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Progress

Got going with Kryptowire TA1 Platform
Started development using CAGE 2

Started Modeling Red Agents Using Inverse RL
Fast NetKAT implementation

Standing Up Aether OnRamp



Trajectory

e Crawl (6 month)
e Walk (6 month)
e Run (6 month)



Collaboration Efforts




Cage Challenge: Overview

e Scenario of a network attack
o RedAgent (malicious): infiltrates

network |
o Blue Agent (defensive): protects the
netwo rk Subnet 1 @7 @ . subne%j/ B @ s-.mms@l
o  Green Agents (neutral users): generate : J | >
: T [ T 1
N 3388 39 88
e Integrated with CybORG, a

Figure 1: Network Topology (Cage Challenge 2)

reinforcement learning gym



Cage Challenge: Red Agent Actions

Failed Exploit (Error or Fake Service)
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Figure 2: Effect of actions on host state (Cage Challenge 2)



Early Results




Learning Approach for Modeling Red Agents

Imitation Learning: learn red agents’ behavior from their traces

e Real-world scenario: only have examples (data) of network exploit
(i.e. Red agent infiltration)
o No access to novel Red agents for simulation
e Oncered agents are learned: train blue agents against them
o Targeted RL training
o Adversarial RL training: train Blue and Red to fight each other
m Often results in very conservative behaviors



Reinforcement Learning Terminology
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Reinforcement Learning Terminology

States: configuration of the
environment

Observation: environment

information observed by an agent S Observation Policy
=5 wwe  ® e \
° . - 5 - % s " 'Subnet;:. 0 N ;\ - In
Policy: how an agent decideswhat ~ [,,25°% T *° .2, reitn v A

action to take Action

Priviledge Escalate
Rollout: a sequence of states, |

actions, and associated reward



Behavior Cloning (BC)
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Behavior Cloning (BC)

1. Collect data from environment with Blue, Green, Red agents
o (Blue agent observation, Red agent action)

2. Train neural network on collected data
o  Blue agent observation > predicted Red agent action

3. Created a learned Red agent: used trained neural network as policy
4. Collected reward during rollout: environment with Blue, Green, and learned Red

agent
o Measure of learned Red agent’s quality: reward collected during rollout
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BC: 4 Input Observations
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BC Plot: Reward vs. Number of Input Observations



BC Plot: Reward vs. Dataset Size



Results
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Issue of Behavior Cloning: Distribution Mismatch

Learning to Drive Expert’s trajectory

Compounding error makes
learner deviate from the
expert track quickly

No training data of ~ =

“recovery”
behavior



Inverse RL to the Rescue

Expert
Demonstrations
(state1, actiony),
(statep, actionp),

Rollout Policyt-1
Collect samples from
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Learner's State-Action Samples

Reward Update
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Updated Rewardt

Policy Update
Solve RL problem with Reward;

Updated Policyt

1.

Inverse RL aims to learn a reward model from the data
(e.g., red agent’s reward function when they plan
attacks)

It then learns a policy to optimize the learned reward
The learned policy acts as the predictive model for the
red agent
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IRL Results



Next Steps

1. New IRL algorithms for improving modeling red agents;
2. Training RL agents against the learned red agents



NetKAT
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5G networks -

5G Mobile Network two main subsystems :

1. RAN - manages radio resources(spectrum)
2. Mobile Core - provide packet data network to mobile subscribers

AetheronRamp - Private Enterprise 5G network

e operational cluster that is capable of running 24/7 and supports live 5G
workloads.

e C(Cluster containerizing subsystems components, can scale horizontally with
dynamic workloads.



Pronto & AetherOnRamp Demo

Pronto 4G network g

PRONTO
e Current testbed located at Gates Lab and e

Robotics Lab.

e Supports both direct access 4G
con neCtiVity, extended with APN = th/ ) -
connectivity e

AetherOnRam P 5G network S 55'""{33’;:2'} 1, it
e Work in Progress, currently emulate o e

Aether POD via the
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UEs(mobile devices) control and data |
plane connectivity




Crawl Questions

e |earn about one another's approaches, find integration points, and collaborate on shared
infrastructure

e \What network should we model first and what workflows should be present?

e What agent actions will be simulated and executed?

e \Whatis a ‘good’ resiliency criteria and how will we judge whether your approach is
successful?

e \What data types are needed for each performer and what data can be provided by each

performer?
o Data for attackers
o  Reward function for defenders (domain knowledge, Inverse RL)

e How do we collaborate on API design and code interfaces?

What open-source technology can enable an end-to-end integration demo quickly?

e Who is the intended operator of your approach and what is the desired impact/benefit to
their job?



