

on Ω,
u|t=0 = u0

u̇|t=0 = u̇0

(1a)

• Dynamic equilibrium equation:

on Ω× I, ρü = div(σ) + ρf (1b)
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• Neumann and Dirichlet boundary conditions:

on ∂NΩ× I, σ · n = fN (1c)

on ∂DΩ× I, u = uD (1d)

• Constitutive relations:

Since one considers small deformations the strain tensor is given as ε(u) = 1
2

(
∇u+∇uT

)
(where (•)T denotes the transpose of •). In this paper one focus on a localized damage,
therefore one has Ω = Ωund ∪ Ωdam, where Ωund denotes the domain that is not damaged and
Ωdam the domain where it exists damage respectively. From the above, the domain without
damaged verifies a classic Hooke’s linear constitutive relation while on the damaged zone one
represent the damage as a scalar value d ∈ [0, 1], which simulate the loss of rigidity on the
damaged zone. In this sense, one has:

σ(x) = K : ε(x) ∀x ∈ Ωund

σ(x) = (1− d)K : ε(x) ∀x ∈ Ωdam
(1e)

with K the undamaged fourth order Hooke’s tensor. Additionally, in the present work different
parameters are considered in order to present a general framework. For instance, parameters
related to the structure ν, parameters related to the external loading µ and parameters related to
the damage location denoted χ.

In order to mathematically formalize the presented reference problem, the following Section
2.1 presents the necessary formulations for its resolution.

2.1 Governing Equations

In order to solve the reference problem introduced in Section 1, the Finite Element Method
(FEM) [1] is applied to its weak formulation, where the semi-discretized equation given below
is obtained:

M (χ) ü(µ, χ; t) +D(χ) u̇(µ, χ; t) +K (χ)u(µ, χ; t) = F (µ; t) (2)

where u(µ, χ; t) represents the nodal values of the displacement for time instant t, M (χ),
D(χ), K (χ) and F (µ; t) corresponds to the mass, damping, stiffness matrices and vector of
external imposed forces respectively. Here a Rayleigh damping is used, i.e D = αM + βK ,
where α and β are constants that must be chosen appropriately in function of the material
considered.

Equation (2), which is written in space-time, can also be treated in the space-frequency domain
by applying a Fourier transform, giving:[

−ω2M (χ) + iωD(χ) +K (χ)
]
û(µ, χ;ω) = F̂ (µ;ω) (3)
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where we denote û(µ, χ;ω) = F(u(µ, χ; t)) the Fourier transformation in time of the nodal
displacements.

The direct resolution of (2) or (3) can be very costly especially if the number of spatial DOFs
is large, even more, this computational effort is exacerbated if a parametric resolution must be
performed. To overcome this limitation, a new resolution technique is proposed in this paper.
This technique is presented in the following Section.

3 Low-cost solver in dynamics: a modal-harmonic frequency approach

If one considers the presence of localized damage in the structure, equation (3) can be rewritten
as follows:[
−ω2

(
M̃ +∆M (χ)

)
+ iω

(
D̃ +∆D(χ)

)
+
(
K̃ +∆K (χ)

)]
û(µ, χ;ω) = F̂ (µ;ω) (4)

where M̃ , D̃ and K̃ denotes the undamaged mass, damping and stiffness matrices respectively,
in addition one defines ∆M (χ), ∆D(χ) and ∆K (χ) the corrective matrices that must be added
in order to take into account the localized damage.

The proposed technique of resolution to reduce computational costs is performed on three prin-
cipal steps: (i) a regularized solution ûreg is computed, whose objective consists in verifying
the imposition of external charges, (ii) a modal-base approximation ûdyn is determined which
allows to approximately catch the dynamic behavior of the system at low-cost and (iii) an intru-
sive PGD solution ûPGD(µ, χ;ω) which allows to finally correct and reach the desired solution.
This can be mathematically expressed as follows:

û(µ, χ;ω) ≈ ûreg(µ;ω) + ûdyn(µ, χ;ω) + ûPGD(µ, χ;ω) (5)

where each term is computed one after the other. In the following lines, the determination of
each term is presented.

• Regularization solution:

Since the regularization solution exists to verify the external loads on the structure, it is therefore
determined by solving:

K̃ ûreg(µ;ω) = F̂ (µ;ω) (6)

which corresponds to a quasi-static problem. By using an intrusive approach of the PGD, the
resolution of (6) can be obtain at low-cost, where the solution can be approximated as follows:

ûreg(µ;ω) ≈ Ψ φ(µ;ω) (7)

with Ψ = [ψ
1
, ...,ψ

m
] and φ(µ;ω) = [φ1(µ;ω), ..., φm(µ;ω)]

T the discretized spatial and
frequency PGD functions respectively, with m the number of PGD modes of the decomposition.

• Modal-base solution:
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On the other hand, the dynamic counterpart is approximated as best as possible using the modal
basis of the undamaged structure, such as:

ûdyn(µ, χ;ω) ≈ Φ ξ(µ, χ;ω) (8)

with Φ = [ϕ
1
, ...,ϕ

mdyn
] and ξ(µ, χ;ω) = [ξ1(µ, χ;ω), ..., ξmdyn

(µ, χ;ω)]T the discretized
spatial modal functions and the modal variables in frequency respectively, where mdyn denotes
the number of modal basis modes considered. This approximation is valid for the cases where a
localized damage is considered, such as the damage doesn’t influence as much the modal basis
of the structure. This approach is considered due to its advantages in reducing numerical costs
as will be seen below. By using expression (6) in (4) one obtains:[
−ω2

(
M̃ +∆M (χ)

)
+ iω

(
D̃ +∆D(χ)

)
+
(
K̃ +∆K (χ)

)]
ûdyn(µ, χ;ω) = Ĝ(µ, χ;ω)

(9)
with:

Ĝ(µ, χ;ω) = −
[
−ω2M (χ) + iωD(χ) + ∆K (χ)

]
ûreg(µ;ω) (10)

Now by using the approximation (8) of the dynamic term, and by projecting the equilibrium
equation by ΦT , one obtains:[

−ω2
(
m +∆m(χ)

)
+ iω

(
d +∆d(χ)

)
+
(
k +∆k(χ)

)]
ξ(µ, χ;ω) = f̄ (µ;ω) (11)

with:

f̄ (µ;ω) = ΦT F̄ (µ;ω) ; m = ΦTM̃ Φ ; d = ΦT D̃ Φ ; k = ΦT K̃ Φ

and:

∆m(χ) = ΦT∆M (χ)Φ ; ∆d(χ) = ΦT∆D(χ)Φ ; ∆k(χ) = ΦT∆K (χ)Φ

By rearranging the terms of (11), one obtains:[
−ω2m + iωd + k

]
ξn(µ, χ;ω) = f̄ (µ;ω)−

[
−ω2∆m(χ) + iω∆d(χ) + ∆k(χ)

]
ξn−1(µ, χ;ω)

(12)
where “n” denotes the index of the iterative procedure. The resolution stops until we reach a
certain threshold of an indicator ϵ expressed as:

ϵ =
∥∥ξn − ξn−1

∥∥ / ∥∥ξn−1
∥∥ (13)

The main advantage of the above formulation is that matrices m , d and k are diagonal, there-
fore the resolution of (12) is complete decoupled for each modal-basis mode, drastically reduc-
ing in this sense the computational times for its resolution.

• Intrusive PGD solution:
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Once the procedure stops, a good approximation of the solution is obtained, however, since
a fixed modal-basis computed from the undamaged structure is considered, the quality of the
solution can have some errors due to this approximation. In this sense, a last step is applied,
which consists on an intrusive PGD in order to ensure the quality of the final solution. Since the
use of the fixed modal-basis capture most of the solution, the additional number of PGD modes
added at the end are few. This problem can therefore be formulated as follows:[

−ω2M (χ) + iωD(χ) +K (χ)
]
ûPGD(µ, χ;ω) = Ĥ (µ, χ;ω) (14)

where:

Ĥ (µ, χ;ω) = −
[
−ω2M (χ) + iωD(χ) +K (χ)

] (
ûreg(µ;ω) + ûdyn(µ, χ;ω)

)
(15)

The details of the determination of this solution are not presented in this paper for the seek of
simplicity, however, the reader can refer to [9] for technical details.

Once û(µ, χ;ω) is computed following (5), its temporal counterpart u(µ, χ; t) is simply deter-
mined by an inverse FFT. This temporal response is the capital information used all along the
present paper.

4 Hybrid twin applied to SHM

As explained in the introductory Section, the objective of hybrid twins consists in enriching a
physics-based model using measured data. In the context of this work, the hybrid twin is used
for two principal objectives: (i) improving the prediction of deformation on sensor position,
in order to be the closest possible to the real process, and (ii) to use its predictions to build a
surrogate model in order to be able to predict a posteriori the damage location of the real process
using as input measured data.

To do so, the hybrid twin construction is separated into two steps, the first consists in the
parametrization of the physics-based model, which is further used to fit it with respect to the
measured data. Later, the ignorance model is built using measured data, in where both the
physics-based and ignorance model are sum up to gives the hybrid twin, whose aims consists in
giving accurate predictions with respect to reality, this is:

Real process ≈ Hybrid twin = Physics-based + Ignorance model (16)

The parameterization of the physics-based model is presented in Section 4.1 and the construc-
tion of the ignorance model in Section 4.2.

4.1 Real-time prediction of the physics-based model over a parametric domain

The algorithm presented in this section has the great advantage of being able to predict a dy-
namic response of the structure for any parameter considered at low-cost, or in real-time. This
property is of utmost importance as mentioned in the introductory Section in order to implement
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a robust hybrid twin, specially in the sense of model fitting, capital for the construction of the
ignorance model introduced in Section 4.2. The idea consists in building a parametric model
of the dynamic response on selected sensors in the structure. To do so, here the sparse Proper
Generalized Decomposition (sPGD) [10, 11] is considered, which allows to interpolate the re-
sponse over a parametric domain in a separate variable multiplication format. In this sense, the
sPGD approximation of the deformation tensor on sensor i is defined as follows:

ε[i](ν, µ, χ) ≈ ε[i]
mi
(ν, µ, χ) =

mi∑
k=1

[
nν∏
j=1

Xk,i
j (νj)

][
nµ∏
j=1

Y k,i
j (µj)

][
nχ∏
j=1

Zk,i
j (χj)

]
(17)

where mi denotes the number of PGD modes of the decomposition [9]. In addition, nµ, nν

and nχ denotes a general number of parameters related to material properties of the structure,
parameters related to the applied external force and parameters related to damage respectively.

4.2 Construction of the ignorance model

Here, the ignorance model is constructed. The first step for its construction consists in fitting an
undamaged structure against the parametric physics-based model when considering no damage
and where the parameters related to the external force are known (i.e amplitude of the force,
frequency content, etc). This, in order to obtain the material parameters that best approximate
the measured response and the real process. This inverse analysis is performed using the Lev-
enberg–Marquardt algorithm [12, 13]. This procedure is expressed mathematically as follows:

{ν̂} = arg min
{ν}

Nsensors∑
i=1

[
ε[i]

mes
− ε[i]

mi
(ν)

ε[i]
mes

]2

(18)

where ε[i]
mes

denotes the strain tensor measured at sensor i. Let us note in (18) that the dependence
of ε[i]

mi
on µ and χ is removed, because these parameters are not considered for the minimization

problem.

Once some experiment realizations are performed, where damage location of the experience is
known, the information of the gap between the physics-based prediction strain and the measure-
ments is stored, which is given by:

∆ε[i](ν̂, χ̂) = ε[i]
mes

(χ̂)︸ ︷︷ ︸
Measurement

− ε[i]
mi
(ν̂, χ̂)︸ ︷︷ ︸

sPGD

(19)

Once a sufficient amount of data have been collected, the ignorance model is interpolated along
the parametric space corresponding to the damage location. The reader may note that these
points are potentially unstructured in nature. In this sense, here the sPGD is again considered
for the construction of the ignorance model due to its robustness in providing an accurate pre-
diction. Therefore one defines the interpolation of the ignorance ∆ε[i]

m̃i
(ν̂, χ) following a similar
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approximation as (17), such as:

∆ε[i](ν̂, χ) ≈ ∆ε[i]
m̃i
(ν̂, χ) (20)

where for this case m̃i corresponds to the number of modes considered for the sPGD approxi-
mation of the ignorance corresponding to sensor i. From all the above, the hybrid twin is simply
constructed by adding the contribution of the physics-based model (17) and ignorance model
(20), giving:

ε[i]
HT
(χ) = ε[i],mi

ph
(ν, µ, χ)︸ ︷︷ ︸

physics-based

+ ∆ε[i]
ig
(ν̂, χ)︸ ︷︷ ︸

ignorance model

(21)

5 Identification of damage location using the hybrid twin and deep learning techniques

Here, the main idea consists in determining the localized damage properties, which here corre-
sponds to damage location. These parameters can be determined using any inverse technique,
however, in order to perform high efficient identification of these parameters, in this work one
considers a Deep Learning approach consisting on a feedfordward neural network. As input
for the NN one considered the difference between an undamaged and damaged response of the
total deformation. Here the strain comming from the undamaged structure (ε

und
(t)) could come

from the physics-based model when considering no damage or a direct measure and the strain
corresponding to the damaged structure comes from the hybrid twin (ε

HT
(χ; t)), such as:

∆ε(µ, χ; t) = ε
und

(t)− ε
HT
(χ; t) (22)

and as output one considers the damage location χ. The hidden layers considers hyperbolic
tangent as activation functions and linear activation function at the output layer [4]. The quantity
of hidden layers depends on the problem to be tested. In this sense, for the identification of
damage location one considers the following neural network mapping NN(·):

NN(∆ε(µ, χ; t)) → χ
pred

(23)

where χ
pred

denotes the prediction of the NN, such as χ
pred

≈ χ.

Remark: It should be noted that experimentally it is not always possible to measure all com-
ponents of the strain tensor, so here the term ∆ε(µ, χ; t) denotes only the information of the
experimentally available components.

6 Numerical example

The numerical test considered here consists on a rectangular plate, on which a time-dependent
point force is imposed as illustrated in Figure 2a, in addition to the above, a sensor arrangement
as shown in Figure 2b is considered. The plate is modeled under a plane stress condition. The
dimensions of the plate are d1 = 1 [m] ; d2 = 2 [m]. For the sake of simplicity no parameters
for the loading term are considered, however, its consideration can be taken into account without
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x

y

f(t;µ)

f(t;µ)

Sensors

Damage zone

χ = (x̄, ȳ)

d1

d2

(a) (b)

Figure 2: Illustration of the reference problem (2a) and sensor distribution considered (2b)
where the sensors are represented by red dots.

(a) (b)

Figure 3: External force f(t) considered (3a) and representation of the localized damage by red
elements (3b).

difficulty. The applied force is defined as a combination of sinusoids at different frequencies,
the time evolution of the force is illustrated in Figure 3a. Localized damage is also considered in
the structure, with a unique severity d = 0.9. The damaged zones in the structure are introduced
as groups of finite elements of the mesh, as represented in Figure 3b.

In order to test the hybrid twin methodology presented in this work, one considers a physics-
based model consisting on an isotropic structure, while an anisotropic structure is considered for
the synthetic “real experience”. After the construction of the hybrid twin by using a total of 50
experimental realizations, the strain tensor of the real process is approximated following (21).
With this information, the damage detection algorithm of Section 5 is applied, obtaining the
results presented in Figures 4a and 4b for the prediction of the x and y location of the damage,
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where 17[%] error of prediction is achieved.

(a) (b)

Figure 4: Prediction versus reference for the x coordinate of the damage location (4a) and y
coordinate (4b).

7 Conclusions and perspectives

This paper shows the implementation of a hybrid twin applied to the Structural Health Moni-
toring technique when dealing with structures dynamics problems. The main idea of the hybrid
twin consists in approximating a real process throw the use of a physics-based model enriched
with measured data throw the use of an ignorance model. The physics-based simulations are
obtain by means of a hybrid-harmonic technique, which allows to decrease the computational
burden associated to the resolution of the dynamic response, making possible the perform of
parametric studies at low-cost. Later a parametric model is built by applying model-order re-
duction technique sparse-Proper Generalized Decomposition (sPGD). The ignorance model is
also built after some experimental realizations are perform by using the sPGD.

Here the hybrid twin is applied to a structure in dynamics in order to delivers accurate strains
predictions, which are later used to built a surrogate model throw the use of deep learning
techniques able to predict damage localization in the structure. Such as this surrogate model
can be later used to predict damage location in the structure only using measured data of the
real process. The principal objective of building a surrogate model throw the use of a hybrid
twin is to reduce the number of experimental realizations, which in general are limited due to
costly experimental campaigns.

As a perspective, the introduction of more optimized deep learning techniques than the one used
in this work is considered to improve the prediction of damage localization.
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