
Natural User Interfaces for Virtual Character
Full Body and Facial Animation in Immersive

Virtual Worlds

Konstantinos Cornelis Apostolakis(✉) and Petros Daras

Information Technologies Institute, Centre for Research and Technology Hellas,
Thessaloniki, Greece

{kapostol,daras}@iti.gr

Abstract. In recent years, networked virtual environments have steadily grown
to become a frontier in social computing. Such virtual cyberspaces are usually
accessed by multiple users through their 3D avatars. Recent scientific activity has
resulted in the release of both hardware and software components that enable
users at home to interact with their virtual persona through natural body and facial
activity performance. Based on 3D computer graphics methods and vision-based
motion tracking algorithms, these techniques aspire to reinforce the sense of
autonomy and telepresence within the virtual world. In this paper we present two
distinct frameworks for avatar animation through user natural motion input. We
specifically target the full body avatar control case using a Kinect sensor via a
simple, networked skeletal joint retargeting pipeline, as well as an intuitive user
facial animation 3D reconstruction pipeline for rendering highly realistic user
facial puppets. Furthermore, we present a common networked architecture to
enable multiple remote clients to capture and render any number of 3D animated
characters within a shared virtual environment.

Keywords: Virtual character animation · Markerless performance capture · Face
animation · Kinect-based interfaces

1 Introduction

In recent years, the introduction of the Microsoft Kinect ignited the avatar full body
motion control paradigm based on the concept of avateering. Avateering or puppetting
a virtual 3D avatar refers to the process of mapping a user’s natural motoring activity
and live performance to a virtual human’s deforming control elements in order to faith‐
fully reproduce the user’s activity during rendering cycles. Already, a multitude of
different schemes for full body avatar control exist in the scientific literature based on
the skeleton tracking capabilities offered by software development kits and application
programming interfaces plugging into the Kinect sensor [2, 11–13]. Similarly, avatar
facial animation through vision-based methods has been explored following a similar
approach in which facial features on the user’s face are tracked via a Kinect [15]

© Springer International Publishing Switzerland 2015
L.T. De Paolis and A. Mongelli (Eds.): AVR 2015, LNCS 9254, pp. 371–383, 2015.
DOI: 10.1007/978-3-319-22888-4_27

or single image acquisition methods [3, 4, 10] to generate animation via detailed face
rigs or pre-defined blendshapes. In this paper we present two distinct, real-time user
avatar control interfaces specifically tailored for use in tele-immersive virtual worlds
connecting remote users within a shared virtual environment. We present two similarly
built frameworks for remote avatar full body and facial animation through the use of
consumer-grade hardware such as the Microsoft Kinect sensor and standard HD
webcams. Our Natural User Interface (NUI) frameworks have been developed for use
in real-time, tele-immersive shared virtual environments and are designed to enable both
user direct and responsive mapping of body movements to avatar characters in the virtual
world as well as a means of reconstructing and animating user lookalike, highly realistic
3D virtual facial avatars.

The remainder of this paper is organized as follows: Sect. 2 presents a brief
overview of the common networked architecture of each NUI framework.
Sections 3 and 4 better elaborate on each framework individually, outlining the
methods used to obtain avatar animation data from raw Kinect, and standard webcam
output respectively. Section 5 then concludes with a discussion on the authors’ final
thoughts and future work.

2 Common Framework Architecture

Each framework described in this paper, is comprised of both a remote capturing and
a rendering component. These are responsible for the acquisition of the proper user
motion estimated data originating from the module’s targeted hardware input,
processing of the latter raw form into sensible avatar animation data and updating of
the rendering pipelines in order to output the 3D character in a user motion-mimicking
posture. Both frameworks’ capturing component is deployed whenever a user is
connecting to the shared virtual world via an application layer multicast (ALM) server/

Fig. 1. Kinect full body avateering framework component architecture network.

372 K.C. Apostolakis and P. Daras

client network architecture [16]. Each capturing component (one per user) is respon‐
sible for creating a single, new ALM channel and publishing data to it. The rendering
component of each framework is similarly setup to serve a three-fold purpose: (a) it
generates a number of ALM channel subscribers which receive and reconstruct the user
animation data published by any number of respective capturers; (b) it loads the appro‐
priate avatar assets; and (c) it handles the real-time rendering and animation of all
avatars in the system.

Through this scheme, multiple users can connect to a shared virtual environment and
view any number of 3D animated avatars by simply subscribing to each users’ capturing
component publishing channel. In the case of the Kinect full body avateering framework,
the ALM capturer channel is publishing user skeleton data, which the subscribing
rendering components turn into avatar skinning data, as is demonstrated in the frame‐
work architecture diagram shown in Fig. 1. Elaborate details on the depicted data flow
are presented in the following Section. Similarly, the webcam facial animation frame‐
work features a tracking pipeline for turning raw camera input into user facial landmark
animation data at the capturing site, which is posted on the capturer’s publishing channel.
The latter is in turn translated to 3D vertex buffer information at the receiving rendering
components. The process is described in more detail in Sect. 4. A diagram of the archi‐
tecture is depicted in Fig. 2.

Fig. 2. Webcam avatar facial animation framework component architecture network.

3 Full Body Avatar Control Using Kinect-based Interface

Our Kinect full-body avateering framework enables users to transfer their physical body
motion into a shared virtual environment through the use of markerless capturing via

Natural User Interfaces for Virtual Character 373

the skeleton tracking algorithms implemented for the Microsoft Kinect sensor. The
process requires that the avatar 3D mesh is parented to an articulated structure of control
elements called bones. Bones can be viewed as oriented 3D line segments that connect
transformable joints (such as a knee or a shoulder). These joints usually offer a three-
to-six Degrees-Of-Freedom deformation control of the avatar’s mesh geometry, with
respect to translation and rotation transformations. In order to provide a 1-by-1 mapping
of Kinect trackable joints to avatar control elements, the avatars are required to be rigged
with a pre-defined 17-joints hierarchy defined by the OpenNI and NiTe joint tracking
structure depicted in Fig. 31.

Fig. 3. 17-joint, OpenNI-based hierarchy of control structures defined for REVERIE Kinect
Puppetted characters. Joints are identified as follows: (1) Torso; (2) Neck; (3) Head; (4) Left
Collar; (5) Left Shoulder; (6) Left Elbow; (7) Left Wrist; (8) Right Collar; (9) Right Shoulder;
(10) Right Elbow; (11) Right Wrist; (12) Left Hip; (13) Left Knee; (14) Left Foot; (15) Right Hip;
(16) Right Knee; (17) Right Foot.

As described in the previous Section, the framework consists of an end-to-end
capturing and rendering module that generates character 3D animation based on skeleton
data, received over the network from a Kinect capturing station. Both the remote
capturing and rendering components of the module address skeleton joint data using a
pre-defined path traversing all joints starting at the root of the hierarchy (the torso) and
moving towards the end effectors (head, wrists and feet) in a left-to-right manner. This

1 PrimeSense, who was founding member of the OpenNI, shutdown the original OpenNI project
on which our modules are linking to when it was acquired by Apple on November 24, 2013.
The module retains its operability through the latest legacy version of the library (1.5.4.0 as of
May 7, 2012).

374 K.C. Apostolakis and P. Daras

way, a 1-to-1 correspondence of Kinect user tracked joint data to avatar virtual joint
information is ensured.

For each animation frame, the remote capturing component of the full-body
avateering framework generates joint position and rotation data with respect to the
Kinect camera’s world coordinate system. This data is represented by two sequences
of floating point numbers, one referring to the XYZ-positions of the 17 joints while
the other accumulates all 3 × 3 orientation matrices describing the rotation of each
joint in camera world space. However, avatar mesh assets loaded and rendered by
the remote rendering component of the framework, are usually stored with skin‐
ning information that constitutes a hierarchical bone structure requiring any affine
transformations to be applied to each joint in its local axis space, in additional rela‐
tion to its parent. Furthermore, avatar bones are defined with a static length, which
should remain constant throughout the animating session regardless of varying user
anthropometric measurements acquired by the skeleton tracking module, as multiple
users of different ethnic backgrounds and physical attributes should be able to
control avatars that share a common skeleton animation template basis. Therefore,
a one-by-one direct copying of the tracked skeleton data to the avatar’s joints would
result in unrealistic rendered characters, as the remote capturing component would,
in all, neglect any constraints applied to the animated 3D model skeleton during the
characters’ design in the 3D modelers’ workshop. To achieve a plausible and
constraint-bound 3D animation flow, the data obtained by the remote capturing
component of the module is received and translated to joint-specific local-coordi‐
nate orientation quaternions in the remote rendering component before the joint
matrices are updated and applied in the skinning calculations taking place in the
hardware-accelerated avatar rendering pipeline. The process is described in detail
in Algorithm 1 [2]. The root joint’s quaternion can safely be obtained by the 3 × 3
global orientation matrix sent by the capturer.

After all local joint coordinate rotation quaternions are computed, avatar anima‐
tion applies to standard skinning equations, with calculations being shared between
the CPU and the GPU through dedicated skinning GLSL shaders loaded by the
remote rendering module for the sake of real-time performance. The 3D mesh
geometry is calculated per vertex by passing appropriate skinning matrices and per-
vertex joint indices and weights along with the standard 3D vertex, normal and
texture coordinates attributes to the vertex shader. The process requires the calcu‐
lation of these skinning matrices by posing the virtual skeleton in the CPU
according to the following scheme:

Natural User Interfaces for Virtual Character 375

1. Setup the avatar skeleton. Traverse the avatar joint hierarchy from the root and
calculate final 4 × 4 joint skinning matrix by first calculating local rotation matrix

 from previous rotation quaternion and multiplying with the joint’s parent skin‐
ning matrix , i.e. . For the root joint, .

2. Flatten bone matrices to an array of floating point numbers for passing to the GPU
via uniform bindings.

3. Normalize skinning weights using Manhattan distance metric and pass the appro‐
priate buffers to the shader as vertex attributes.

Afterwards, the final vertex transformations are applied in the GPU by applying the
following calculations:

1. Retrieve bone matrices and , corresponding to the bone matrices of joints
influencing vertex according to the latter skin indices attribute.

2. Calculate skinned vertex position by applying the appropriate skinning weights
, retrieved from the vertex’ attributes, to the transformation calculation:

(1)

376 K.C. Apostolakis and P. Daras

3. Apply model-view-projection transformations to the skinned vertex:

(2)

An example of the module output is shown in Fig. 4. All rendering components are
based on plain OpenGL and GLSL shading languages, and are easily portable to both
in-house as well as third-party 3D rendering engines providing integrated support for
externally written shaders (e.g. Unity).

Fig. 4. Screenshot of an animated 3D avatar rendered by our Kinect full body avateering
framework inside a virtual environment.

4 Avatar Facial Animation Control Using a Webcam Interface

Our webcam-based facial avatar animation framework enables users to display their
natural facial activity and expressions through their 3D avatars in the virtual environ‐
ment, using a marker-less facial landmark tracking scheme based on Active Shape
Models (ASMs) [5], applied to frames obtained from a standard HD web camera.
Unlike the full body animation framework described in the previous Section, which
requires control elements (bones) to re-target animation of the user onto the character’s
bone structure, and unlike the scientific literature which uses either facial animation
controls (rigs) [4, 10] or predefined blendshapes [3, 15] for animating the various 3D
facial expressions, our framework works by directly applying changes to the mesh
geometry through a one-by-one correspondence of the 3D mesh vertex data to the 2D
tracked facial landmarks of the ASM shape fitted onto an instance of the user’s face at
each consecutive camera frame. In other words, the 3D shape geometry is reconstructed
anew in each frame based on the 2D ASM geometry resulting from the fitting process.
This 1-on-1 mapping is achieved by using the avatar’s face mesh as a template for
training an ASM on a large database of hand-annotated images. This way, for each

Natural User Interfaces for Virtual Character 377

tracked frame, the vertex/landmark index remains constant. The mesh geometry
manipulation is achieved by projecting the 2D shape model to the 3D world, keeping
the depth coordinate constant and aligned to the template’s original size. As the 2D
landmarks and camera frame also provide a means to obtain a live texture map and
corresponding coordinates per frame, the avateering effect can be further enhanced in
terms of realism by continuously updating the 3D model’s texture information. This
enhanced 3D animated mesh can otherwise be viewed as a time-constant, template-
based 3D reconstruction of the user’s face: each capturing frame generates a new set
of 3D vertex position and texture coordinate attributes which result in a new 3D mesh
object, which retains the original structure of the hand-modelled template. The live
texturing features can also be dropped without further affecting the process of character
animation in order to allow users to avateer characters who share little to no resem‐
blance to their actual users. Furthermore, standard deformation techniques, like blend‐
shape morph targets can be applied to generate a multitude of 3D geometries based on
a single person’s avatar face mesh. This allows our framework to easily create user 3D
caricatures in real time. Examples of different animated avatars created from a single
input camera frame are shown in Fig. 5.

Obtaining a shape model of considerable detail (i.e. modern, real-time virtual char‐
acter face meshes consist of over 500 vertices for enhanced visual detail) requires
training on a large dataset of human face images. Such training is done by annotating

Fig. 5. Example of enhanced functionality possible through the webcam avatar facial animation
framework, with both vertex and texture coordinate deform options active. Top row: (a) Template
3D face mesh; (b) webcam input frame; (c) corresponding real-time ASM fit; and (d) 3D
reconstructed face with high amount of realism. Second row: original reconstructed face mesh (a)
and three examples (b, c, d) of caricature avatars obtained by applying morphs in real time.

378 K.C. Apostolakis and P. Daras

(usually by hand) each image, keeping landmark annotation continuity consistent
throughout the entire database. This process is almost inconceivable for a human anno‐
tator, given the amount of detail required and the close proximity of a large number of
landmarks due to the geometry structure of the 3D model meshes. In order to address
this problem, an intuitive web-based visual annotation application was created using the
Reverie Avatar Authoring Tool [1]. The annotation tool was developed specifically for
generating ASM files targeted by this framework. The application was designed to
accelerate the annotation procedure, by allowing annotators to superimpose an instance
of the entire face mesh over the image and make appropriate adjustments to the face 3D
pose, its anthropometric features (eye/nose/mouth size, position, rotation etc.) as well
as the facial expression visual cues (such as individual Action Units [8] and FAPs [9])
by selecting between a large set of pre-defined blendshapes modelled for the generic
template mesh in an external 3D modeling application2. Once the annotator has approxi‐
mated the overlaid face image landmark geometry, an automatic process that projects
the superimposed 3D model vertices to the 2D image plane generates an annotation file
for the image. For rapidly acquiring twice the amount of data, an automatic, index-
invariant flipping algorithm ensures a consistent annotation file is automatically gener‐
ated for the x-plane flipped image, by keeping the model’s vertex indices consistent (i.e.,
not flipping them) throughout the set. Using this intuitive tool, the annotation of a single
image with over 500 landmarks is possible in less than 5 min. This efficiency measure‐
ment is of considerable note to the authors, seeing how traditional annotation schemes
[7] are known take up at least as much time for 10 times less landmarks per model, while
the procedure is done by placing each landmark individually on top of the desired image-
plane coordinates, making the process delicate to human errors. The eventual ASM files
are built using a third-party, pre-compiled C++ OpenCV library asmlibrary [14]. Since

2 Blender, free, open source 3D Computer Graphics Software http://www.blender.org/.

Fig. 6. Screenshots of the RAAT-powered web-based annotation tool developed and used for
quickly annotating images with high resolution (>500) ASM landmarking schemes such as the
one depicted in this image, featuring 511 vertices. The left image showcases the ASM model in
wireframe mode which greatly helps placing groups of landmarks in their correct positions. The
right image showcases the ASM model in generic textured view, which helps define facial features
such as the eyebrows, lip lining, nostril outline etc.

Natural User Interfaces for Virtual Character 379

http://www.blender.org/

the landmarks recorded onto the annotation files are merely 2D projections of the 3D
model’s geometrical structure, a 1-to-1 correspondence of landmarks-to-3D vertices is
guaranteed as an added bonus. Two screenshots of the annotation tool used for this
module are shown in Fig. 6, to better emphasize on the scheme’s efficiency.

After loading the appropriate ASM build model, each frame retrieved by the camera
is processed to obtain a reconstructed 3D face model according to the Algorithm 2. After
calculating the new 3D vertex coordinates, the model’s vertex and texture coordinate
buffers are appropriately updated at each drawing frame, along with the diffuse texture
which is updated with the current camera frame. At GPU level, no additional calculation
takes place to display the deformed vertices other than applying the avatar’s model-view
projection transformation to get the final output:

(3)

An example of the rendered output of this framework is depicted in Fig. 7.

Fig. 7. Front and side view of real-time 3D facial animation avatar anchored at chin with body
mesh. Post processing rendering effects are applied to ensure a smooth color transition between
the face mesh and the body mesh diffuse textures.

380 K.C. Apostolakis and P. Daras

5 Conclusions

In this paper, we presented two NUI frameworks for remote avateering of 3D characters
in shared virtual environments using ALM network architecture. We elaborated on our
data flow pipelines and demonstrated how raw sensory input can be translated into
sensible animation data for controlling both avatar full body movements, as well as a
capturing and reconstruction pipeline of the user’s current facial image into a highly

Natural User Interfaces for Virtual Character 381

realistic representation of the user in a shared 3D space to enhance the element of tele‐
presence. Towards this latter approach we demonstrated how a simple ASM face fitting
process can be expanded to train and build high resolution (>500 landmarks) shape
models which in turn correspond to the 3D vertices of the avatar face model. This enables
the acquisition of both 3D vertex as well as 2D texture coordinates data per tracked
landmark, to generate a highly realistic virtual 3D representation of the user using a
single image, standard HD camera capturing framework. By supplementing additional
3D mesh deformation and texturing techniques, we demonstrated how our framework
further enhancement of the rendered output by generating identifiable virtual 3D user
caricatures. We expect our results to be particularly useful for future tele-immersive
systems, video games, low-cost actor performance capturing, virtual mirror applications
and more.

Acknowledgement. The research leading to this work has received funding from the European
Community’s Horizon 2020 Framework Programme under grant agreement no. 644204
(ProsocialLearn project).

References

1. Apostolakis, K.C., Daras, P.: RAAT-the reverie avatar authoring tool. In: 2013 18th
International Conference on Digital Signal Processing (DSP). IEEE (2013)

2. Apostolakis, K.C., et al.: Blending real with virtual in 3DLife. In: 2013 14th International
Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS). IEEE (2013)

3. Cao, C., et al.: 3D shape regression for real-time facial animation. ACM Trans. Graph. 32(4),
41 (2013)

4. Cho, T., et al.: Emotional avatars: appearance augmentation and animation based on facial
expression analysis. Appl. Math. 9(2L), 461–469 (2015)

5. Cootes, T.F., et al.: Active shape models-their training and application. Comput. Vis. Image
Underst. 61(1), 38–59 (1995)

6. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision (2004)
7. Cootes, T.F.: Modeling and Search software. http://personalpages.manchester.ac.uk/staff/

timothy.f.cootes/software/am_tools_doc/index.html
8. Ekman, P., Friesen, W.V.: Manual for the Facial Action Coding System. Consulting

Psychologists Press, Palo Alto (1978)
9. Ostermann, J.: Face animation in MPEG-4. In: Pandzic, I., Forchheimer, R. (eds.) MPEG-4

Facial Animation: The Standard, Implementation and Applications, pp. 17–55. Wiley,
Chichester (2002)

10. Rhee, T., et al.: Real-time facial animation from live video tracking. In: Proceedings of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM (2011)

11. Sanna, A., et al.: A kinect-based interface to animate virtual characters. J. Multimodal User
Interfaces 7(4), 269–279 (2013)

12. Shapiro, A., et al.: Automatic acquisition and animation of virtual avatars. In: VR (2014)
13. Spanlang, B., et al.: Real time whole body motion mapping for avatars and robots. In:

Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology. ACM
(2013)

14. Wei, Y.: Research on facial expression recognition and synthesis. Master Thesis, Department
of Computer Science and Technology, Nanjing (2009)

382 K.C. Apostolakis and P. Daras

http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/am_tools_doc/index.html
http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/am_tools_doc/index.html

15. Weise, T., et al.: Realtime performance-based facial animation. ACM Trans. Graph. (TOG)
30(4), 77:1-77:10 (2011). ACM

16. Zahariadis, T., et al.: Utilizing social interaction information for efficient 3D immersive
overlay communications. In: Kondoz, A., Dagiuklas, T. (eds.) Novel 3D Media Technologies,
pp. 225–240. Springer, New York (2015)

Natural User Interfaces for Virtual Character 383

	Natural User Interfaces for Virtual Character Full Body and Facial Animation in Immersive Virtual Worlds
	Abstract
	1 Introduction
	2 Common Framework Architecture
	3 Full Body Avatar Control Using Kinect-based Interface
	4 Avatar Facial Animation Control Using a Webcam Interface
	5 Conclusions
	References

