

Zero-emission trains on non-electrified Czech railways

Hydrogen Days 2024

Prague

Federico Zenith Andreas D. Landmark

Line Skeidsvoll

21 March 2024

Outline

Introduction

Technologies and their Analysis

Cases

R22: Kolín-Šluknov

U28: Rumburk-Děčin via Bad Schandau

Conclusions

Outline

Introduction

Technologies and their Analysis

Cases

R22: Kolín-Šluknov

U28: Rumburk-Děčin via Bad Schandau

Conclusions

Motivation

• Rail electrification varies among countries:

```
Czechia 33 %
Norway 68 %
EU 56 %
US 1%
```

- Overhead Line Equipment (OLE) is expensive
 - Low-traffic lines run on diesel
- Replace diesel with clean alternatives
- Hydrogen more available—not just to trains!
 - Multi-user refuelling stations

Motivation

• Rail electrification varies among countries:

```
Czechia 33 % (part AC, part DC)
Norway 68 %
EU 56 %
US 1%
```

- Overhead Line Equipment (OLE) is expensive
 - Low-traffic lines run on diesel
- Replace diesel with clean alternatives
- Hydrogen more available—not just to trains!
 - Multi-user refuelling stations

(The plan is to convert all DC to AC)

Lines Analysed in this Study

R14, R21, R22, R25, R26, R27, SP14 & U28

- Only local passenger service
- All partially electrified
 - Most DC, some AC (R26, U28)
 - R21, R22, SP14: only a few km
- Longest non-electrified segments:
 - Děčin-Liberec-Jaroměř, 210 km
 - Others: ≥100 km
 - Except R26, U28
- Batteries may compete with hydrogen
- All lines can handle weight of new trains

Outline

Introduction

Technologies and their Analysis

Cases

R22: Kolín-Šluknov

U28: Rumburk-Děčin via Bad Schandau

Conclusions

Zero-Emission Alternatives to Diesel

Multiple Units (MUs) with 2 cars each

DMU Diesel Multiple Units (CZ845, CZ843, Desiro 642)

EMU Traditional alternative is OLE (Škoda RegioPanter)

HMU Hydrogen train modelled after Alstom iLint

HEMU Same as iLint, but with pantograph (hypothetical)

BEMU Battery train, after Siemens Mireo+B

Partial OLE Same as BEMU, but with short OLE sections

Estimates from Czech Ministry of Transportation

Single-Train Simulations

Examples for R21 Prague-Tanvald

- Data:
 - Line gradients and speed limits
 - Train weight and tractive effort curves
 - Maximum acceleration and braking

Single-Train Simulations

Examples for R21 Prague-Tanvald

• Data:

- Line gradients and speed limits
- Train weight and tractive effort curves
- Maximum acceleration and braking

Calculate:

- Rolling and air resistance
- Feasible acceleration
- Speed profile, including stops
- Reduce speed to respect schedule

Single-Train Simulations

Examples for R21 Prague-Tanvald

• Data:

- Line gradients and speed limits
- Train weight and tractive effort curves
- Maximum acceleration and braking

Calculate:

- Rolling and air resistance
- Feasible acceleration
- Speed profile, including stops
- Reduce speed to respect schedule

• Output:

- Propulsion & auxiliary energy
- Battery state of charge (20 %-80 % window)

Key Performance Indicators

Assumed interest rate $r=4\,\%$

- Equivalent Annual Cost (EAC) [€/year]
 - Same ranking as NPV

$$I = NPV = \sum_{i=1}^{n} rac{A}{(1+r)^i}$$
 $EAC = OPEX + \sum_{j} A_j$

Benefit-Cost Ratio (BCR) [—]

$$BCR_i = EAC_{Diesel}/EAC_i$$

- Payback Period (PBP) [years]
 - When discounted cash flows reach 0
- Upfront investment (UFI) [€]
 - Interesting for decision makers
- Cost per km [€/km]
 - EAC / total km run by all trains
- Critical allocation of OLE (CA) [%]
 - Track infrastructure can be shared
 - CA is how much of OLE costs can be accepted by one line
 - CA=25 %: someone else must pay 75 %

Techno-Economic Analysis Variants

Differential approach

- Account for components separately
 - Fuel cells
 - Batteries
 - Hydrogen tanks
- Assume same cost of base MU
- Closer to technology potential
- More verifiable in literature

Techno-Economic Analysis Variants

Differential approach

- Account for components separately
 - Fuel cells
 - Batteries
 - Hydrogen tanks
- Assume same cost of base MU
- Closer to technology potential
- More verifiable in literature

Lumped approach

- Use market estimates for whole MUs
- Closer to "real" prices
- Less verifiable (confidentiality)
- Comparable to Alstom-Hesse deal
 - 500 M€ / 27 MUs / 25 years
- Can account for used DMUs

Outline

Introduction

Technologies and their Analysis

Cases

R22: Kolín-Šluknov

U28: Rumburk-Děčin via Bad Schandau

Conclusions

R22: Kolín-Šluknov

- DC-electrified until Nymburk (25 km)
- From Nymburk, 140 km until Šluknov
- Short section in common with R21
- Intersection with R14 at Česká Lípa
- Uphill between Česká Lípa and Jedlová (258 m-545 m over 20 km, or 14 %)
- 4 MUs serving the line

Energy Analysis

- BEMUs cannot proceed beyond Nový Bor
 - Will need bigger batteries
- Scheduled trains turnaround at 4 stations:
 - Šluknov: full charging station
 - Rumburk: barely time to proceed to Šluknov to recharge
 - Svor: other full charging station
 - Nový Bor: no time for charging
- Chargers at non-electrified stations are very expensive (≈10 M€)
- Partial OLE at Česká Lípa better for BEMUs
 - 1 feeder, 18 km OLE, works with Mireo+B

Cost Analysis

- H(E)MUs ahead of diesel
 - Cost of green hydrogen: 8.5 €/kg
- Partial OLE better than pure BEMU
- Pure BEMU is not fully feasible
 - Nový Bor immediate turnaround
- Full OLE (EMU) is too expensive
 - CA against HMU only 7 %

Differential approach

Cost Analysis

- H(E)MUs ahead of diesel
 - Cost of green hydrogen: 8.5 €/kg
- Partial OLE better than pure BEMU
- Pure BEMU is not fully feasible
 - Nový Bor immediate turnaround
- Full OLE (EMU) is too expensive
 - CA against HMU only 7 %
- Lumped approach:
 - Cheaper used DMUs
 - Hesse deal is well aligned

Lumped approach

U28: Rumburk-Děčin via Bad Schandau

Cross-border National Park Railway

okm Not electrified from Rumburk

28 km Crosses into Germany at Sebnitz

43 km AC-electrified (15 kV) from Bad Schandau

55 km DC-electrified from Czech border (Dolní Žleb)

- Total length 66 km
- Rumburk-Šluknov in common with R22
- Uphill between Bad Schandau and Sebnitz (126 m-313 m over 15 km, or 12 %)
- 3 MUs serving the line

Energy Analysis

- BEMUs can traverse the line both ways
- AC BEMUs need no charger in Rumburk
 - Bad Schandau-Rumburk & back feasible on single charge
 - Dolní Žleb to Děčin and back is easier
 - AC BEMUs need no extra infrastructure
- DC BEMUs do need a charger in Rumburk
 - Longer section with no DC, Dolní
 Žleb-Rumburk & back
- Chargers at non-electrified stations are very expensive (≈10 M€)

Cost Analysis

- BEMU (AC or combined) is best, ahead of diesel
- Hydrogen options follow
- DC BEMUs are actually next worst
 - Expensive infrastructure, 3 MUs
- Full OLE (EMU) is too expensive
 - Ignored it would use AC & DC

Differential approach

Cost Analysis

- BEMU (AC or combined) is best, ahead of diesel
- Hydrogen options follow
- DC BEMUs are actually next worst
 - Expensive infrastructure, 3 MUs
- Full OLE (EMU) is too expensive
 - Ignored it would use AC & DC
- Lumped approach:
 - Cheaper used DMUs
 - Hesse deal not as well aligned as for R22

Lumped approach

Outline

Introduction

Technologies and their Analysis

Cases

R22: Kolín-Šluknov

U28: Rumburk-Děčin via Bad Schandau

Conclusions

Guidelines and Recommendations

Hydrogen requires less infrastructure	Line	Technology
Batteries are more efficient	R14	HMU
Hydrogen has the advantage if:	R21	HMU
 The line is too long for one charge 	R22	HMU
 One or both termini are not electrified 	U28	BEMU (AC)
 Top-up chargers are required along the journey 	R25	BEMU (DC)
Batteries have the advantage if:	R26	BEMU (AC)
 Pre-existing infrastructure can be exploited 		
 No additional chargers are required 	R27	BEMU (DC)
 DC BEMUs may have to be replaced in a few years 	SP14	HMU

On Hydrogen Cost

Potential for reduction from project's assumptions

- Batteries' advantage is higher efficiency
- Same kWh price for electrolysis & (B)EMUs
- Resulting hydrogen cost is high, >8 €/kg
- Several ways to reduce it:
 - Import of cheaper hydrogen
 - Run HEMUs with hydrogen as range extender
 - Exploitation of by-product hydrogen
 - Savings on power tariffs (€/kW)
 - Double electrolyser & use cheaper electricity half the day
 - Provide reserve services to power grid
- Significant potential, would need own study

Total	8.55
	0.16
Comp. maintenance	0.06
Compressors	0.13
El. energy	7.74
El. maintenance	0.17
Electrolysers	0.3
	€/kg
Item	Cost

Cost items for hydrogen from electrolysis in Czechia.

Final Considerations

- Biodiesel is an effective way to achieve climate neutrality (not zero emission)
- Local authorities usually cover OPEX, central government infrastructure CAPEX
 - Local authorities may push OLE even if it is most expensive
 - It is however cheapest for them
 - Central government should share the savings with local authorities

Final Considerations

- Biodiesel is an effective way to achieve climate neutrality (not zero emission)
- Local authorities usually cover OPEX, central government infrastructure CAPEX
 - Local authorities may push OLE even if it is most expensive
 - It is however cheapest for them
 - Central government should share the savings with local authorities

Thank you for your attention!

Technology for a better society