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Introduction



Progress



Progress

● Got going with Kryptowire TA1 Platform
● Started development using CAGE 2
● Started Modeling Red Agents Using Inverse RL
● Fast NetKAT implementation
● Standing Up Aether OnRamp



Trajectory

● Crawl (6 month)
● Walk (6 month)
● Run (6 month)



Collaboration Efforts



● Scenario of a network attack
○ Red Agent (malicious): infiltrates 

network
○ Blue Agent (defensive): protects the 

network
○ Green Agents (neutral users): generate 

noise

● Integrated with CybORG, a 
reinforcement learning gym

Cage Challenge: Overview

Figure 1: Network Topology (Cage Challenge 2)



Cage Challenge: Red Agent Actions

Figure 2: Effect of actions on host state (Cage Challenge 2)



Early Results



Learning Approach for Modeling Red Agents

Imitation Learning: learn red agentsʼ behavior from their traces

● Real-world scenario: only have examples (data) of network exploit 
(i.e. Red agent infiltration)
○ No access to novel Red agents for simulation

● Once red agents are learned: train blue agents against them
○ Targeted RL training
○ Adversarial RL training: train Blue and Red to fight each other

■ Often results in very conservative behaviors



Reinforcement Learning Terminology



Reinforcement Learning Terminology

States: configuration of the 
environment

Observation: environment 
information observed by an agent

Policy: how an agent decides what 
action to take

Rollout: a sequence of states, 
actions, and associated reward



Behavior Cloning (BC)



Behavior Cloning (BC)

1. Collect data from environment with Blue, Green, Red agents
○ (Blue agent observation, Red agent action)

2. Train neural network on collected data
○ Blue agent observation → predicted Red agent action

3. Created a learned Red agent: used trained neural network as policy
4. Collected reward during rollout: environment with Blue, Green, and learned Red 

agent
○ Measure of learned Red agentʼs quality: reward collected during rollout



BC: 1 Input Observation

Red Agent Blue Agent

Training Metrics Learned Red Agent True Red Agent

Train Loss Train Accuracy
Validation 
Accuracy Reward

Standard 
Deviation Reward

Standard 
Deviation

B-Line
React
Remove 0.16 0.95 0.93 556 361 947 193

B-Line React Restore 0.64 0.77 0.77 -10.0 0.0 508 366

Meander React Remove 0.71 0.72 0.67 11.1 39.5 630 259

Meander React Restore 1.10 0.56 0.53 3.55 7.77 185 210



BC: 4 Input Observations

Red Agent Blue Agent

Training Metrics Learned Red Agent True Red Agent

Train Loss Train Accuracy
Validation 
Accuracy Reward

Standard 
Deviation Reward

Standard 
Deviation

B_Line
React
Remove 0.038 0.986 0.967 694 305 947 193

B-Line React Restore 0.0372 0.987 0.965 484 336 508 366

Meander React Remove 0.327 0.870 0.710 255 246 630 259

Meander React Restore 0.615 0.762 0.587 77 141 185 210



BC Plot: Reward vs. Number of Input Observations



BC Plot: Reward vs. Dataset Size



Results



Issue of Behavior Cloning: Distribution Mismatch

Learning to Drive
Compounding error makes 
learner deviate from the 
expert track quickly



Inverse RL to the Rescue
1. Inverse RL aims to learn a reward model from the data 

(e.g., red agentʼs reward function when they plan 
attacks)

2. It then learns a policy to optimize the learned reward
3. The learned policy acts as the predictive model for the 

red agent



IRL Results



Next Steps

1. New IRL algorithms for improving modeling red agents;
2. Training RL agents against the learned red agents
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KATch
A Fast Symbolic Verifier for NetKAT

Mark Moeller, Jules Jacobs, Nate Foster, Alexandra Silva (Cornell), Olivier Savary Belanger,
David Darais, Cole Schlesinger (Galois), Steffen Smolka (Google)



2

The Control Plane and Network Defense Agents

Control Plane
• Computes routing tables
• Ensures network connectivity
• Enforces network policies

Network Defense Agents
• Detects and responds to network attacks
• Example: Security breach containment
• Example: DDoS mitigation
• Action space?
• Modify routing tables?
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Neural and Symbolic AI

Neural Strengths
• General pattern recognition
• Learns from experience
• Adaptability to new situations
• Ideal when explicit programming is

difficult

Symbolic Strengths
• Domain specific reasoning
• Guarantees correctness
• Verifiable and explainable
• Ideal when strict compliance with

rules is required



4

Neural+Symbolic AI in Network Defense: Idea

Neural
• Utilizes deep learning for real-time

attack detection and response
• Adapts to evolving network threats
• Modifies routing tables dynamically
• Example: Detecting and rerouting

traffic to mitigate DDoS attacks
• Example: Detecting and isolating

compromised hosts

Symbolic
• Computes consequences of routing

changes
• Ensures correctness of routing tables
• Verifies adherence to network

policies and security rules
• Example: Validating routing paths

for security compliance
• Example: Verifying reachability of

critical network services
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NetKAT: Symbolic Network Reasoning

NetKAT: network specification language for SDN
• Network topology
• Routing tables
• Network-wide policies

Verification of network policies
• Security properties, e.g. slice isolation
• Operational properties, e.g. reachability
• Verified in a common framework

Problem: NetKAT verification is slow
Not suitable for real-time network defense



6

KATch
A Fast Symbolic Verifier for NetKAT
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KATch

A new NetKAT verifier that is
• Fast: 1000× faster
• Symbolic: explains verification failures
• Scalable: handles larger networks
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Full Reachability
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Detailed comparison: (un)reachability and slice isolation

Name Size Reachability Unreachability Slicing Min
(atoms) KATch Frenetic KATch Frenetic KATch Frenetic Speedup

Layer42 135 0.00 0.04 0.00 0.04 0.01 0.07 7×
Compuserv 539 0.01 0.36 0.01 0.38 0.01 0.85 36×
Airtel 785 0.01 0.83 0.01 0.84 0.02 2.08 83×
Belnet 1388 0.01 3.17 0.01 3.16 0.04 7.99 200×
Shentel 1865 0.02 4.01 0.02 4.00 0.04 9.80 200×
Arpa 1964 0.01 4.32 0.02 4.32 0.05 10.99 216×
Sanet 4100 0.04 23.46 0.03 25.23 0.12 62.70 522×
Uunet 5456 0.04 81.54 0.04 81.92 0.15 204.85 1366×
Missouri 9680 0.11 161.28 0.10 165.85 0.27 519.46 1658×
Telcove 10720 0.09 464.15 0.08 465.27 0.28 1274.24 4551×
Deltacom 27092 0.31 2392.56 0.30 2523.03 0.75 7069.54 7718×
Cogentco 79682 0.97 22581.39 0.88 23300.87 1.78 53066.82 23280×
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Synthetic combinatorial benchmarks
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Conclusion

NetKAT verification can be fast

Can we combine neural and symbolic AI?











5G networks -

 5G Mobile Network two main subsystems : 

1. RAN - manages radio resources(spectrum)
2. Mobile Core - provide packet data network to mobile subscribers

AetheronRamp - Private Enterprise 5G network 

● operational cluster that is capable of running 24/7 and supports live 5G 
workloads.

● Cluster containerizing subsystems components, can scale horizontally with 
dynamic workloads. 



Pronto & AetherOnRamp Demo  
Pronto 4G network  

● Current testbed located at Gates Lab and 
Robotics Lab.

● Supports both direct access 4G 
connectivity, extended with APN 
connectivity 

AetherOnRamp 5G network

● Work in Progress, currently emulate 
UEs(mobile devices) control and data 
plane connectivity



Crawl Questions
● Learn about one another's approaches, find integration points, and collaborate on shared 

infrastructure
● What network should we model first and what workflows should be present?
● What agent actions will be simulated and executed?
● What is a ‘good’ resiliency criteria and how will we judge whether your approach is 

successful?
● What data types are needed for each performer and what data can be provided by each 

performer?
○ Data for attackers
○ Reward function for defenders (domain knowledge, Inverse RL)

● How do we collaborate on API design and code interfaces?
● What open-source technology can enable an end-to-end integration demo quickly?
● Who is the intended operator of your approach and what is the desired impact/benefit to 

their job?


