
LANCER
Cornell Site Visit
November 30, 2023

Outline

● [15 minutes] Introduction (Nate & Wen)
○ Team Introductions
○ Technical Approach

● [10 minutes] Progress Since Kick-Off (Nate & Wen)
○ Executive Summary
○ Planned Trajectory for end of Phase I

● [15 minutes] Collaboration Efforts (Nate & Rebecca)
○ CAGE
○ Talking to Kryptowire
○ Network Action Space

● [60 minutes] Early Results
○ [20 minutes] NetKAT (Jules & Nate)
○ [30 minutes] Inverse RL (Nico/Rebecca & Wen)
○ [10 minutes] Aether: Pronto + OnRamp (Hussain & Nate)

● [20 minutes] Response to Crawl Questions (Everyone)
● [30 minutes] Budget & Contracting (Shailja & Nate)

Introduction

Progress

Progress

● Got going with Kryptowire TA1 Platform
● Started development using CAGE 2
● Started Modeling Red Agents Using Inverse RL
● Fast NetKAT implementation
● Standing Up Aether OnRamp

Trajectory

● Crawl (6 month)
● Walk (6 month)
● Run (6 month)

Collaboration Efforts

● Scenario of a network attack
○ Red Agent (malicious): infiltrates

network
○ Blue Agent (defensive): protects the

network
○ Green Agents (neutral users): generate

noise

● Integrated with CybORG, a
reinforcement learning gym

Cage Challenge: Overview

Figure 1: Network Topology (Cage Challenge 2)

Cage Challenge: Red Agent Actions

Figure 2: Effect of actions on host state (Cage Challenge 2)

Early Results

Learning Approach for Modeling Red Agents

Imitation Learning: learn red agentsʼ behavior from their traces

● Real-world scenario: only have examples (data) of network exploit
(i.e. Red agent infiltration)
○ No access to novel Red agents for simulation

● Once red agents are learned: train blue agents against them
○ Targeted RL training
○ Adversarial RL training: train Blue and Red to fight each other

■ Often results in very conservative behaviors

Reinforcement Learning Terminology

Reinforcement Learning Terminology

States: configuration of the
environment

Observation: environment
information observed by an agent

Policy: how an agent decides what
action to take

Rollout: a sequence of states,
actions, and associated reward

Behavior Cloning (BC)

Behavior Cloning (BC)

1. Collect data from environment with Blue, Green, Red agents
○ (Blue agent observation, Red agent action)

2. Train neural network on collected data
○ Blue agent observation → predicted Red agent action

3. Created a learned Red agent: used trained neural network as policy
4. Collected reward during rollout: environment with Blue, Green, and learned Red

agent
○ Measure of learned Red agentʼs quality: reward collected during rollout

BC: 1 Input Observation

Red Agent Blue Agent

Training Metrics Learned Red Agent True Red Agent

Train Loss Train Accuracy
Validation
Accuracy Reward

Standard
Deviation Reward

Standard
Deviation

B-Line
React
Remove 0.16 0.95 0.93 556 361 947 193

B-Line React Restore 0.64 0.77 0.77 -10.0 0.0 508 366

Meander React Remove 0.71 0.72 0.67 11.1 39.5 630 259

Meander React Restore 1.10 0.56 0.53 3.55 7.77 185 210

BC: 4 Input Observations

Red Agent Blue Agent

Training Metrics Learned Red Agent True Red Agent

Train Loss Train Accuracy
Validation
Accuracy Reward

Standard
Deviation Reward

Standard
Deviation

B_Line
React
Remove 0.038 0.986 0.967 694 305 947 193

B-Line React Restore 0.0372 0.987 0.965 484 336 508 366

Meander React Remove 0.327 0.870 0.710 255 246 630 259

Meander React Restore 0.615 0.762 0.587 77 141 185 210

BC Plot: Reward vs. Number of Input Observations

BC Plot: Reward vs. Dataset Size

Results

Issue of Behavior Cloning: Distribution Mismatch

Learning to Drive
Compounding error makes
learner deviate from the
expert track quickly

Inverse RL to the Rescue
1. Inverse RL aims to learn a reward model from the data

(e.g., red agentʼs reward function when they plan
attacks)

2. It then learns a policy to optimize the learned reward
3. The learned policy acts as the predictive model for the

red agent

IRL Results

Next Steps

1. New IRL algorithms for improving modeling red agents;
2. Training RL agents against the learned red agents

1

KATch
A Fast Symbolic Verifier for NetKAT

Mark Moeller, Jules Jacobs, Nate Foster, Alexandra Silva (Cornell), Olivier Savary Belanger,
David Darais, Cole Schlesinger (Galois), Steffen Smolka (Google)

2

The Control Plane and Network Defense Agents

Control Plane
• Computes routing tables
• Ensures network connectivity
• Enforces network policies

Network Defense Agents
• Detects and responds to network attacks
• Example: Security breach containment
• Example: DDoS mitigation
• Action space?
• Modify routing tables?

3

Neural and Symbolic AI

Neural Strengths
• General pattern recognition
• Learns from experience
• Adaptability to new situations
• Ideal when explicit programming is

difficult

Symbolic Strengths
• Domain specific reasoning
• Guarantees correctness
• Verifiable and explainable
• Ideal when strict compliance with

rules is required

4

Neural+Symbolic AI in Network Defense: Idea

Neural
• Utilizes deep learning for real-time

attack detection and response
• Adapts to evolving network threats
• Modifies routing tables dynamically
• Example: Detecting and rerouting

traffic to mitigate DDoS attacks
• Example: Detecting and isolating

compromised hosts

Symbolic
• Computes consequences of routing

changes
• Ensures correctness of routing tables
• Verifies adherence to network

policies and security rules
• Example: Validating routing paths

for security compliance
• Example: Verifying reachability of

critical network services

5

NetKAT: Symbolic Network Reasoning

NetKAT: network specification language for SDN
• Network topology
• Routing tables
• Network-wide policies

Verification of network policies
• Security properties, e.g. slice isolation
• Operational properties, e.g. reachability
• Verified in a common framework

Problem: NetKAT verification is slow
Not suitable for real-time network defense

6

KATch
A Fast Symbolic Verifier for NetKAT

7

KATch

A new NetKAT verifier that is
• Fast: 1000× faster
• Symbolic: explains verification failures
• Scalable: handles larger networks

8

Full Reachability

0 10000 20000 30000 40000 50000 60000 70000 80000
Size (atoms)

0

50

100

150

200

250

300

Ti
m

e
(s

)

Full reachability

System
frenetic
frenetic (timeout)
katch (linear)
katch

9

Detailed comparison: (un)reachability and slice isolation

Name Size Reachability Unreachability Slicing Min
(atoms) KATch Frenetic KATch Frenetic KATch Frenetic Speedup

Layer42 135 0.00 0.04 0.00 0.04 0.01 0.07 7×
Compuserv 539 0.01 0.36 0.01 0.38 0.01 0.85 36×
Airtel 785 0.01 0.83 0.01 0.84 0.02 2.08 83×
Belnet 1388 0.01 3.17 0.01 3.16 0.04 7.99 200×
Shentel 1865 0.02 4.01 0.02 4.00 0.04 9.80 200×
Arpa 1964 0.01 4.32 0.02 4.32 0.05 10.99 216×
Sanet 4100 0.04 23.46 0.03 25.23 0.12 62.70 522×
Uunet 5456 0.04 81.54 0.04 81.92 0.15 204.85 1366×
Missouri 9680 0.11 161.28 0.10 165.85 0.27 519.46 1658×
Telcove 10720 0.09 464.15 0.08 465.27 0.28 1274.24 4551×
Deltacom 27092 0.31 2392.56 0.30 2523.03 0.75 7069.54 7718×
Cogentco 79682 0.97 22581.39 0.88 23300.87 1.78 53066.82 23280×

10

Synthetic combinatorial benchmarks

20 40 60 80
Size (atoms)

0

20

40

60

80

Ti
m

e
(s

)

Flip
System

frenetic
katch

50 100 150 200
Size (atoms)

0

100

200

300

400

500

600

Ti
m

e
(s

)

Inc
System

frenetic
katch

10 20 30 40 50
Size (atoms)

0

10

20

30

40

50

Ti
m

e
(s

)

Nondet
System

frenetic
katch

11

Conclusion

NetKAT verification can be fast

Can we combine neural and symbolic AI?

5G networks -

 5G Mobile Network two main subsystems :

1. RAN - manages radio resources(spectrum)
2. Mobile Core - provide packet data network to mobile subscribers

AetheronRamp - Private Enterprise 5G network

● operational cluster that is capable of running 24/7 and supports live 5G
workloads.

● Cluster containerizing subsystems components, can scale horizontally with
dynamic workloads.

Pronto & AetherOnRamp Demo
Pronto 4G network

● Current testbed located at Gates Lab and
Robotics Lab.

● Supports both direct access 4G
connectivity, extended with APN
connectivity

AetherOnRamp 5G network

● Work in Progress, currently emulate
UEs(mobile devices) control and data
plane connectivity

Crawl Questions
● Learn about one another's approaches, find integration points, and collaborate on shared

infrastructure
● What network should we model first and what workflows should be present?
● What agent actions will be simulated and executed?
● What is a ‘good’ resiliency criteria and how will we judge whether your approach is

successful?
● What data types are needed for each performer and what data can be provided by each

performer?
○ Data for attackers
○ Reward function for defenders (domain knowledge, Inverse RL)

● How do we collaborate on API design and code interfaces?
● What open-source technology can enable an end-to-end integration demo quickly?
● Who is the intended operator of your approach and what is the desired impact/benefit to

their job?

