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Abstract. In the present study a digital twin-based methodology for Structural Health Monitor-
ing (SHM) of composite stiffened panels is developed. More specifically, beyond damage de-
tection and localization, the quantification of damage is determined based on relevant damaged
training data provided by a numerical campaign. Parametric finite element models with distinct
damage morphologies, i.e. skin-to-stringer delaminations, are generated based on a Latin hy-
percube sampling plan. The above sampling plan generates an adequate amount of simulated
strain data capable of establishing a relation among the damage characteristics, i.e. damage
size and location, and the longitudinal strain at specific sensing locations. Hence, Gaussian
process (GP) surrogate models are trained with the numerically generated data and their hy-
perparameters are determined via Bayesian optimization. The damage quantification is treated
as a minimization problem, the solution of which is obtained via a global optimization itera-
tive procedure. The methodology is assessed utilizing a single-stringer composite panel with a
rectangle skin/stringer artificial delamination. Compressive loads are applied on the panel and
longitudinal static strains are received by permanently fiber Bragg grating sensors affixed onto
the stringer feet. The pre-trained GP models are fed with experimental strains during testing
and in turn yield the damage characteristics of the delamination. The methodology is also ap-
plicable to unknown load conditions as it predicts the load acting on the panel on the first SHM
levels. Promising results are obtained, empowering the viewpoint of the proposed methodol-
ogy which aims to harness the contemporary capabilities of numerical models toward real-time
damage diagnosis on complicated structures.
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1 INTRODUCTION

Over the last decade the prominent digital twin (DT) concept emerges rapidly, and intensive
research around this topic is being developed. The concept is adapted by a vast range of engi-
neering areas, e.g. manufacturing, mechanical, aerospace, civil, energy and other [1, 2, 3]. A
comprehensive review paper has been recently published which encompasses the wide range of
twinning enabling technologies [4]. The origins of the DT are found in the aerospace section
where initially the term was introduced [5, 6]. Concretely, the DT may be defined as a digital
replica of a physical asset that is capable of mimicking the behavior of the latter, based on real-
time data received by the physical counterpart. The role of the DT is to mirror the response of
the physical asset relying on uninformative data received during operational conditions. Having
readily available a DT enables great benefits which are related to aspects such as product devel-
opment, performance and health monitoring of the physical asset or predictive capabilities, e.g.
remaining useful life estimation.

Advanced numerical modeling provides a favorable solution in DT development, as com-
plicated systems/structures can be numerically analyzed, e.g. finite element (FE) analysis, in
cases that analytical solutions are painful to derive. For example, modern aerospace struc-
tures are characterized by their complicated nature of damage development under operational
conditions, especially for composite materials. These structures are profoundly known for the
damage-tolerant capabilities they are providing [7]. However, it is of paramount importance
to early detect and monitor the propagation of crucial structural damage in critical areas of
the structure in order to avoid sudden failure. The DT may assist the critical tasks of Structural
Health Monitoring (SHM) which are further subdivided into (1) diagnostics and (2) prognostics.
Diagnostics tasks are determined to detect, localize and quantify damage [8], whilst prognostics
are designated to estimate the remaining useful life [9, 10].

Machine learning techniques are utilized to alleviate extensive numerical campaigns by offer-
ing great interpolation opportunities via surrogate models [11]. A common approach to acquire
training data for the surrogate models is by directly receiving experimental measurements from
the subject physical asset while operating [12]. On the other hand, leveraging on numerical
models to produce the relevant training data is an alternative; numerical models are used to
generate the training dataset of the surrogate models that would be utilized to perform SHM
strategies [13, 14]. The data generation and training of the surrogates are frequently conducted
offline whilst the diagnostic actions are being implemented during the online stage. The DT
concept via surrogate modeling is based on the idea to utilize the trained surrogate model(s)
and perform diagnostic actions during operation by constantly receiving data from the physical
counterpart [15, 16]. A variety of methodologies on DT-based damage quantification can be
find in the literature, distinguished among each other depending on the nature of the measured
data, e.g. strains [17], guided waves [18], acoustic emission [19] etc., the type of surrogate
models or the damaged dataset source.
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Figure 1: Digital twin concept

2 METHODOLOGY OUTLOOK

The concept herein relies on the quantification of typical skin-to-stringer disbonds existing at
composite stiffened panels. The disbond area and location are estimated by utilizing real-time
experimental strains placed along the stringer feet. To achieve this, a validated parametric FE
model is utilized to generate relevant disbond morphologies out of which strains are estimated
at the corresponding locations where the strain sensors are placed. The generated simulated
strains are then used to train surrogate Gaussian Process models (GPs) in order to establish
a relation among the disbond characteristics, i.e. disbond location and length, with the axial
strains at the sensing locations. Then, an inverse estimation is of the disbond characteristics is
followed via a global optimization procedure.

The DT concept is thus divided into two stages, as shown in Figure 1; the offline stage during
which the parametric FE model generates a strain databank that will be training the surrogate
models. The offline stage will constitute the digital counterpart of the physical stiffened panel
which will be feeding strains, during the online stage, to the optimization scheme in order to
quantify the disbond area and location. The methodology also takes into account the variability
on the compressive load applied to the panel by performing load identification prior to the
disbond quantification [20, 21].

3 DIGITAL TWIN DEVELOPMENT

3.1 Parametric finite element model

The numerical campaign is designed utilizing a previously developed and validated FE model
of a single-stringer panel (SSP) subject to quasi-static compressive loads [22]. The SSP operates
both on a linear as well as a nonlinear post-buckling regime. The panel consists of a flat com-
posite skin co-bonded with a T-stringer in the middle area of the skin. At both ends, the SSP is
encased within epoxy cast-tabs to facilitate the load introduction. The details of the composite
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Figure 2: a) Parametric FE model with sensing locations and b) LH sampling plan

SSP, such as stacking sequence and material properties, are provided in section “Experimental
Evaluation”.

Commercial FE package ABAQUS/CAE 2021TM was used to perform the nonlinear static
analysis. The bonded cross-sections between skin/stringer/cast-tabs are connected using tie
constraints. Continuum shell elements with reduced integration (SC8R) were selected for the
composite parts whereas the cast tabs were discretized with three-dimensional brick elements
with reduced integration scheme (C3D8R). Displacement-control boundary conditions are ap-
plied in the SSP, with the bottom surface of the cast-tab having all its degrees of freedom fixed
whilst the nodes of the top cast-tab surface have only the longitudinal displacement degree
of freedom unrestricted. The strains derive after performing a two-step analysis to obtain the
solution. The first part consists of linear (perturbation) buckling analysis which assists the im-
minent nonlinear buckling analysis utilizing Newton-Raphson solver with large displacement
formulation enabled.

Discrete disbond morphologies are created to generate the training data for the surrogate
models. Rectangle disbonds placed amidst the skin/stringer surface are developed by eliminat-
ing the kinematic restrictions among the kissing nodes of the skin/stringer surface. The two
main parameters of the disbonds are depicted in Figure 2, i.e. the location of the disbond cen-
tral axis (a) and the disbond size (d) along the longitudinal directions. In our study, the width
of the disbond is maintained constant, relying on the observation that skin/stringer interfacial
disbonds are mainly propagating along the longitudinal direction. This assumption allows the
reduction of design space dimensionality and alleviates the numerical campaign from further
computational burden. The disbond morphologies are defined by a Latin Hypercube (LH) sam-
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Figure 3: Simulated strain distribution along longitudinal direction with the presence of a 30x30 mm2 disbond.
Solid red square and circle markers indicate experimental strains from a damaged panel [21]

pling plan, as shown in Figure 2b, to endow space-filling capabilities to the training points and
reduce the curse of dimensionality phenomenon. In total, 250 models have been constructed
with a ∈ [190, 220] and d ∈ [20, 80] with respect to the coordinate system in Figure 2a. The
parametric FE model was developed utilizing PythonTM scripting to amend the disbond param-
eters according to the sampling plan.

3.2 Damaged strain data generation

The presence of skin/stringer delamination is captured by acquiring strain data from the sens-
ing points S1-S4. Each disbond morphology develops a specific strain signature, as presented
in Figure 3, which is also affected by the load magnitude (P ) [23, 24]. As far there is an suffi-
cient amount of data to associate the disbond parameters with the output strain , as estimated by
the FE analysis, we will be able to construct substitute surrogate models, M̃Si

, that would be
deriving the longitudinal strain at each sensing location based on the provided input, i.e. a, d, P .

3.3 Surrogate modeling

The DT concept in enabled via utilizing surrogate models, which have been trained offline
with simulated strain data received by the numerical campaign described previously. The para-
metric FE model pre-calculates the induced strain at i-th sensing locations:

MSi
(x(k)) = εSi

(a(k), d(k), P (k)) (1)

where k is the training data point, εSi
is the longitudinal strain at sensing location Si and x

refers to the design variables, i.e. x = {a, d, P}>. As we have posed the importance of the
load to the strain field, for each disbond set, (a, d), the FE model estimates the strain output at
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a) b)

Figure 4: a) Predicted vs. actual strains of the trained M̃S1 and b) response surface of the surrogate under
compressive load P = −45.0 kN

different load levels, uniformly distributed in a range of [0, 70] kN, P ∼ U(0, 70). Finally, an
input/output (I/O) dataset, containing Nt I/O pairs, is constructed per sensing location Si:

DSi
= {x(k);M(k)

Si
}NT
k=1 (2)

The above training datasets are selected to train surrogate models in an attempt to infer the
relation between I/O. Essentially, a surrogate model, M̃Si

, would be promptly available to map
a new state variable x(∗) to the strain output of the corresponding sensing location Si:

M̃Si
: x(∗) → M(∗)

Si
(3)

In this work GP surrogate models were used as regression algorithms to infer the I/O mappings.
The “Regression Learner” of MATLAB’s “Statistics and Machine Learning Toolbox” has been
utilized to this end. The hyperparameters of the GP models have been estimated via an em-
bodied Bayesian optimization procedure within the toolbox. Cross-validation was achieved via
k-fold method. Indicatively, in Figure 4 we present the accuracy among the predicted and the
true response of M̃S1 as well as a portion of the surrogate response surface.

3.4 Damage quantification

In the final step, the inverse quantification of the disbond parameters are described. In our
methodology, we leverage on the notion that far from damage the strain field remains unaltered
[21]; hence, strain readings from sensor R1-R4 are used to infer the load applied on the panel,
based on the pristine numerical model. The steps of the damage quantification are presented
below:

1. Select reference sensor(s) (R1,..,R4) for load prediction

904



Dimitrios Milanoski, Georgios Galanopoulos, Dimitrios Zarouchas and Theodoros Loutas

2. Infer applied load via gradient-descent optimization [21]

3. Infer the deterministic disbond parameters via minimizing the following objective func-
tion for a measurement point, m:

{a, d}> = argmin
a,d

∥∥∥{M̃(m)
Si

(a, d | P )}Ns
i=1 − {ε

(m)
Si
}Ns
i=1

∥∥∥2 (4)

The above expression is minimized via a global optimization algorithm based on radial basis
function surrogate models embeddedn within MATLAB.

4 EXPERIMENTAL EVALUATION

4.1 Test campaign

The methodology presented above will be evaluated through a block loading compression-
compression fatigue test [19, 25]. More specifically, one SSP containing an artificial skin/stringer
disbond via a Teflon-insert is utilized. The nominal area of the disbond is 30x30 mm2 with the
central axis of the disbond being located at a = 210 mm. The skin panel consists of 14 unidi-
rectional continuum fiber-reinforced with a stacking sequence [45/-45/0/45/90/-45/0]s whereas
the stacking sequence of the stringer is [45/-45/0/-45/45]s. The material properties of the plies
are presented in Table 1 and of those of the cast-tabs in Table 2.

Table 1: Elastic properties of IM7/8552

Property Value Units
Longitudinal Young modulus, E11 161000 MPa
Transverse Young modulus, E22 = E33 11380 MPa
Poisson ratio, ν12 = ν13 0.32 −
Poisson ratio, ν23 0.45 −
Shear modulus, G12 = G13 5200 MPa
Shear modulus, G23 3900 MPa

Table 2: Material properties of EPO 5019.

Property Value Units
Young modulus, E 6000 MPa
Poisson ratio, ν 0.3 −
Compressive yield strength, Sc

y 110 MPa

The sensorized SSP is presented in Figure 5a. The test plan, as shown in Figure 5b, is defined
by discrete fatigue blocks with constant loading ratio, R=10, and frequency f=2 Hz. A quasi-
static (QS) test interval is conducted every 500 fatigue cycles, during which, strains are recorded
from permanently attached fiber Bragg grating sensors (FBGs), provided by SMARTEC S.A..
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Figure 5: a) The sensorized SSP and b) test plan definition

The FBG readings are used during the online stage to infer the disbond parameters. In this study,
only the strains at peak loads are used to asses the methodology. Moreover, in order to evalu-
ate the propagation of the disbonded area as the fatigue progresses, a phased-array ultrasound
DolphiCam system was used. In-situ non-destructive evaluation was performed with C-Scan
inspections in several occasions while pausing the test. Details about the test characteristics are
shown in Table 3.

Table 3: Details of the block loading fatigue test.

Nominal disbonded area Pmin Pmax Total cycles
(mm)2 (kN) (kN)
901.5 -3.5 -35.0 10,000

-3.9 -39.0 10,000
-4.5 -45.0 10,000
-5.0 -50.0 170,000

4.2 Damage quantification results

In this section the disbonded area predictions are being evaluated. In Figure 6a the disbond
area predictions are presented associated by groundtruth measurements. From the beginning
of the test, the predictions are in accordance with the nominal disbond area, i.e. 901.5 mm2.
Before the maximum load of fatigue was increased to −50 kN, the nominal disbond did not
presented propagation evidence. The first evidence of propagation was captured after 80,000
fatigue cycles. The predictions indicated a slight increase of disbonded area until a moment that
an abrupt increase was noted, approximately after 80,000 fatigue cycles. After this instance,
no significant increase on the disbonded area was observed as can also be indicated by the
groundtruth measurements. The deterministic prediction of DT are in a good correlation with
the experimental evidence until the final estimation of the area via non-destructive measure-
ment. However, sparse indications of overestimation of the predicted disbonded area may be
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a)

b)

Figure 6: a) Quantification predictions. Vertical red lines indicate moments when the maximum load of fatigue
was increased. b) Predicted disbond morphologies (blue shape) versus groundtruth (red shape) as measured after
total fatigue cycles applied (Nf )

found, mainly attributed due to the ill-posedness of the inverse problem. This effect may be mit-
igated by searching the global optimization solution in a judiciously reduced space or applying
regularization techniques. In Figure 6b we show the approximation of the disbond morphology
with respect to the actual one. It can be also noticed that the methodology is capable of properly
estimating the location of the disbond central axis.

5 CONCLUSIONS

In this paper, a numerical campaign of a parametric FE model was employed as data gen-
erator to train GP surrogate models. The idea lies in the concept of utilizing the previously
trained surrogate models (offline stage) in order to perform disbond quantification predictions
for skin/stringer delaminations at composite stiffened panels. A verified FE model produced
the damaged strains, at specific sensing locations, which were utilized to effectively train the
GP surrogate models. A LH sampling plan has been selected to generate in total 250 discrete
rectangle disbonds at various locations and sizes along the longitudinal direction of the panel.
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In the end, an inverse approach was followed to estimate the disbond characteristics while the
algorithm was fed with real-time experimental strains (online stage). The methodology derives
positive predictions regarding the disbonded area as the fatigue test progresses. However, based
on the nature of the provided training dataset, the method is limited to estimating a rectangle
approximation of the actual disbond morphology, though in a manner that estimates with great
accuracy the total disbonded area as well as the location of the central axis.
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