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A B S T R A C T

Velocity control proves to be an effective and a more easily implementable actuation than boundary and
distributed actuations for hyperbolic distributed parameter systems. However, the design of velocity control for
these systems, following the late lumping approach, i.e., using the partial differential equations model, poses
a challenging problem in control engineering. Noticeably, the velocity controller faces a control singularity
issue, resulting in a loss of controllability that renders the controller impractical. In this paper, we demonstrate
that the zeroing dynamics method is a viable alternative design approach for velocity control of hyperbolic
distributed parameter systems following the late lumping approach. Thus, employing the partial differential
equations model, a velocity state feedback forcing output tracking is developed based on the zeroing dynamic
method. Furthermore, to address the control singularity problem, the zeroing gradient method is combined
with the zeroing method to design a state feedback that achieves output tracking even when a singularity
occurs. The tracking error convergence is demonstrated for both developed state feedbacks. The effectiveness
of these design approaches is clearly demonstrated in the case of a steam-jacketed heat exchanger and a
non-isothermal plug flow reactor.
1. Introduction

The dynamical behavior of an important class of distributed pa-
rameter systems (DPSs) is described by hyperbolic partial differential
equations (PDEs). Examples of such systems include heat exchangers,
non-isothermal reactors, packed bed columns, adsorbers, absorbers,
and crystallizers [1–5]. Various control actuators can be applied to
these systems, such as boundary control [6,7], interior control [8],
and velocity control [9]. From a practical standpoint, velocity control,
a type of bilinear control, proves to be a natural choice, an effec-
tive and a more easily implementable than boundary and distributed
actuations [4,9].

It is well known that for control design of hyperbolic distributed
parameter system (DPS), the late lumping approach is more effective
than the early lumping approach [2,3,10,11]. This can be explained by
the fact that the modes of the spatial differential operator of a hyper-
bolic DPS have the same energy and cannot be captured by a lumped
parameter model corresponding to a finite number of modes [8,9,12].

Boundary and distributed control of hyperbolic DPSs, following the
late lumping approach, have been extensively studied in the litera-
ture [1,5–8,13–15]. Velocity control has been less investigated, and
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few contributions are reported in the literature. Sira-Ramirez [16]
extended the theory of variable structure systems to hyperbolic DPS and
developed an infinite dimensional variable structure state feedback.
In [4], the Lyapunov direct method is applied to design both linear
and nonlinear controllers, while Butkovskiy’s maximum principle is
employed to design optimal control laws for hyperbolic DPSs. The
method of characteristics and sliding mode control theory have been
combined by Hanczyc and Palazoglu [17] to design a state feedback
controller for a steam heater and non-isothermal plug flow reactor. The
input–output linearization approach has been extended by Gundepudi
and Friedly [9] to hyperbolic DPS with a single characteristic variable
(single flow DPSs) with application to a non-isothermal plug flow
reactor. The same approach has been applied by Maidi et al. [6] to the
velocity control of a dual flow hyperbolic DPS, i.e., a counter-current
heat exchanger. Using the method of characteristics, Shang et al. [12]
proposed a control law that enforces the output tracking successfully.

Input–output linearization approach has been successfully applied
for control design of DPSs following the late lumping approach [8,9,
13,18]. Nevertheless, its application is limited for DPS with boundary
or interior actuations. For hyperbolic DPS, with velocity control, even
vailable online 12 April 2024
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the input–output linearization can be applied, but the controller may be
impractical due to the control singularity (loss of controllability) that
may occur. For instance, the controller fails to kick off with a uniform
spatial initial profile [6,9].

Recently, an interesting control design approach based on the Zero-
ing Dynamics (ZD) method has been developed [19–21]. The design of
the controller is carried out using the ZD method and the activation
function [22]. Nevertheless, even though the controller design is a
straightforward task, the resulting controller, akin to the input–output
linearization approach, suffers from control singularity [22,23] when
the initial spatial profile is uniform (constant). Therefore, to implement
the control, it is necessary to initiate the system in open loop to ensure
a non-uniform initial profile before switching to closed loop. How-
ever, this solution is economically unattractive. Thus, to address the
issue of a uniform initial profile, a Zeroing Gradient Dynamics (ZGD)
method, which combines the ZD method and the Gradient Dynamics
(GD) method, has been proposed to design a controller without control
singularity [19,20,22]. The controller is designed by minimizing an
energy function using the GD method [22].

Many successful tracking control applications of the ZD and ZGD
methods have been reported in the literature. Li et al. [23] used these
methods for tracking control of knee exoskeleton system. Tracking
control of a varactor system has been studied by Hu et al. [24].
Nonlinear and robust control have been developed by Zhang et al.
[21] for a stirred tank system. Zheng and Zeng [19] investigated the
tracking control for robot manipulator both with linear and nonlinear
outputs. Both tracking control and disturbance rejection have been
investigated in the case of a double-holding water tank by Ding et al.
[20]. Applications of ZD and ZGD methods in solving control problems
for various systems, including a simple pendulum system, a double-
integrator system, an inverted pendulum on a cart, and a Van der Pol
oscillator, are discussed in detail in [22,25].

Inspired and motivated by these interesting applications, an exten-
sion of these design methods for DPSs is investigated in this work.
To the best of our knowledge, the applications of the ZD and ZGD
methods are limited only to lumped parameter systems (LPSs), i.e., sys-
tems described by Ordinary Differential Equations (ODEs). This paper
extends the application of these methods to Distributed Parameter
Systems (DPSs), marking the initial exploration in this direction. Thus,
in this paper, the ZD and ZGD methods are applied to design a velocity
controller for single flow DPSs described by hyperbolic PDEs, and
the stability of the resulting closed loop system is investigated. The
developed state feedback control strategies are applied to solve the
tracking control in the case of a steam-jacketed heat exchanger and
a non-isothermal plug flow reactor. The objective consists in enforcing
the outlet temperature of the heat exchanger, and the concentration
of a species, at the outlet reactor, to track their desired references.
Simulation results are given to demonstrate the performances of the
designed controller using the ZD and ZGD methods.

The contributions of the paper are summarized by the following
points:

• Infinite-dimensional state feedbacks are developed for hyperbolic
distributed parameter systems following the late lumping ap-
proach based on the ZD and ZGD methods.

• The ZD and ZGD design methods are employed to develop a ve-
locity controller for hyperbolic DPSs, representing the pioneering
effort in this field.

• The use of ZGD controller allows us to overcome the challenging
control singularity especially in the case of a uniform spatial
profile,

• Stability analysis is provided for the ZD and ZGD state feedback
control strategies.

• Simulation results are provided to demonstrate the effectiveness
of the ZD and ZGD controllers in the case of two processes
(steam-jacketed heat exchanger and non-isothermal plug flow
2

reactor). t
The paper is outlined as follows: Section 2 is dedicated to the for-
mulation of the velocity control problem for hyperbolic DPSs. Section 3
focuses on the design of the ZD and ZGD state feedbacks, following the
late lumping approach, and includes stability analysis for the resulting
closed loop system. In Section 4, the practical applicability of the
developed controllers is demonstrated through their application to two
processes. Finally, Section 5 concludes the paper.

2. Control problem formulation

In this work, let us consider the class of DPSs whose dynamical
behavior is described by the following mathematical model
𝜕𝑥(𝑡, 𝑧)

𝜕𝑡
= 𝐴

𝜕𝑥(𝑡, 𝑧)
𝜕𝑧

+ 𝑓 (𝑥(𝑡, 𝑧)), 𝑧 ∈ 𝛺 (1)

𝑥(𝑡, 0) = 𝑥0 (2)

𝑥(0, 𝑧) = 𝑥∗(𝑧) (3)

𝑦(𝑡) = ⟨𝑐(𝑧), 𝑥𝑖(𝑡, 𝑧)⟩, 1 ≤ 𝑖 ≤ 𝑛 (4)

here 𝐴 ∈ ℜ𝑛×𝑛 is the following diagonal matrix

= diag(−𝑢(𝑡), … ,−𝑢(𝑡)), (5)

∈ [0, ∞) and 𝑧 ∈ �̄� are independent variables that represent time and
pace position, respectively. 𝑥(𝑡, 𝑧) =

[

𝑥1(𝑡, 𝑧) … 𝑥𝑛(𝑡, 𝑧)
]𝑇 ∈

[

2 (�̄�
)]𝑛

s the vector of state variables, 𝑢(𝑡) ∈ ℜ+ the manipulated variable (flow
elocity) and 𝑦(𝑡) ∈ ℜ the output variable. 𝑓

(

𝑓 (𝑥) =
[

𝑓1(𝑥) … 𝑓𝑛(𝑥)
]𝑇
)

s a smooth vector function. 𝑐(𝑧) is a continuous function defined on the
ounded and closed interval �̄� that defines the geometric configuration
f the sensor. 𝑥∗ ∈

[

2 (�̄�
)]𝑛 is the initial profile and 𝑥0 ∈ ℜ𝑛 is the

oundary input. 𝛺 = (0, 𝐿] and 𝜕𝛺 = {0} are the interior and boundary
f the entire spatial domain �̄� (�̄� = 𝛺 ∪ 𝜕𝛺 = [0, 𝐿]), respectively.
2 (�̄�

)

denotes the space of real-valued square-integrable functions
efined on �̄� with the standard scalar product, i.e., for 𝑤1, 𝑤2 ∈ 2 (�̄�

)

efined as

𝑤1(𝑧), 𝑤2(𝑧)⟩ = ∫

𝐿

0
𝑤1(𝑧)𝑤2(𝑧) 𝑑𝑧 (6)

The aim is to design a state feedback that forces the output variable
efined by Eq. (4) to track the desired reference 𝑦𝑑 (𝑡).

emark 1. Christofides and Daoutidis [8, p. 3066–3067, ‘‘Review
f system-theoretic properties’’] investigated the stability of the hyper-
olic DPS (1)–(4) based on its linearized model. It is shown that this
ystem is stable since the eigenvalues of the matrix 𝐴 are negative real,
iven that the fluid flow velocity 𝑢(𝑡) is positive.

. State feedback design

In this section, the ZD and ZGD methods are used to design, fol-
owing the late lumping approach, the state feedback that enforces the
ontrolled output defined by Eq. (4) to track a desired trajectory 𝑦𝑑 (𝑡).

ssumption 1. The desired reference 𝑦𝑑 (𝑡) is bounded and differen-
iable.

.1. An overview of ZD and ZGD methods

The ZD and ZGD methods have been developed and successfully
pplied to LPSs described by ODEs. In this section, the principles of
hese methods are presented, and further details can be found in [20]
nd [22].

Consider the lumped parameter system (LPS) described by the
ollowing state-space model

�̇�(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡)) 𝑢(𝑡) (7)

𝑦(𝑡) = ℎ(𝑥(𝑡)) (8)

here 𝑥 ∈ ℜ𝑛, 𝑢 ∈ ℜ, and 𝑦 ∈ ℜ are the state, control and output,
espectively. Here, 𝑓 and 𝑔 are smooth vector functions. It is assumed

hat the relative degree [26], denoted by 𝜎, is finite.
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3.1.1. ZD design method
The controller design based on the ZD method involves calculating

the following errors

𝑒1(𝑡) = 𝑦(𝑡) − 𝑦𝑑 (𝑡) (9)

𝑒𝑖+1(𝑡) = �̇�𝑖(𝑡) + 𝜆𝑖 𝑒𝑖(𝑡) for 𝑖 = 1,… , 𝜎 − 1 (10)

where 𝜆𝑖 > 0 (𝑖 = 1,… , 𝜎 − 1) are positive parameters that determine
he dynamics of the errors 𝑒𝑖 (𝑖 = 1,… , 𝜎 −1), respectively, and 𝑦𝑑 (𝑡) is
he desired reference assumed to be differentiable.

Subsequently, by substituting the different errors 𝑒𝑖 into the tracking
ontrol design equation given by

̇𝜎 (𝑡) + 𝜆𝜎 𝑒𝜎 (𝑡) = 0, 𝜆𝜎 > 0 (11)

he ordinary differential equation (ODE) describing the dynamics of
he tracking error 𝑒1 can be expressed in term of Lie derivatives as
ollows [20]

𝑔𝜎−1
𝑓 ℎ(𝑥) 𝑢(𝑡) +

𝜎
∑

𝑘=0
𝑐𝑘 𝑘

𝑓ℎ(𝑥) −
𝜎
∑

𝑘=0
𝑐𝑘 𝑦

(𝑘)
𝑑 (𝑡) = 0 (12)

here 𝑐𝑖 (𝑖 = 1,… , 𝜎 − 1) are functions of the parameters 𝜆𝑖 (𝑖 =
1,… , 𝜆𝜎), and 𝑐𝜎 = 1. The function 𝑓ℎ is the Lie derivative of the
scalar field ℎ with respect to the vector field 𝑓 , 𝑘

𝑓ℎ is the 𝑘th order
Lie derivative, and 𝑔𝜎−1

𝑓 ℎ is the mixed Lie derivative [26].
Solving Eq. (12) with respect to the manipulated variable 𝑢, yields

the following ZD controller

𝑢(𝑡) =

𝜎
∑

𝑘=0
𝑐𝑘 𝑦

(𝑘)
𝑑 (𝑡) −

𝜎
∑

𝑘=0
𝑐𝑘 𝑘

𝑓ℎ(𝑥)

𝑔𝜎−1
𝑓 ℎ(𝑥)

(13)

Note that in the case of control singularity, i.e., 𝑔𝜎−1
𝑓 ℎ(𝑥) = 0, the

controller (13) becomes impractical. To overcome this problem, a ZGD
controller can be used.

3.1.2. ZGD design method
The control 𝑢 that drives the tracking error 𝑒1 is the solution

to Eq. (12). In the case of control singularity, the idea is to minimize,
with respect to 𝑢, the following energy function

𝜀(𝑡) =
[𝐽 (𝑥(𝑡))]2

2
(14)

with 𝐽 is the left-hand side of Eq. (12)

𝐽 (𝑥(𝑡)) = 𝑔𝜎−1
𝑓 ℎ(𝑥) 𝑢(𝑡) +

𝜎
∑

𝑘=0
𝑐𝑘 𝑘

𝑓ℎ(𝑥) −
𝜎
∑

𝑘=0
𝑐𝑘 𝑦

(𝑘)
𝑑 (𝑡) (15)

Hence using the gradient descent technique

�̇�(𝑡) = −𝜂
𝜕𝜀(𝑡)
𝜕𝑢(𝑡)

, (16)

yields the following ZGD controller

̇ (𝑡) = −𝜂𝑔𝜎−1
𝑓 ℎ(𝑥) 𝐽 (𝑥(𝑡)) (17)

where 𝜂 > 0 is a tuning parameter.

3.2. Application to velocity control design

The characteristic index is a generalization of the concept of relative
degree to distributed parameter systems proposed by Christofides and
Daoutidis [8]. For the hyperbolic DPS (1)–(4), it is easy to show that the
control 𝑢 appears in the first time derivative of the output (4), meaning
3

that the characteristic index 𝜎 = 1.
3.2.1. State feedback design using the ZD method
To solve the tracking problem of the hyperbolic DPS (1)–(4), given

that 𝜎 = 1, the design involves the following tracking error

𝑒1(𝑡) = 𝑦𝑑 (𝑡) − 𝑦(𝑡) (18)

The control design is based on the following first-order ordinary
ifferential equation which forces the error to decrease exponentially

̇1(𝑡) + 𝜆 𝑒1(𝑡) = 0 (19)

here 𝜆 is a strictly positive real number (𝜆 > 0).
Taking into account Assumption 1 and employing Eq. (19), it fol-

ows that

�̇�𝑑 (𝑡) − �̇�(𝑡) + 𝜆 𝑒1(𝑡) = 0 (20)

nd using Eq. (4), it gives

�̇�𝑑 (𝑡) −
⟨

𝑐(𝑧),
𝜕𝑥𝑖(𝑡, 𝑧)

𝜕𝑡

⟩

+ 𝜆 𝑒1(𝑡) = 0 (21)

and considering the state Eq. (1), Eq. (21) takes the following form

�̇�𝑑 (𝑡) −
⟨

𝑐(𝑧), −𝑢(𝑡)
𝜕𝑥𝑖(𝑡, 𝑧)

𝜕𝑧
+ 𝑓𝑖(𝑥(𝑡, 𝑧))

⟩

+ 𝜆 𝑒1(𝑡) = 0 (22)

or equivalently
⟨

𝑐(𝑧),
𝜕𝑥𝑖(𝑡, 𝑧)

𝜕𝑧

⟩

𝑢(𝑡) + �̇�𝑑 (𝑡) − ⟨𝑐(𝑧), 𝑓𝑖(𝑥(𝑡, 𝑧))⟩ + 𝜆 𝑒1(𝑡) = 0 (23)

onsequently, the state feedback is derived from Eq. (23) as follows

(𝑡) =
⟨𝑐(𝑧), 𝑓𝑖(𝑥(𝑡, 𝑧))⟩ − 𝜆 𝑒1(𝑡) − �̇�𝑑 (𝑡)

⟨

𝑐(𝑧),
𝜕𝑥𝑖(𝑡, 𝑧)

𝜕𝑧

⟩ (24)

Remark 2. 𝜆 is a tuning parameter of the controller (24) that can be
used, according to Eq. (19), to adjust the convergence dynamics rate of
the tracking error 𝑒1(𝑡).

Proposition 1. For the hyperbolic DPS (1)–(4), if
⟨

𝑐(𝑧),
𝜕𝑥𝑖(𝑡, 𝑧)

𝜕𝑧

⟩

≠ 0,

he ZD state feedback (24) enforces the output tracking in closed loop,
.e., lim𝑡→∞ 𝑒1(𝑡) = 0.

roof. The design of the ZD controller (24) is based on Eq. (19). Hence,
n closed loop, the tracking error is given by

1(𝑡) = 𝑒1(0) 𝑒−𝜆 𝑡 (25)

hus since 𝜆 > 0, at steady-state,

lim
→∞

𝑒1(𝑡) = 0, (26)

ndicating that the output tracking is successfully achieved, that is, 𝑦(𝑡)
lobally exponentially converges to 𝑦𝑑 (𝑡).

Note that when
⟨

𝑐(𝑧),
𝜕𝑥𝑖(𝑡, 𝑧)

𝜕𝑧

⟩

= 0, the manipulated variable 𝑢(𝑡)

is infinite, which means that the state feedback (24) is inapplicable.
For example, in many DPSs, in the case where the initial profile 𝑥∗(𝑧)
was chosen uniform (constant), the controller (24) would fail as the
denominator of state feedback (24) would be zero. Of course, practi-
cally, this issue can be easily avoided for example by choosing a non
constant strictly linear initial profile. This control singularity problem
is also encountered with the input–output linearization approach [6].
In the following subsection, the ZGD approach is used to design a state
feedback that solves the control singularity problem.
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3.2.2. State feedback design using the ZGD method
To overcome the control singularity problem of the state feedback

(24), the GD method is used to design a valid state feedback. Thus, in
agreement with the ZD design method, the function 𝐽 (𝑥𝑖(𝑡, 𝑧)) is defined
as the left-hand side of Eq. (23), i.e.,

𝐽 (𝑥𝑖(𝑡, 𝑧)) =
⟨

𝑐(𝑧),
𝜕𝑥𝑖(𝑡, 𝑧)

𝜕𝑧

⟩

𝑢(𝑡)+ �̇�𝑑 (𝑡)−⟨𝑐(𝑧), 𝑓𝑖(𝑥(𝑡, 𝑧))⟩+𝜆 𝑒1(𝑡) (27)

Now, by considering the following energy function [22]

𝜀(𝑡) =

[

𝐽 (𝑥𝑖(𝑡, 𝑧))
]2

2
(28)

and using the gradient of energy with respect to the manipulated input
similarly to Zhang et al. [22] as a descent technique

̇ (𝑡) = −𝛾
𝜕𝜀(𝑡)
𝜕𝑢(𝑡)

(29)

he following state feedback results

̇ (𝑡) = −𝛾 𝛼(𝑡) (𝛼(𝑡) 𝑢(𝑡) +𝛷(𝑥)) (30)

ith

(𝑡) =
⟨

𝑐(𝑧),
𝜕𝑥𝑖(𝑡, 𝑧)

𝜕𝑧

⟩

, 𝛷(𝑥) = �̇�𝑑 (𝑡) − ⟨𝑐(𝑧), 𝑓𝑖(𝑥(𝑡, 𝑧))⟩ + 𝜆 𝑒1(𝑡) (31)

where 𝛾 is a tuning parameter of the controller (30).

Proposition 2. For a uniformly distributed initial profile 𝑥∗(𝑧) and an
initial flow velocity control 𝑢(0) ∈ ℜ+, the ZGD state feedback (30) ensures
a bounded steady state tracking error in closed loop for the hyperbolic DPS
(1)–(4).

Proof. The aim is to demonstrate that the tracking error 𝑒1 in closed
loop is bounded. In the same manner as in [19] and [25], two cases
are possible, according to the value of 𝛼.

• Case of no singularity control 𝛼(𝑡) ≠ 0: In this case, demonstrating
that 𝑒1(𝑡) is bounded requires to determine its expression as a
function of time variable 𝑡. Using the notations of (31), Eq. (23)
can be written under the following form

𝛼(𝑡) 𝑢(𝑡) +𝛷(𝑥) = 0 (32)

and as Eq. (32) is derived from Eq. (19), hence

�̇�1(𝑡) + 𝜆 𝑒1(𝑡) = 𝛼(𝑡) 𝑢(𝑡) +𝛷(𝑥) (33)

or equivalently

�̇�1(𝑡) + 𝜆 𝑒1(𝑡) = 𝛼(𝑡)𝐸(𝑡) (34)

where 𝐸 is the control error defined as

𝐸(𝑡) = 𝑢(𝑡) − �̄�(𝑡) (35)

and �̄�(𝑡) is the solution of Eq. (32), i.e.,

𝛼(𝑡) �̄�(𝑡) +𝛷(𝑥) = 0, (36)

which represents the theoretical flow velocity control that
achieves the output tracking.
Now, since

−‖𝛼(𝑡)‖ ‖𝐸(𝑡)‖ ≤ 𝛼(𝑡)𝐸(𝑡) ≤ ‖𝛼(𝑡)‖ ‖𝐸(𝑡)‖ (37)

therefore, as 𝛼(𝑡) ≠ 0, 0 < 𝛼2(𝑡) ≤ 𝛽2 ≤ ∞ (𝛽 > 0), hence using
Eq. (34), it follows that

−𝛽 ‖𝐸(𝑡)‖ ≤ −‖𝛼(𝑡)‖ ‖𝐸(𝑡)‖ ≤ �̇�1(𝑡)+𝜆 𝑒1(𝑡) ≤ ‖𝛼(𝑡)‖ ‖𝐸(𝑡)‖ ≤ 𝛽 ‖𝐸(𝑡)‖

(38)

Let us now determine a bound for ‖𝐸(𝑡)‖. From Eq. (35), it follows
that

�̇�(𝑡) = �̇�(𝑡) − ̇̄𝑢(𝑡) (39)
4

Substituting �̇� according to Eq. (30) gives

�̇�(𝑡) = −𝛾 𝛼(𝑡) (𝛼(𝑡) 𝑢(𝑡) +𝛷(𝑥)) − ̇̄𝑢(𝑡) (40)

Combining Eq. (40) with Eq. (36) yields

�̇�(𝑡) = −𝛾 𝛼(𝑡) (𝛼(𝑡) 𝑢(𝑡) − 𝛼(𝑡) �̄�(𝑡)) − ̇̄𝑢(𝑡) (41)

and considering (35), Eq. (41) simplifies as

�̇�(𝑡) = (𝑡)𝐸(𝑡) − ̇̄𝑢(𝑡) (42)

with (𝑡) = −𝛾 𝛼2(𝑡).
The operator (𝑡) generates a two-parameter semigroup 𝑈 (𝑡, 𝑠)
given by

𝑈 (𝑡, 𝑠) = 𝑒𝐼(𝑡)−𝐼(𝑠), 0 ≤ 𝑠 ≤ 𝑡 (43)

with 𝐼(𝜏) = ∫ 𝜏
0 (𝜉) 𝑑𝜉.

Given that 𝛾 > 0, the semigroup 𝑈 (𝑡, 𝑠) is stable, indicating the
existence of two constants 𝑀 ≥ 1 and 𝜔 > 0 such that Pazy [27]

‖𝑈 (𝑡, 𝑠)‖ ≤ 𝑀 𝑒−𝜔 (𝑡−𝑠) (44)

The solution of Eq. (42) is given by [27]

𝐸(𝑡) = 𝑈 (𝑡, 0)𝐸(0) + ∫

𝑡

0
𝑈 (𝑡, 𝑠) ̇̄𝑢(𝑠) 𝑑𝑠 (45)

hence, by Gronwall’s inequality [28]

‖𝐸(𝑡)‖ ≤ ‖𝑈 (𝑡, 0)‖ ‖𝐸(0)‖ + ∫

𝑡

0
‖𝑈 (𝑡, 𝑠)‖ ‖ ̇̄𝑢(𝑠)‖ 𝑑𝑠 (46)

Since 𝛾 > 0 and 𝛷(𝑥) is bounded, it follows from Eq. (30) that
‖�̇�(𝑡)‖ ≤ 𝜂 ≤ ∞. Eqs. (44) and (46) yield

‖𝐸(𝑡)‖ ≤ 𝑀 𝑒−𝜔 𝑡
‖𝐸(0)‖ + ∫

𝑡

0
𝑀 𝑒−𝜔 (𝑡−𝑠) 𝜂 𝑑𝑠 (47)

By evaluating the integral term, Eq. (47) reduces to

‖𝐸(𝑡)‖ ≤ 𝑀 𝑒−𝜔 𝑡
(

‖𝐸(0)‖ −
𝜂
𝜔

)

+
𝑀 𝜂
𝜔

(48)

hence, it can be concluded that

lim
𝑡→∞

‖𝐸(𝑡)‖ ≤ 𝑀 𝜂
𝜔

(49)

Considering Eq. (49), Eq. (38) reduces to

−
𝛽 𝑀 𝜂
𝜔

≤ �̇�1(𝑡) + 𝜆 𝑒1(𝑡) ≤
𝛽 𝑀 𝜂
𝜔

(50)

and using Cronwall’s inequality [28]

−𝐶 𝑒−𝜆 𝑡 −
𝛽 𝑀 𝜂
𝜆𝜔

≤ 𝑒1(𝑡) ≤ 𝐶 𝑒−𝜆 𝑡 +
𝛽 𝑀 𝜂
𝜆𝜔

(51)

and since 𝛽 𝑀 𝜂
𝜆𝜔

is positive, Eq. (51) simplifies to

|𝑒1(𝑡)| ≤ |𝐶| 𝑒−𝜆 𝑡 +
𝛽 𝑀 𝜂
𝜆𝜔

(52)

where 𝐶 is an integration constant. Consequently,

lim
𝑡→∞

|𝑒1(𝑡)| ≤
𝛽 𝑀 𝜂
𝜆𝜔

(53)

Therefore, the tracking error 𝑒1 is bounded.
• Case of singularity control 𝛼(𝑡) = 0: Let 𝑡0 be the singularity

control instant, i.e, lim𝑡→𝑡0 𝛼(𝑡) = 0. Eq. (30) yields

lim
𝑡→𝑡0

�̇�(𝑡) = lim
𝛼(𝑡)→0

�̇�(𝑡) = 0, (54)

which means that 𝑢(𝑡) is continuous at 𝑡0, i.e., 𝑢(𝑡−0 ) = 𝑢(𝑡0) = 𝑢(𝑡+0 ).
Considering Remark 1, the bounded control sequence 𝑢(𝑡−0 ), 𝑢(𝑡0),
and 𝑢(𝑡+0 ) yields bounded outputs 𝑦(𝑡−0 ), 𝑦(𝑡0), and 𝑦(𝑡+0 ). As a result,
the tracking errors 𝑒1(𝑡−0 ), 𝑒1(𝑡0), and 𝑒1(𝑡+0 ) remain bounded, given
the bounded nature of the desired reference 𝑦𝑑 (𝑡) (Assumption 1).

Consequently, the tracking error 𝑒1 is bounded.
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On account of the above convergence analysis of the tracking er-
ror 𝑒(𝑡), it can be inferred that the output 𝑦(𝑡) remains within finite
bounds throughout the tracking operation for both singularity and
non-singularity cases.

Remark 3. The ZGD state feedback given by (30) does not suffer
from the control singularity problem in comparison to the controller
(24) and the controller designed using the input–output linearization
approach [6].

Remark 4. For simulation and implementation of the controller (24),
an initial value of the velocity, i.e., 𝑢(0) must be specified. This can be
determined through trial and error or selected as a reasonable practical
value.

Remark 5. It is noteworthy that the parameter 𝛾 significantly impacts
the value of 𝜔, hence in the case of no control singularity (𝛼(𝑡) ≠ 0),
rom Eq. (53), it can be seen that the tracking error can be rendered
mall by increasing the tuning parameters 𝜆 and 𝛾.

emark 6. The state feedbacks (24) and (30) are of infinite dimen-
ionality, thus their implementation requires a knowledge of the entire
tate of hyperbolic DPS which is achieved by means of an observer
hat estimates the entire state using the available measurements. Ad-
itionally, it is necessary to evaluate the spatial derivative at the outlet
= 𝐿, which is done numerically. The solution of this issue has been

xtensively discussed by the authors in the context of geometric control
f a counter-current heat exchanger [6]. This solution is still applicable
o the ZD and ZGD controllers proposed in this work.

The main velocity control design steps of the hyperbolic DPS (1)–(4)
re summarized in Fig. 1

. Application examples

In this section, the output tracking performances of the controllers
24) and (30) resulting from the ZD and ZDG methods respectively, are
valuated in the case of a steam-jacketed tubular heat exchanger and
5

lug flow reactor. The simulations are carried out using the method
f lines based on finite difference schemes [29]. For both processes,
he controlled output is defined at outlet point 𝑧 = 𝐿, hence the

shaping function 𝑐(𝑧) is modeled as a Dirac delta function at 𝑧 = 𝐿,
.e., 𝑐(𝑧) = 𝛿𝐿(𝑧) = 𝛿(𝑧 − 𝐿). The desired reference 𝑦𝑑 (𝑡) is obtained by
iltering the set point 𝑦sp(𝑡) with a first order filter of time constant 𝜏
s
𝑌 𝑑 (𝑠)
𝑌 sp(𝑠)

= 1
𝜏 𝑠 + 1

(55)

where 𝑠 is the Laplace variable. 𝑌 𝑑 (𝑠) and 𝑌 sp are the Laplace trans-
forms of 𝑦𝑑 (𝑡) and 𝑦sp(𝑠), respectively.

.1. Steam-jacketed tubular heat exchanger

The evolution of the temperature 𝑇 (𝑡, 𝑧) within the tube of a steam-
acketed tubular heat exchanger (Fig. 2), with a length 𝐿, is described
y the following dimensionless model [12]
𝜕𝑇 (𝑡, 𝑧)

𝜕𝑡
= −𝑣(𝑡)

𝜕𝑇 (𝑡, 𝑧)
𝜕𝑧

+𝐻
(

𝑇𝑗 (𝑡) − 𝑇 (𝑡, 𝑧)
)

(56)

𝑇 (𝑡, 0) = 𝑇in (57)

𝑇 (0, 𝑧) = 𝑇 ∗(𝑧) (58)

here 𝑣 is the fluid velocity, 𝑇in the inlet fluid temperature, 𝑇𝑗 the
team jacket temperature which is assumed to be uniform, 𝑇 ∗(𝑧) the
nitial temperature profile and 𝐻 a positive (thermal) constant. Here,
ll variables are dimensionless. The output to be controlled is the outlet
emperature, that is,

(𝑡) = 𝑇 (𝑡, 𝐿) (59)

Using Eqs. (24) and (30), the following ZD and ZGD controllers
esult

(𝑡) =
𝐻 ⟨𝑐(𝑧),

(

𝑇𝑗 (𝑡) − 𝑇 (𝑡, 𝑧)
)

⟩ − 𝜆
(

𝑦𝑑 (𝑡) − 𝑦(𝑡)
)

− �̇�𝑑 (𝑡)
𝜕𝑇 (𝑡, 𝑧) |

|

(60)
𝜕𝑧 |

|𝑧=𝐿
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Table 1
Steam-jacketed heat exchanger simulation parameters.

Heat exchanger ZD state feedback ZGD state feedback

Parameter Value Parameter Value Parameter Value

𝐻 2 𝜆 1 𝜆 10
𝑇𝑗 5 𝛾 0.1
𝑇in 0 𝑣(0) 2
𝐿 1
𝑣 2

Fig. 2. Steam-jacketed heat exchanger.

�̇�(𝑡) = −𝛾
𝜕𝑇 (𝑡, 𝑧)

𝜕𝑧
|

|

|

|𝑧=𝐿

[

𝜕𝑇 (𝑡, 𝑧)
𝜕𝑧

|

|

|

|𝑧=𝐿
𝑣(𝑡) + 𝜆

(

𝑦𝑑 (𝑡) − 𝑦(𝑡)
)

+ �̇�𝑑 (𝑡) −𝐻 ⟨𝑐(𝑧),
(

𝑇𝑗 (𝑡) − 𝑇 (𝑡, 𝑧)
)

⟩

]

(61)

The simulations are carried out with parameters given in Table 1.

4.1.1. ZD state feedback
In the time interval [0, 10[, it is assumed that the heat exchanger is

at open loop steady state obtained with parameters given in Table 1.
Then, in the time interval [10, 40], the ZD feedback controller is applied.
The ZD state feedback performance is evaluated by imposing two set
points 𝑦sp(𝑡) = 3 and 𝑦sp(𝑡) = 3.5 at 𝑡 = 10 and 𝑡 = 30 with the filter
time constant 𝜏 = 2, respectively. The simulation results are depicted
in Figs. 3–4. It can be observed that the ZD state feedback achieves
the output tracking (Fig. 3). The flow rate 𝑣(𝑡) exhibits physically mild
moves (Fig. 4).

4.1.2. ZGD state feedback
In the case of a constant initial temperature profile, the ZGD state

feedback should be used. However, a heat exchanger in open loop
does not possess a constant temperature profile. Thus, in the first time
interval [0, 10[, the heat exchanger is operated in open loop with a
velocity equal to 2. Then, at 𝑡 = 10, assuming that the actual spatial
temperature profile is unknown, a constant initial temperature profile
is guessed for the heat exchanger

𝑇 ∗(𝑧) = 3.0783 ∀ 𝑧 (62)

equal to the previous outlet temperature in open loop. Thus, a control
singularity occurs at 𝑡 = 10. This is due to the derivative of the
temperature at the outlet 𝑧 = 𝐿 being null. Consequently, the ZD state
feedback (60) fails to track the desired reference. Thus, the performance
of the ZGD state feedback (61) can be evaluated in the time interval
[10, 40] where the same set points as for the ZD control are imposed. The
parameters of the ZGD controller are given in Table 1. After a very short
transient, the controlled temperature perfectly tracks the reference
trajectory (Fig. 5). The flow rate also shows a rapid variation before
becoming smoother (Fig. 6). These rapid variations are explained by the
fluctuations of the spatial derivative of the outlet temperature (Fig. 7)
which is present in the ZGD control law.
6

Fig. 3. Steam-jacketed heat exchanger: output evolution with ZD state feedback.

Fig. 4. Steam-jacketed heat exchanger: fluid flow velocity evolution with ZD state
feedback.

Fig. 5. Steam-jacketed heat exchanger: output evolution with ZGD state feedback.

Fig. 6. Steam-jacketed heat exchanger: evolution of the fluid flow velocity 𝑣(𝑡) with
ZGD state feedback.
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Fig. 7. Steam-jacketed heat exchanger: evolution of the temperature derivative at 𝑧 = 𝐿
with ZGD state feedback.

Fig. 8. Non-isothermal plug flow reactor.

4.2. Non-isothermal plug flow reactor

The mathematical model of a plug flow reactor operating under non-
isothermal conditions and some reasonable assumptions [8], involving
the occurrence of two first order reactions (Fig. 8)

𝐴
𝑘1
⟶ 𝐵

𝑘2
⟶ 𝐶 (63)

is given by the following PDEs
𝜕𝐶𝐴(𝑡, 𝑧)

𝜕𝑡
= − 𝑣(𝑡)

𝜕𝐶𝐴(𝑡, 𝑧)
𝜕𝑧

− 𝑘1 𝐶𝐴(𝑡, 𝑧) (64)

𝜕𝐶𝐵(𝑡, 𝑧)
𝜕𝑡

= − 𝑣(𝑡)
𝜕𝐶𝐵(𝑡, 𝑧)

𝜕𝑧
+ 𝑘1 𝐶𝐴(𝑡, 𝑧) − 𝑘2 𝐶𝐵(𝑡, 𝑧) (65)

𝜕𝑇𝑟(𝑡, 𝑧)
𝜕𝑡

= − 𝑣(𝑡)
𝜕𝑇𝑟(𝑡, 𝑧)

𝜕𝑧
−

𝛥𝐻1
𝜌𝑚 𝑐𝑝𝑚

𝑘1 𝐶𝐴(𝑡, 𝑧) −
𝛥𝐻2
𝜌𝑚 𝑐𝑝𝑚

𝑘2 𝐶𝐵(𝑡, 𝑧)

+
𝑈𝑤

𝜌𝑚 𝑐𝑝𝑚 𝑉𝑟

(

𝑇𝑗 (𝑡) − 𝑇𝑟(𝑡, 𝑧)
)

(66)

with the following boundary conditions

𝐶𝐴(𝑡, 0) = 𝐶𝐴,in, 𝐶𝐵(𝑡, 0) = 𝐶𝐵,in, 𝑇𝑟(𝑡, 0) = 𝑇𝑟,in (67)

and the initial conditions

𝐶𝐴(0, 𝑧) = 𝐶∗
𝐴(𝑧), 𝐶𝐵(0, 𝑧) = 𝐶∗

𝐵(𝑧), 𝑇𝑟(0, 𝑧) = 𝑇 ∗
𝑟 (𝑧) (68)

with the kinetic constants following Arrhenius law

𝑘𝑖 = 𝑘𝑖0 𝑒
−

𝐸𝑖
𝑅𝑇𝑟(𝑡, 𝑧) 𝑖 = 1, 2 (69)

The variables 𝐶𝐴 and 𝐶𝐵 are the concentrations of species 𝐴 and
𝐵 in the reactor, respectively, and 𝑇𝑟 the reactor temperature. The
various model parameters and their corresponding values are provided
in Table 2 [13].

The control objective involves designing a state feedback (flow
velocity) to control the concentration of the species 𝐵 at the reactor
outlet 𝑧 = 𝐿. Therefore, the output to be controlled is defined as

𝑦(𝑡) = 𝐶 (𝑡, 𝐿) (70)
7

𝐵

Table 2
Plug flow reactor parameters [13].

Parameter Designation Value Unit

𝑣 Fluid flow velocity 1 m min−1

𝐿 Reactor length 2 m
𝑉𝑟 Reactor volume 2 lt
𝐸1 Activation energy for the first reaction 2 × 104 kcal kmol−1

𝐸2 Activation energy for the second reaction 2 × 104 kcal kmol−1

𝑘10 Pre-exponential factor 3 × 1012 min−1

𝑘20 Pre-exponential factor 8 × 1011 min−1

𝑅 Gas constant 1.987 kcal kmol−1 K−1

𝛥𝐻𝑟1 Enthalpy of the first reaction −4 × 104 kcal kmol−1

𝛥𝐻𝑟2 Enthalpy of the second reaction −2 × 105 kcal kmol−1

𝜌𝑚 Fluid density 1000 kg lt−1

𝑐𝑝𝑚 Fluid heat capacity 0.231 kcal kg K−1

𝑈𝑤 Heat transfer coefficient 2 × 104 kcal min−1 K−1

𝑇𝑗 Jacket temperature 350 K
𝐶𝐴,in Reactant 𝐴 inlet concentration 1 mol l−1

𝐶𝐵,in Reactant 𝐵 inlet concentration 0 mol l−1

𝑇𝑟,in Inlet stream temperature 350 K

Table 3
Non-isothermal plug flow reactor: controllers and reference parameters.

Designation ZD state feedback ZGD state feedback

𝜆 20 102

𝛾 104

𝑣(0) 1

By defining 𝑥1 = 𝐶𝐴, 𝑥2 = 𝐶𝐵 , and 𝑥3 = 𝑇𝑟, the subscript 𝑖 in Eq. (4)
is equal to 2. Therefore, using Eqs. (24) and (30), the following ZD and
ZGD controllers result

𝑣(𝑡) =
⟨𝑐(𝑧), 𝑘1 𝐶𝐴(𝑡, 𝑧) − 𝑘2 𝐶𝐵(𝑡, 𝑧)⟩ − 𝜆

(

𝑦𝑑 (𝑡) − 𝑦(𝑡)
)

− �̇�𝑑 (𝑡)
𝜕𝐶𝐵(𝑡, 𝑧)

𝜕𝑧
|

|

|

|𝑧=𝐿

(71)

�̇�(𝑡) = −𝛾
𝜕𝐶𝐵(𝑡, 𝑧)

𝜕𝑧
|

|

|

|𝑧=𝐿

[

𝜕𝐶𝐵(𝑡, 𝑧)
𝜕𝑧

|

|

|

|𝑧=𝐿
𝑣(𝑡) + �̇�𝑑 (𝑡)

− ⟨𝑐(𝑧), 𝑘1 𝐶𝐴(𝑡, 𝑧) − 𝑘2 𝐶𝐵(𝑡, 𝑧)⟩

+ 𝜆 (𝑦𝑑 (𝑡) − 𝑦(𝑡))

]

(72)

The used controller parameters are provided in Table 3.

4.2.1. ZD state feedback
The plug flow reactor is operated in open loop at steady state in the

time interval [0, 10[min, then in closed loop in [10, 40]min. The steady
state profiles are given in Fig. 9, obtained with parameters of Table 2.

To evaluate the tracking performance of the ZD state controller, two
set points 𝑦sp(𝑡) = 0.6mol l−1 and 𝑦sp(𝑡) = 0.5mol l−1 are imposed
at 𝑡 = 10min and 𝑡 = 25min with the filter time constant 𝜏 =
2min, respectively. Figs. 10–11 show the obtained results. It can be
clearly seen that the ZD state feedback performs well to achieve perfect
tracking with smooth fluctuations in the fluid flow velocity (Fig. 11).
This is expected because, with the flow velocity as the control variable,
and considering the delay between the inlet and the outlet of the
reactor, the closed loop system can be understood as a time-varying
delay system, leading to oscillations.

4.2.2. ZGD state feedback
To assess the performance tracking of the ZGD state feedback, it

is assumed that the fluid crossing the plug flow reactor contains no
reactant 𝐴 in the time interval [0, 10[min so that 𝐶𝐴,in = 0, then sud-
denly the component 𝐴 is introduced at 𝑡 = 10min at a concentration
𝐶𝐴,in = 1 mol l−1. The reactor is operated in open loop in the time
interval [0, 10[min, then in closed loop in [10, 40]min. Due to this step
change of concentration, it results that the spatial derivative of the



Journal of Process Control 138 (2024) 103210A. Maidi et al.
Fig. 9. Reactor steady state profiles.
Fig. 10. Non-isothermal plug flow reactor: output evolution with ZD state feedback.

Fig. 11. Non-isothermal plug flow reactor: fluid flow velocity evolution with ZD state
feedback.

outlet temperature is zero at 𝑡 = 10min creating a control singularity
with the ZD controller. Thus, the ZGD control is applied.

The same set points as in the ZD case are imposed. Even, in this
situation, the ZGD state feedback enforces the outlet concentration
𝐶𝐵(𝐿, 𝑡) to track its desired reference (Fig. 12). It can be clearly seen
that the controlled output exhibits a delay and starts with a jump. This
is due to the control singularity observed at 𝑡 = 10min, which leads
to a fluid flow velocity (Fig. 13) that exhibits subdued fluctuations in
the transient response, particularly at the beginning, but the moves
remain physically applicable. It is noteworthy that, after overcoming
the singularity issue, the control oscillations are reduced compared to
8

Fig. 12. Non-isothermal plug flow reactor: output evolution with ZGD state feedback.

Fig. 13. Non-isothermal plug flow reactor: fluid flow velocity evolution with ZGD state
feedback.

the ZD controller case. This is attributed to the ZGD controller, which
can be perceived as applying a filtered control. Fig. 14 displaying the
spatial derivative of the outlet concentration shows the effect of the
control singularity at 𝑡 = 10min.

5. Conclusion

In this paper, the ZD and ZGD methods are applied to solve the
velocity control problem of hyperbolic DPSs. It is shown that these
methods easily allow the design, following the late lumping approach,
of a stable infinite-dimensional state feedback that enforces output
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Fig. 14. Non-isothermal plug flow reactor: evolution of the 𝐶𝐵 concentration derivative
at 𝑧 = 𝐿 with ZGD state feedback.

tracking. The design consists solely of evaluating the derivatives of the
tracking error.

The ZD method yields a state feedback that is impractical when
the initial profile is uniform, leading to a control singularity issue.
Therefore, by combining the ZD method with the Gradient Dynamics
method, a ZGD state feedback can be designed to address the tracking
problem even when the initial profile is uniform. The ZD state feedback
involves one tuning parameter that fixes the tracking error convergence
rate, whereas ZGD state feedback involves a second tuning parameter
that can be used to enhance the transient response.

The tracking capabilities of both ZD and ZGD state feedbacks are
demonstrated through simulation in the case of a steam-jacketed tubu-
lar heat exchanger and a non-isothermal plug flow reactor. The con-
ducted study demonstrates that the ZGD controller not only successfully
addresses the singularity problem but also enhances the performance.

Thus, the present study shows that ZD and ZGD are two effective
tools that can be used for the design of infinite-dimensional state
feedback for DPSs. The design does not require manipulation of partial
differential equations but consists of evaluating derivatives, which is
simple to accomplish. Additionally, the tuning of the controllers can
be achieved by adjusting the 𝜆 and 𝛾 parameters. However, for prac-
tical implementation of the developed state feedbacks, an observer is
essential for estimating the entire state of the hyperbolic DPS.

The developments of the present study can serve as a starting point
or catalyst, inspiring the extension of ZD and ZGD methods to other
classes of DPS problems and fostering the development of theoretical
results. Future work should extend the ZD and ZGD methods to diverse
distributed parameter systems, encompassing dual-flow hyperbolic sys-
tems and those described by fractional and integro-partial differential
equations. Additionally, it should focus on developing state feedback
control capable of effectively rejecting disturbances based on the ZD
and ZGD methods.

CRediT authorship contribution statement

Ahmed Maidi: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Formal anal-
ysis, Conceptualization. Radoslav Paulen: Writing – review & editing,

isualization, Validation, Supervision, Methodology, Conceptualiza-
ion. Jean-Pierre Corriou: Writing – review & editing, Visualiza-
ion, Validation, Supervision, Software, Methodology, Formal analysis,
onceptualization.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
9

ionships which may be considered as potential competing interests:
adoslav Paulen reports financial support was provided by Slovak
niversity of Technology in Bratislava. If there are other authors,

hey declare that they have no known competing financial interests or
ersonal relationships that could have appeared to influence the work
eported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

Radoslav Paulen acknowledges the funding from the Slovak Re-
earch and Development Agency under the project APVV-21-0019,
he Scientific Grant Agency of the Slovak Republic under the grant
/0691/21, by the European Commission under the grant no.
01079342 (Fostering Opportunities Towards Slovak Excellence in
dvanced Control for Smart Industries).

eferences

[1] Georges Bastin, Jean-Michel Coron, Stability and Boundary Stabilization of 1-D
Hyperbolic Systems, Birkhäuser, Cham, 2016.

[2] Willis Harmon Ray, Advanced Process Control, Butterworth, Boston, 1989.
[3] Panagiotis D. Christofides, Nonlinear and Robust Control of PDE Systems:

Methods and Applications to Transport-Reaction Processes, Birkhaüser, Boston,
2001.

[4] Erhard Bühler, Dieter Franke, Topics in Identification and Distributed Parameter
Systems, Vieweg+Teubner Verlag, Wiesbaden, 1980.

[5] Alexander Zuyev, Peter Benner, Stabilization of crystallization models governed
by hyperbolic systems, in: Grigory Sklyar, Alexander Zuyev (Eds.), Stabilization
of Distributed Parameter Systems: Design Methods and Applications, Springer,
Cham, 2021, pp. 123–135.

[6] Ahmed Maidi, Moussa Diaf, Jean-Pierre Corriou, Boundary geometric control of
a counter-current heat exchanger, J. Process Control 19 (2) (2009) 297–313.

[7] Ahmed Maidi, Moussa Diaf, Jean-Pierre Corriou, Boundary control of a parallel-
flow heat exchanger by input–output linearization, J. Process Control 20 (10)
(2010) 1161–1174.

[8] Panagiotis D. Christofides, Prodromos Daoutidis, Feedback control of hyperbolic
PDE systems, AIChE J. 42 (11) (1996) 3063–3086.

[9] Pavan Kumar Gundepudi, John C. Friedly, Velocity control of hyperbolic partial
differential equation systems with single characteristic variable, Chem. Eng. Sci.
53 (24) (1998) 4055–4072.

[10] Panagiotis D. Christofides, Control of nonlinear distributed process systems:
Recent developments and challenges, AIChE J. 47 (3) (2001) 514–518.

[11] Abhay Singh, Juergen Hahn, Effect of finite-dimensional approximations on
observability analysis of distributed parameter models, IFAC Proc. Vol. 40 (5)
(2007) 197–202, 8th IFAC Symposium on Dynamics and Control of Process
Systems.

[12] Huilan Shang, J. Fraser Forbes, Martin Guay, Feedback control of hyperbolic
distributed parameter systems, Chem. Eng. Sci. 60 (4) (2005) 969–980.

[13] Wei Wu, Ching-Tien Liou, Output regulation of nonisothermal plug-flow reactors
with inlet perturbations, Comput. Chem. Eng. 25 (2) (2001) 433–443.

[14] Christophe Prieur, Antoine Girard, Emmanuel Witrant, Lyapunov functions for
switched linear hyperbolic systems, IFAC Proc. Vol. 45 (9) (2012) 382–387.

[15] Martin Gugat, Optimal Boundary Control and Boundary Stabilization of
Hyperbolic Systems, Birkhäuser, Cham, 2015.

[16] Hebertt Sira-Ramirez, Distributed sliding mode control in systems described by
quasilinear partial differential equations, Systems Control Lett. 13 (2) (1989)
177–181.

[17] Eric M. Hanczyc, Ahmet Palazoglu, Sliding mode control of nonlinear distributed
parameter chemical processes, Ind. Eng. Chem. Res. 34 (2) (1995) 557–566.

[18] Ahmed Maidi, Jean-Pierre Corriou, Boundary geometric control of a linear stefan
problem, J. Process Control 24 (6) (2014) 939–946.

[19] Zheng Zheng, Delu Zeng, From zeroing dynamics to zeroing-gradient dynamics
for solving tracking control problem of robot manipulator dynamic system with
linear output or nonlinear output, Mathematics 11 (7) (2023).

[20] Yaqiong Ding, Hanguang Jia, Yunong Zhang, Binbin Qiu, High-order mod-
eling, zeroing dynamics control, and perturbations rejection for non-linear
double-holding water tank, Mathematics 11 (13) (2023).

[21] Yunong Zhang, Yaqiong Ding, Binbin Qiu, Jianfeng Wen, Xiaodong Li, ZD method
based nonlinear and robust control of agitator tank, Asian J. Control 20 (5)
(2018) 1–16.

[22] Yunong Zhang, Binbin Qiu, Xiaodong Li, Zhang-Gradient Control, Springer,
Singapore, 2020.

http://refhub.elsevier.com/S0959-1524(24)00050-7/sb1
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb1
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb1
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb2
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb3
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb3
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb3
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb3
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb3
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb4
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb4
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb4
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb5
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb5
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb5
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb5
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb5
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb5
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb5
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb6
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb6
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb6
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb7
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb7
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb7
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb7
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb7
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb8
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb8
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb8
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb9
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb9
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb9
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb9
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb9
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb10
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb10
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb10
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb11
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb11
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb11
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb11
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb11
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb11
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb11
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb12
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb12
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb12
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb13
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb13
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb13
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb14
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb14
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb14
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb15
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb15
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb15
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb16
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb16
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb16
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb16
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb16
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb17
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb17
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb17
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb18
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb18
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb18
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb19
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb19
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb19
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb19
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb19
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb20
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb20
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb20
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb20
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb20
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb21
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb21
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb21
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb21
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb21
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb22
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb22
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb22


Journal of Process Control 138 (2024) 103210A. Maidi et al.
[23] Zhan Li, Ziguang Yin, Hong Cheng, Tracking control of knee exoskeleton system
with time-dependent inertial and viscous parameters, IFAC-PapersOnLine 50 (1)
(2017) 1322–1327, 20th IFAC World Congress.

[24] Chaowei Hu, Dongsheng Guo, Xiangui Kang, Yunong Zhang, Zhang dynamics
tracking control of varactor system with stability analysis, in: 2017 13th
International Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), 2017, pp. 166–171.

[25] Jian Li, Mingzhi Mao, Yunong Zhang, Dechao Chen, Yonghua Yin, ZD, ZG and
IOL controllers and comparisons for nonlinear system output tracking with DBZ
problem conquered in different relative-degree cases, Asian J. Control 19 (4)
(2017) 1482–1495.
10
[26] Alberto Isidori, Nonlinear Control Systems, Springer, London, 1995.
[27] Amnon Pazy, Semigroups of Linear Operators and Applications to Partial

Differential Equations, Springer, New York, 1983.
[28] James C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction

to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge
University Press & Assessment, Cambridge, 2001.

[29] Alain Vande Wouwer, P. Saucez, William E. Schiesser, Simulation of distributed
parameter systems, Ind. Eng. Chem. Res. 43 (14) (2004) 3469–3477.

http://refhub.elsevier.com/S0959-1524(24)00050-7/sb23
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb23
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb23
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb23
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb23
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb24
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb24
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb24
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb24
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb24
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb24
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb24
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb25
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb25
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb25
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb25
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb25
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb25
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb25
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb26
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb27
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb27
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb27
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb28
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb28
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb28
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb28
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb28
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb29
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb29
http://refhub.elsevier.com/S0959-1524(24)00050-7/sb29

	Velocity control design of hyperbolic distributed parameter systems using zeroing dynamics and zeroing-gradient dynamics methods
	Introduction
	Control problem formulation
	State feedback design
	An overview of ZD and ZGD methods
	ZD design method
	ZGD design method

	Application to velocity control design
	State feedback design using the ZD method
	State feedback design using the ZGD method


	Application examples
	Steam-jacketed tubular heat exchanger
	ZD state feedback
	ZGD state feedback

	Non-isothermal plug flow reactor
	ZD state feedback
	ZGD state feedback


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


