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ABSTRACT
The quest for retrieving relevant media for a given query is well-
studied and has various applications. Modern publicly available
media collections provide diverse modalities of the same objects,
which can enhance search. Our research delves into enhancing
media retrieval by effectively representing and querying multi-
modal data. In the retrieval methods’ ranking procedure, we exam-
ine efficiency through techniques like approximate nearest neigh-
bor (ANN) indexing and high-performance computing (HPC). Our
method, MuseHash, is proposed for single media object retrieval
and is applied to images and 3D objects, outperforming existing
methods on diverse datasets. Moreover, it significantly reduces exe-
cution times with ANN and HPC. Future plans include considering
multimodality in the video retrieval domain.

CCS CONCEPTS
• Information systems→ Information retrieval; Information re-
trieval query processing; • Computing methodologies→ Super-
vised Learning.
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1 INTRODUCTION
In today’s digital era, the Internet grants us easy access to a plethora
of media, ranging from simple images and text to more intricate
structures like videos and 3D graphics. For instance, when viewing a
scene from our favorite series, we perceive it as a dynamic structure
comprising a sequence of frames, each accompanied by captions,
timestamps, locations, and audio elements. Moreover, within the
video, characters exist within a 3D space, adding layers of complex-
ity. Despite its complexity, each video component corresponds to a
specific moment.
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These diverse forms of media find applications across various
domains, including urban development [8], gaming, healthcare [37],
historical analysis [25], archaeology [6] and computer-aided design
(CAD) [12]. However, the challenge lies in efficiently representing
and amalgamating this heterogeneous data. Therefore, our primary
aim is to devise methods for effectively representing and integrat-
ing [1, 2, 10, 13, 40] the information within these media collections.

To achieve this aim, we categorise different information of me-
dia into distinct abstract views, known as modalities. Our research
focuses on four primary modalities: visual, which encompasses
high-resolution images (VHR), low resolution images from drones
[18, 34] and individual frames extracted from videos; text, including
keyframes of images and complex captions generated by models
like CLIP [32]; temporal, referring to timestamps or timeframes
within videos, capturing the temporal aspect of the data; and spa-
tial, involving geographical coordinates and intricate structures
such as point clouds representing objects in 3D space [26]. While
other modalities exist, such as in medical applications, our current
research primarily emphasizes these four. This classification en-
ables us to develop a structured approach to represent and analyse
diverse media collections effectively.

By comprehending and effectively incorporating these modali-
ties, we aim to enhance the management and analysis of diverse
media collections. As we navigate these challenges, our research
direction encompasses the following objectives:

Objective 1 Developing multimodal retrieval approaches for
static moments, spanning from simple image collections to
complex 3D datasets (Section 3.1).

Objective 2 Exploring multimodal methods in large-scale re-
alistic scenarios via indexing and query processing optimiza-
tion (Section 3.2).

Objective 3 Exploring multimodal methods in video retrieval.
This will be outlined as future steps in Section 4.

To address the first objective, we created MuseHash [31], a super-
vised Bayesian framework for unimodal image retrieval. We then
advanced MuseHash [29] to facilitate multimodal retrieval, a devel-
opment lauded for its adaptability across datasets and recognised
excellence in 3D object retrieval [28].

For the second objective, we have connected ANN methods,
MuseHash, and High-Performance Computing (HPC) infrastruc-
tures [30]. Our observations indicate that certain ANN methods
outperform brute-force ranking approaches. GPUs show potential
for longer hashes due to their parallel processing capabilities. Our
research underscores the superiority of query parallelism over data
parallelism in retrieval strategies.

The remainder of this paper is organized as follows: Section 2
delves into previous works in the field. Section 3 provides an
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Figure 1: Overall outcomes.

overview of our methodologies and outcomes on multimodality
in image retrieval (Section 3.1) as well as our query processing
evaluation techniques and its outcomes (Section 3.2). Our research
plans for the next year are outlined in Section 4. Finally, Section 5
concludes the paper.

2 BACKGROUND
In this section, we overview current state-of-the-art methods in
our research field, including multimodal retrieval techniques (Sec-
tion 2.1) and query processing evaluation methods (Section 2.2).

2.1 Cutting-edge Multimodal Retrieval
Techniques

In our investigation of multimodality in image retrieval, we cat-
egorise it into unimodal and multimodal scenarios based on the
number of modalities involved. We prioritise supervised techniques,
especially supervised hashing methods, known for their superior
retrieval accuracy compared to unsupervised methods, along with
their memory efficiency and speed in the retrieval process.

In unimodal image retrieval, a single modality, typically one
specific type of data, is utilized. Our study explores various modali-
ties such as text, image, datetime, location, mesh, and point-cloud,
investigating diverse retrieval scenarios and applications. Notably,
modalities like datetime and location have not received as much
research attention as image and text modalities.

Supervised methods in this context often leverage deep learning
networks like Convolutional Neural Networks (CNNs) for feature
learning and hash function development. Deep Cauchy Hashing
(DCH) [7] optimizes hash codes using Cauchy cross-entropy loss
and quantization loss within a deep learning framework. Semantic
Preserving Hashing (SePH) [21] minimizes Kullback-Leibler diver-
gence to approximate semantic affinities while unifying hash codes
for various views.

We surveyed various supervised hashing methods for multi-
modal image retrieval, which encompass strategies such as similarity-
based, adversarial-based, deep neural networks, and discrete-based

methods. FCMH [36] optimizes binary codes and DOCH [41] gen-
erates high-quality hash codes. LAH [39] focuses on image rep-
resentations and label co-occurrence embeddings with Cauchy
distribution-based hash functions. SSAH [19] incorporates a self-
supervised semantic network and adversarial learning. GSPH [24]
learns hash codes and functions for two modalities. MTHF [22]
transfers knowledge from single-modal to cross-modal domains,
while KDLFH [20] directly learns binary hash codes.

While some methods are tailored for cross-modal scenarios, ex-
ceptions like LAH [39] support multimodal queries. In the 3D re-
trieval domain, CMCL [15] integrates multiple 3D modalities but
can be computationally intensive and dataset-sensitive.

2.2 Cutting-edge Optimization Methods
We selected several cutting-edge ANN methods based on their
unique and complementary features, following the approach out-
lined by Aumüller et al. [3]. These include tree-based structures,
graph-based structures, pruning techniques, brute-force approaches,
and baseline methods.

3 CURRENT RESEARCH RESULTS
Figure 1 visually summarizes our research outcomes, each linked
to its respective section for more details. To simplify, the light blue
boxes represent the unimodal MuseHash method [31], which is
the foundation of our work. The light purple blocks signify the
extended MuseHash method [29], to handle multimodal data. The
light orange and green blocks represent the investigations and
evaluations in query processing, introducing two new components
to our research.

3.1 Multimodality in Multimodal Retrieval
3.1.1 Methodology. In our research, we created a novel super-
vised hashing method called MuseHash [31]. MuseHash leverages
Bayesian principles for hash function learning and adapts to the
data’s statistical properties, enhancing overall hashing and retrieval
system performance. The method comprises three main phases:
training, offline, and querying, each illustrated with light blue boxes
in Figure 1.
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Table 1: MAP and accuracy results for ModelNet40 and BuildingNet_v0 with different code lengths or number of epochs and
query modalities.

Dataset Query No. CMCL[15] Hash MuseHash [29]
Epochs mAP Accuracy Length mAP Accuracy

M
od

el
N
et
40

Mesh 10 0.7097* 0.7916* 16 0.8010 0.9431
50 0.7099* 0.8001* 32 0.8056 0.9488
100 0.7103* 0.9791 64 0.8101 0.9500
150 0.6695* 0.9895 128 0.8122 0.9510

Visual 10 0.6911* 0.9012* 16 0.8184 0.9501
Mesh 50 0.7010* 0.9045* 32 0.8201 0.9578

100 0.7122* 0.9091* 64 0.8234 0.9601
150 0.7415* 0.9129* 128 0.8212 0.9525

Visual 10 0.7097* 0.7916* 16 0.8051 0.9611
Mesh 50 0.7099* 0.8001* 32 0.7976 0.9601

Point Cloud 100 0.7103* 0.9791 64 0.7923 0.9583
150 0.6695* 0.9895 128 0.7911 0.9550

Table 2: Multimodal query results for different datasets and
different code lengths and all modalities.

Dataset Method 16bit 32bit 64bit 128bit

AU-AIR LAH 0.9054* 0.8723 0.8700* 0.8821*
MuseHash 0.9726 0.8790 0.8861 0.9019

MarDCT LAH 0.7511* 0.7601* 0.7710* 0.7765*
MuseHash 0.7803 0.7811 0.7851 0.7899

SeaDronesSee LAH 0.8422* 0.8450* 0.8501* 0.8607*
MuseHash 0.8626 0.8690 0.8741 0.8819

Mirflickr25K LAH 0.8233* 0.8309* 0.8440* 0.8401*
MuseHash 0.8503 0.8541 0.8551 0.8599

NUS-WIDE LAH 0.8513* 0.8609* 0.8743* 0.8823*
MuseHash 0.9303 0.9341 0.9381 0.9409

During training, hash functions are generated from the training
collection via Bayesian ridge regression, mapping feature vectors
from the visual modality to the Hamming space. Affinity matrices
are created using both ground truth labels and cosine similarity,
from which semantic probabilities are derived through normaliza-
tion. In the offline phase, features are extracted from the retrieval
set for the visual modality. Using the learned hash functions, hash
codes are computed and stored in a database, ensuring efficient
storage and retrieval of multimedia data. Finally, during the query-
ing phase, the learned hash functions are applied to a given query,
and the database is queried using Hamming distances to retrieve
the top-k relevant results.

To address flexible multimodal approaches, we extended Muse-
Hash [31] to support any number of modalities [29]. This enhance-
ment enables efficient fusion of different modalities for the same
object, computing hash codes and retrieving relevant items.

3.1.2 Evaluation. The researchers in the retrieval domain are more
familiar with very high resolution data, rather than data from under-
water and aerial footage. It is a challenge to handle all this different
collections in such a way that the retrieval is efficient.

Hence, MuseHash [29] is specifically is designed specifically
for multimodal queries across diverse collections. In our study,
we compare MuseHash with LAH across five datasets (Table 2),
varying hash code lengths and utilizing all available modalities. In
specific table, both the query and each element within the collection
leverage all available modalities, integrating them into a unified
hash code. While LAH can only fuse two modalities, MuseHash
accommodates more than two modalities.

AU-AIR [5] and MarDCT [4] are UAV datasets that contains
image with temporal, and image with geotemporal information,
respectively. SeaDronesSee [35] is a underwater dataset, which in-
clude images with geotemporal information. MIRFlickr25K [14] and
NUS-WIDE [9] are benchmark high resolution datasets commonly
utilized in the literature.

MuseHash consistently outperforms LAH in all cases with sta-
tistical significance (the symbol ”*” denotes statistical significance
after t-test). For enhanced evaluation robustness, we utilized a 5-fold
cross-validation methodology across all experiments. Particularly,
MuseHash performs exceptionally well when using all modalities
in the MarDCT, MIRFlickr25K, and NUS-WIDE datasets, benefiting
from the high-quality information present in these collections.

In summary, MuseHash emerges as a superior performer, con-
sistently outpacing seven state-of-the-art methods across diverse
image collections in both multimodal and unimodal scenarios. It
achieves this by leveraging a combination of various visual de-
scriptors such as VGG16 and ResNet50, and textual descriptors like
Bag-of-Words (BoW) or BERT. Moreover, MuseHash offers flexibil-
ity with hash code lengths ranging from 16-bit to 128-bit, catering
to different requirements and scenarios. This comprehensive ap-
proach enables MuseHash to exhibit greater robustness compared
to existing methods, making it a compelling choice for multimodal
query tasks across diverse datasets.
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Expanding into 3D collections, we have extended the application
of MuseHash from image retrieval to 3D object retrieval [28]. Specif-
ically, we have adapted the multimodal MuseHash technique for
volumetric data queries. In this context, the multimodal approach
integrates various types of data representations associated with
3D objects, such as meshes, point clouds. By doing so, MuseHash
extends its utility beyond traditional 2D image datasets, allowing
for more comprehensive and effective retrieval of 3D objects based
on multimodal queries.

During evaluation, MuseHash consistently outperformed other
methods in both unimodal and multimodal scenarios across differ-
ent hash lengths and epochs for the ModelNet40 dataset (Table 1).
ModelNet40 [38] and BuildingNet_v0 [33] are two publicly avail-
able benchmark datasets, containing image, mesh, and point cloud
representations of 3D objects. The former is a dataset of 3D CAD
models dedicated to object categories (e.g., car, airplane), while
the latter includes different building types (e.g., church, palace)
associated with their textures (e.g., color, material).

While the CMCL approach excelled in accuracywithmore epochs,
its mAP performance fell short (similarly, the symbol ”*” denotes
statistical significance after t-test). Likewise, we conducted 5-fold-
cross validation in the evaluation. Overall, MuseHash demonstrated
competitive performance. The multimodal variant showed signifi-
cant performance improvements with longer code lengths (16 to
32), especially for larger lengths (64 and 128). However, extending
the code length beyond this range did not yield substantial gains.

In conclusion, our study applied advanced image retrieval meth-
ods to 3D object retrieval, adapting MuseHash for volumetric data
queries. MuseHash’s exploitation of inter-modality relationships
consistently outperformed three state-of-the-art methods across
two benchmark image collections.

3.2 Evaluation in Query Processing
3.2.1 Methodology. This section discusses the relationship be-
tween MuseHash, Approximate Nearest Neighbor (ANN) methods,
and High-Performance Computing (HPC) Infrastructure [30]. Fig-
ure 1 illustrates new components integrated into the MuseHash
architecture, depicted in light green and light orange. The light
green block represents the integration of ANN methods into the
MuseHash ranking process, while the light orange block signifies
optimization techniques applied to feature and ranking processes.

We prioritise hardware resource optimization through parallel
computing using multithreading and GPUs, particularly leverag-
ing NVIDIA CUDA for efficient feature extraction in both offline
and querying phases. Additionally, we explore multi-GPU setups
to significantly enhance performance. To evaluate our methods’
performance, we utilize two approaches: data parallelism and query
parallelism.

Data parallelism Splitting the data into segments enables dis-
tribution among multiple processes for searching, allowing
us to assess system scalability when numerous processes
collaborate to process the data.

Query parallelism Maintaining a pool of processes ready to
handle incoming queries allows for efficient allocation of
queries, aiding in the assessment of how effectively the sys-
tem manages concurrent queries.

3.2.2 Evaluation. When handling multimodal media, the speed
and efficiency are crucial. Our objective [30] is to identify effective
techniques for data acquisition and analysis across both CPU and
GPU platforms. The CPU experiments encompass datasets such
as AU-AIR and LSC’23 [11] datasets, while the GPU experiments
focusing solely on AU-AIR.

The LSC’23 dataset was generated by an active lifelogger over
the course of 18 months and captured by a wearable camera. Every
image within this dataset is associated with pertinent captions, tem-
poral data, spatial information, or a combination of these elements.
Below, we summarize our main findings.

Superior Throughput and Quality The graph-basedHnswlib
method excelled in both throughput and result quality

Multi-Core Synergy Combining specific data organization
methods with utilizing multiple cores of a computer concur-
rently results in accelerated processing.

Comparison of GPU and CPU CPUs beat GPUs in some tasks,
needing smart strategies for specialised chip potential. Com-
plex data slows processing, crucial to tackle for efficiency.

4 FUTUREWORK
Our plans for the remainder of the thesis involves developing an
efficient video data querying framework. Initially, we aim to de-
vise a method tailored to benchmark datasets and benchmark it
against state-of-the-art (SOTA) methods. Furthermore, we plan to
evaluate video retrieval methods using more realistic workloads
and datasets like the Known-Item Search (KIS) tasks from Video
Browser Showdown (VBS)[23] and Lifelog Search Challenge (LSC)
[11] competitions. Additionally, inspired by recent research, we seek
to explore various modalities for the VBS task, investigating which
combinations—such as action-based, visual-based, or CLIP-based—
yield the most benefit for our system[16, 17]. If initial approaches do
not yield expected results, we consider examining SOTA reinforce-
ment learning methods for the KIS task as an alternative direction.
Subsequently, we intend to integrate our proposed techniques into
our search engine system, VERGE [27], which participates in the
VBS competition. This will allow us to observe first-hand how our
framework performs in practical search scenarios.

5 CONCLUSION
In our multimodal image retrieval research, MuseHash, consistently
outperforms state-of-the-art methods in uni-modal and multimodal
scenarios. Extending MuseHash to 3D object retrieval demonstrates
its versatility with volumetric data. We highlight the efficiency
of ANN methods over brute-force approaches. Scalability experi-
ments reveal GPUs’ potential for longer hashes. Query parallelism
surpasses data parallelism in retrieval strategies, enhancing per-
formance and adaptability. Finally, we conclude with some future
research directions in video retrieval field.
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