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  Relativistic addition of velocities in a five-dimensional spacetime 
 Dipl.-Phys. Roland Alfred Sprenger, Germany  Abstract  Another method of adding relativistic velocities is shown. It uses a fifth dimension of spacetime rotating the framework of the Minkowski diagram into it and thus is an indication of the existence of a fifth dimension. As proof of correctness of the result of the rotation the addition theorem of velocities is derived from it. Photographs of a hardware model illustrate how to find the resulting velocity by the rotation into the five-dimensional spacetime. 

Alongside the paradox “c + u´ = c” is resolved.   1. Introduction  In Minkowski diagrams relativistic addition of velocities according to the addition theorem of velocities can be illustrated [1]. For example    v = 0,6 c   and     u´= 0,65 c results in     u = 0.899 c     

and in the according Minkowski diagram (fig.1)      u = Δx/Δt = (15.5 Ls)/(17.2 s) =0.901 c can be read, which means the same numerical value within the accuracy of drawings.  

                  



2  Fig. 1: Minkowski diagram of a uniformly moved rocket in space at a speed of v = 0.6 c, which shoots protons at the coordinate origin in the direction of the movement at a speed of  u´= 0.65 c . In the framework S of the observer the protons move on the red worldline.  One can imagine the oblique angled framework S´ with the coordinate axes x´ and t´ being originated by turning the rectangular framework S around the angle bisector by an angle φ into the fifth dimension (out of the drawing level), with the orthogonal projections of the axes x and t into the drawing level lying on the axes x´ and t´.  

Hereinafter is shown that the projection of the worldline of the body with the speed u´ (a proton) in the rest system of the body with the speed v (the rocket) into the drawing level coincides by the turning with its (red) worldline in System S. This means that velocities can be added relativistic assuming the existence of a fifth dimension and using it.   2. Adding velocities within the five-dimensional spacetime  The angle φ depends on the velocity v or on v/c in this way:  cosφ = tan (=> ? arctan @A)   . Proof:   Figure 1 shows that              B = =C ? 2D and    tanD = @A       , 

so  B = =C ? 2 arctan @A . Now B is substituted by the rotation angle φ . For that purpose in figure 2 is shown the spatial representation of the rotation of the line a in figure 1 around the angle bisector. By the rotation the line a becomes the line b.   

                         Fig. 2: Spatial representation of the rotation of the line a in fig. 1 around the angle bisector w by angle φ.   In the horizontal triangle can be seen     tan HC = I/CJ/C    , in the vertical triangle      cosK = I/CJ/C  . 
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Thus     cosK = MNO HC   and so     cosK = tan (=> ? arctan @A)    (1)  or     cosφ = tan (45° ? α) . In fig. 3 a rocket at the speed of   v = 0.2 c   fires a proton with the speed   u´ = 0.3 c   in the rest system of the rocket. The t´-

axis is the worldline of the rocket in system S, the green line is the worldline of the proton in S´ before the turning and  
the red line is the worldline of the proton in S after the turning respectively the projection of its worldline in S´. So the resulting velocity can be found turning the green worldline by the angle φ .  

                                             Fig. 3: Minkowski-diagram for the relativistic addition of the velocities  v = 0.2 c  and              u´ = 0.3 c ; The addition theorem of velocities results in u = 0.4717 c , the drawing in                    u=5.2 Ls / 10.8 s = 0.48 c . (The rotation angle is φ = 48.19° . With  tanU = VA = 0.4717  follows       U = 25,25° , see illustration by example 2 in the attachment) . 
 3. Derivation of the addition theorem of velocities 
As a proof that the turning of S´ into the fifth dimension actually results in the same relativistic sum of velocities as the 

Minkowski diagram and as the addition theorem of velocities now the addition theorem of velocities is deduced using 



4  the angle φ and the turning into the fifth dimension. 
Rotating the framework S´ into the fifth dimension by the angle K produces the angle α between the time axes (see fig. 3) and the projection of the green worldline of a proton in S´ becomes the red worldline in S which includes the angle γ with the t-axis. The angle bisector includes the angle δ with the green worldline and the angle ε with the red worldline.  

Figure 3 shows             tanD = @A            ,                tanU = VA          ,      tan (45° ? Z) = V´A           (2) 
By the rotation the projection of the angle δ becomes the angle ε with the equation       tan[ = tanZ ∙ cosK . 
 

Proof: 
 

 Fig. 4: Downside view (left) and side view (right) of the rotation of the angle δ out of the drawing level; ε is the orthogonal projection of δ into the drawing level.
According to figure 4  ] = N ∙ cosK 

as well as    tanZ = N 

and    tan[ = ]     . 

So    tan[ = N ∙ cosK 

and   tan[ = tanZ ∙ cosK. 

With  [ = 45° ? U follows 

 tan (45° ? U) = tanZ ∙ cosK   .   (3) 

From the addition theorem of the tangent 

follows    

tan(45° ? U) = ^_`abc^d`abc = ^_V/A^dV/A = A_VAdV     . 

For tan δ follows from (2)  

 tan(45° ? δ) = ^_`abe^d`abe = V´A  

so     

 1 ? tanδ = V´A (1 f tanδ) 

and     

 tanδ = ^_V´/A^dV´/A = A_V´AdV´  . 

For cos φ follows from 

 cosφ = tan (45°? α)     

     

 cos φ = ^_`abg^d`abg = ^_@/A^d@/A = A_@Ad@   . 
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From (3) then follows    

  
A_VAdV = A_V´AdV´ ∙ A_@Ad@     ,   (4) 

then     

 (h´ f i) ∙ jC = h(jC f h´i)  

and so     

 h = V´d@^dk´lm²  , 

the addition theorem of velocities. 

  4. Examples   This result shall be illustrated on the basis of the second example with  v = 0.2 c         and              u´ = 0.3 c.  
If a straight line is given by the unit 
vector pO^OCOqr then any point in ℝq is 
turned by the rotation matrix 

 by the angle α around that straight line [2]. For  D: = K = 48,19°  and the unit vector of the angle bisector between the 
coordinate axes x and t   t1/√21/√20 v   follows 
the rotation matrix       
 p 0,8333 0,1666 0,52700,1667 0,8333 ?0,5270?0,5270 0,5270 0,6667 r   . 
The point (3|10|0) of the worldline of the proton in framework S´ before the turning is mapped by this matrix to the point (4,167|8,833|3,629) which is positioned exactly over the worldline of the proton in framework S. For with     tanU = 4,167/8,833        follows      U =25,26°   , which is the same angle as calculated at fig. 3 (the difference of 0.01° is a rounding error). 

This means, that instead of the addition theorem of velocities or a Minkowski diagram a rotation matrix can be used, for with tanU = h/j follows  u = 0.4718 c  (the difference of 0.0001 is a rounding error).    
Moreover the angel γ and from that the velocity u can be calculated with analytical geometry using the rotating by the angle φ too (see the lines d and e in fig. 5). 
The 5d-model is confirmed at a hardware-model, see the photographs in figures 5, 6, 8, 9 .  Cameras do not produce parallel projections but central projections. That is why there are slight distortions and the right point of taking the pictures had to be chosen from a distance as large as possible. So the pictures had to be enlarged which caused fuzziness.  
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    Fig. 5: Right-angled geo-triangle rotated by the angle K  at  v = 0.2 c and   u´ = 0.3 c . The dark worldline of the proton on the geo-triangle transitions differentiably into its red worldline in framework S (the gap is caused by the flattened edge of the geo-triangle).  

    Fig. 6: The same object as in fig. 5 in side views which are orthogonal to each other; because of the central projection the angle K is a bit bigger than 48,19° (50,5°). The parallel projection in fig. 10 shows an angle K = 48.2° . 
 
Parallel projections are produced by a computer code written with GNU Octave (see attachment and fig. 7).  
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               Fig. 7: The example of fig. 3 and 5, left side the spatial representation with the axes x, t and x5, the blue worldline for v = 0.2 c, the dotted green worldline for u´ = 0.3 c, the red worldline of the resulting velocity u = 0.4717 c, the turned black t-axis and the turned green worldline. Right side the vertical projection shows that the blue worldline is the exact projection of the t-axis and the red worldline is the exact projection of the turned green worldline. 
By clicking the icon with the double arrow (rotate) in one of the figures 7 the figure can be rotated respectively the point of view can be changed. This way the vertical projection can be produced. 

The computer program “Video_turning_to_plan.mp4” (see attachment after fig. 9) shows this rotation from an oblique view to the plan.  
 

                   Fig. 8:  Comparison of the central projection (left side) and the parallel projection (right side) for   v = 0.3 c   and   u´ = 0.8 c   (u = 0.8871 c). The red worldline is covered by the 



8  green worldline. Comparable angles are equal in the left and right picture; they are independent of the scales. See also attachment fig. 9. 
The resulting velocity u can also be calculated by means of analytic geometry using the blue lines g, d and e in fig. 3. And 

u can as well be calculated from the angles φ, α and β´ (see fig. 9). 
                               
 5. Resolution of the paradox “c f u´ = c “ 
 
In this fife-dimensional model of the world resolves the paradox   “c f u´ = c”   which was confirmed by an experiment at CERN in 1964, when pi-mesons with v = 0.00075 c  emitted gamma-rays in the direction of movement, the velocity of which was measured as c. In the case of   

v = c   the worldline of the first object is the angle bisector and the turning angle results in   φ = 90°. Then the orthogonal projection of the worldline of the second object of any velocity in S´ coincides with the angle bisector in S, see fig. 9. 

 Fig. 9: Left side applies   0 <= φ < 90°   , right side applies  φ = 90° . If   φ = 90°   the orthogonal projection of the green worldline of the second object coincides with the angle bisector w for any angle β´ (0 <  β´ <= 45°). So the resulting velocity in S always is c. Paradoxically the first and the second object move together in S although the first object emits the second one. But in the fifth dimension they move away from each other at the speed u´. 
 



9  6. Summary 
The shown method of adding relativistic velocities together with the derivation of the addition theorem of velocities supports the ingenious idea of Theodor Kaluza, who introduced a fifth dimension as the first one in 1921 [3], as well as the 

Kaluza-Klein-theory [4]. Furthermore a five-dimensional spacetime may give the possibility to explain quantum entanglement and the orbitals of atoms being standing waves of the  three-dimensional space. 6. Acknowledgement 
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 Attachment  
GNU-Octave-Program for fig. 7: 
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 First type this code into the editor window (as shown here), because it can be corrected only there. Store it with a name followed by .m ; then copy it to the command window and start it with that name, but without .m 
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   Fig. 9:  :  Comparison of the central projection (left side) and the parallel projection (right side) for   v = 0.6 c   and   u´ = 0.6 c   (u = 0.8824 c). 
 
GNU-Octave-program for the “Video_turning_to_plan.mp4”: 

 



12  Recommendation: First type in the command window ‘pkg load video’, copy the code to the command window and start it with ‘open Video_turnig_to_plan.mp4’. 
 

 Fig. 10: Parallel projection of example 2 with v = 0.2 c , u´ = 0.3 c and φ = 48,19°. The measurement of φ in the turned left diagram gives the angle 48.2°. 


