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Abstract
Using a Kaluza-type of model, describing the laws of electromagnetism within the formalism of differential
geometry, provides a coherent, comprehensive and quantitative description of phenomena related to particles,
including a convergent series of quantized particle energies with limits given by the energy values of the
electron and the Higgs vacuum expectation value as well as the values for electroweak coupling constants.
The geometry of the solutions for spin 1/2 defines 6 lepton-like and 6 quark-like objects and allows to
calculate the fractional electric charges as well as the magnetic moments of baryons.
Electromagnetic and gravitational terms will  be linked by a series expansion,  the corresponding relation
suggests the existence of a cosmological constant in the correct order of magnitude.
The model can be expressed ab initio, necessary input parameters are the electromagnetic constants.

1 Introduction 
Theodor Kaluza in 1919 developed a unified field theory of gravitation and electromagnetism that produced
the formalism for the field equations of the general theory of relativity (GR) and Maxwell's equations of
electromagnetism (EM) thus unifying the major forces known at his time. His 5-dimensional model [1] is not
suited to give properties related to particles, a problem addressed by Oskar Klein [2] who introduced the idea
of compactification and attempted to join the model with the emerging principles of quantum mechanics.
Therefore the theory is mainly known as Kaluza-Klein theory today. This version became a progenitor of
string  theory.  The  original  Kaluza  model  was  developed  further  as  well  [3],  Wesson  and  coworkers
elaborated  a  general  non-compactified  version  to  describe  phenomena  extending  from  particles  to
cosmological problems. The equations of 5D space-time may be separated in a 4D Einstein tensor and metric
terms representing mass and the cosmological constant, Λ. Particles may be described as photon-like in 5D,
traveling on time-like paths in 4D. This version is known as space-time-matter theory [4]. Both successor
theories give general relationships rather than providing quantitative results for specific phenomena such as
particle energy. 
The model described in the following does not attempt to give a complete solution for a 5D theory but to
demonstrate that Kaluza's ansatz provides very simple, parameter-free and in particular quantitative solutions
for  a  wide  range  of  phenomena.  Basic  equations  from the  existing  literature  may  be  used,  with  one
significant simplification: 
Kaluza discovered that Maxwell’s equations may be described within the formalism of GR. To get both these
and the Einstein field equations (EFE) he needed an additional dimension and had to insert the constant of
gravitation in his metric. He chose the gravitational term to keep the electromagnetic potential terms in the
metric dimensionless, a rather unfitting combination1. If one settles for electromagnetic phenomena as first
approximation there is no need for the gravitational constant. This does not give a unification of EM and GR,
however, it is a suitable ansatz to “unify” EM and particle physics. Gravitational terms can be recovered via
a series expansion of the  electromagnetic equations and such a proceeding may actually reflect the huge
difference in order of magnitude of both phenomena better than the more linear original approach.
Curvature of space-time based on an electromagnetic version of the field equations of GR will be strong
enough to localize a photon in a self-trapping kind of mechanism, yielding energy states in the range of the
particle zoo. Circular polarized light is part of conventional electromagnetic theory, in the following this
feature will  be treated equivalently with the terms angular momentum or spin as intrinsic property of a
photon  and  will  be  a necessary  boundary  condition  in  the  equations  used.  In  particular,  unless  noted
otherwise, it is assumed that particles posses spin 1/2 or are composed of spin 1/2 components (e.g. mesons).
The basic proceeding will be as follows:
Kaluza’s equations for flat 5D-space-time may be arranged to give [4, chapter 6.6]
1) Einstein-like equations for space-time curved by electromagnetic and scalar fields (equ. (5)),

1 In the closing remarks of [1] Kaluza suggests to reconsider „die etwas fragwürdige Gravitationskonstante‟ – „the 
somewhat questionable constant of gravitation‟.
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2) Maxwell equations where the source depends on the scalar field,
3) a wave-like equation connecting the scalar Φ with the electromagnetic tensor (equ. (6)).
Solutions of 3) for Φ in a flat 5D-metric will be used as general ansatz in a 4D-metric. This is considered to
be a proof of concept only, a more thorough ansatz has to be expected to incorporate angular momentum/spin
into the field equations appropriately. 
The solution for Φ gives Φ ~ exp(-(ρ/r)3) and may be seen as representing curvature of 4D space-time. Due
to the derivation from a Kaluza ansatz coefficient ρ is a function of the electromagnetic potential, A, in the
static  approximation  of  this  work  the  electric  potential.  The  only  other  parameter  entering  ρ  will  be  a
function of the fine-structure constant 2, α, which enters the equations through the boundary condition spin
1/2, requiring a relationship between  the values of the  electric potential,  elementary charge and electric
constant, and ħ/2, see chpt. 2.4 3. Since a geometric interpretation allows to give α in terms of Γ-functions ρ
may be given in terms of elementary charge, electric constant and mathematical constants only. 
Based on this the model yields absolute particle energies in the range expected for a neutrino and as a set of
converging series with limits given by the energy of the electron and the Higgs vacuum expectation value.
Assuming that a 2nd term in a series expansion of EM-terms represents gravitation and should not exceed the
EM-term, some of the α-terms included in ρ can be identified with the ratio of electron and Planck energy,
see chpt. 2.6f, 4.1 4. With this ansatz additional minor terms in the field equations will be in the correct order
of magnitude for the cosmological constant, Λ.
Focusing on the angular momentum aspects of the model, in chpt. 3 the rotation of a set of orthogonal E, B,
C-vectors, attributed to the electromagnetic fields and the propagation with the speed of light, C, will be
modeled via quaternions. This gives 3 possible solutions for spin 1/2 defining 6 distinct geometric objects
that can be matched with the properties of the 6 leptons and the 6 quarks of the standard model of particle
physics (SM). Using the results of this model for energy, values of magnetic moments for J = 1/ 2 baryons of
the uds-octet may be calculated ab initio.
Typical accuracy of the calculations is in the order of 0.0001 5. The deviation of calculated results from the
experimental values is typically in the range 0.01 - 0.001, consistent with a variation of input parameters
related to elementary charge in an order of magnitude of QED corrections, which are not included in this
model.
To focus on the more fundamental relationships some minor aspects of the model are exiled to an appendix,
related topics will be marked as [A]. 

2 Calculation
2.1 System of natural units
The approach sketched in the introduction requires the use of an electromagnetic unit system appropriate for
the general formalism of GR. It is common to define natural electromagnetic units by referring them to the
value of the speed of light. The same will be done here, thus subscript c will be used.  Retaining SI units for
length, time and energy the electromagnetic constants may be defined as:
c0

2  = (εc μc)-1 (1)
 with εc = (2.998E+8 [m²/Jm])-1 = (2.998E+8)-1 [J/m] 

μc = (2.998E+8 [Jm/s²])-1 = (2.998E+8)-1 [s2/Jm] .
From the Coulomb term b0 = e2/(4πε0) = ec

2 /(4πεc) = 2.307E-28 [Jm] follows for the square of the elementary
charge: ec

2 = 9.671E-36 [J2]. In the following ec
 = 3.110E-18 [J] and ec/(4πεc) = 7.419E-11 [m] may be used

as natural unit of energy and length. 
With  the  unit  system above  the  T00-component  of  the  electromagnetic  stress-energy-tensor  in  the  field
equation in an electrostatic approximation will simply be T00 = E2/2 [m-2]. In the case of T00 referring to
energy density the constant G/c0

4 [m/J]  in the Einstein field equations (EFE) will be replaced by:

2 The relation of the masses e, µ, π with α was noted first in 1952 by Nambu [5]. MacGregor calculated particle mass 
and constituent quark mass as multiples of α and related parameters [6].
3 The coefficient of angular moment may be interpreted as either σ, which will in general indicate the integration limit, 
(r/ρ)3 for calculating the incomplete gamma functions, or its main component αlim ≈ 1.5/α, see chpt. 2.4, 2.5. 
4 Giving ρ3 ≈ σ αPl ρ0

3;
5 Including e.g. errors due to the numerical approximation of incomplete Γ-functions.
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(8 π )G / c0
4      =>     ≈   1 /ε c     (2)

in an accordingly modified field equation:

Gαβ  = Rαβ  - 1
2

gαβ R  = −  1
ε c

T αβ     (3)

2.2 Kaluza theory
Kaluza theory is an extension of general relativity to 5D-space-time with a metric given as  [4, equ. 2.2]:

g AB  = [(gαβ−κ2 Φ2 Aα Aβ ) −κ Φ2 Aα

−κ Φ2 A β −Φ2 ]     (4)

In  (4) roman letters correspond to 5D  6,  Greek letters to 4D.  κ corresponds to the constant in the field
equation (2), A is the electromagnetic potential.  In the context of the electrostatic approximation of this
model A will be assumed to be represented by the electric potential, Ael = ec/(4πεcr) = ρ0/r [-]. Assuming 5D
space-time to be flat, i.e. RAB = 0, gives for the 4D-part of the field equations [4, equ. 2.3]:

Gαβ  = κ2 Φ2

2
T αβ

EM  - 1
Φ ( ∇ α(∂αΦ)  - gαβ □ Φ )     (5)

From R44 = 0 follows:

□ Φ  = − κ2 Φ3

4
Fαβ Fαβ     (6)

In  the  following  only  derivatives  with respect  to  r  of  a  spherical  symmetric  coordinate  system will  be
considered. Equation (6) will be used to obtain an ansatz for a metric to get a solution of the 00-component
in (3). A function ΦN

 ΦN  ≈ ( ρ
r )

N−1
eν /2  = ( ρ

r )
N−1

exp(-( ρ
r )

N
/2) (7)

yields solutions for an equation of general type of (6), where  the term of highest order of exponential N,
given by Φ'' ~ ρ3N-1 /r3N+1, may be interpreted to provide the terms for A'(r) ~ ec/(4πεcr2 ) ~ ρ0/r2, see [A1]:

ΦN ' '   ~  ( ρ3 N−1

r3 N+1 )e ν/2  ~ ΦN
3  e−ν(A0 ')2  ≈ [ ( ρ

r )
N−1

eν /2]
3

e−ν ( ρ
r2 )

2
   =   ( ρ

r )3N−3
eν /2  ( ρ

r2 )
2

(8)

The significance of (7)f lies in providing the relationship of exponential and pre-exponential terms and first
of all in the requirement to contain powers of Ael ~ (ρ0/r) in the exponent of ΦN, to be used in the following.

2.3 Example for metric, point charge energy
The following 4D-metric for N = 3 in (7)f, using only diagonal components will be used as a general ansatz: 

gµµ  = (ρ0

r )
2

exp(−(ρ
r )

3) ,   −(ρ0

r )
2

exp((ρ
r )

3) ,   − r 2 ,   − r2 sin2ϑ (9)

This is based on the following considerations (cf. [A2]):
1) flat 5-D-space-time; 
2) the limit in absence of electromagnetic fields will not be given by a component gαβ related to gravitational
effects as given in equ. (4), gravitational terms (and flat space-time limits) may be recovered by a series
expansion of the exponential terms of (9) 7, see chpt. 4.1;  
3) coefficient ρ0 in the pre-exponential terms ensures Coulomb terms as limit cases; 
4) Equation (9) is an approximation not only in neglecting contributions of the magnetic potentials but also
in not considering spin, a necessary boundary condition for particles which is not represented in Kaluza’s
equations either. Thus some modification in the metric of (4) has to be expected. A metric according to (9)
will give correct quantitative particle related results. However, only the exponential part of Φ3, ev/2, will be
squared in the metric terms, giving evAαAβ instead of ev(AαAβ)2. This is somewhat ad hoc and considered a

6 ct, x1, x2, x3, x4
7 Or other terms according to [A2.2]
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proof of concept only 8.
Equation (3) gives a generic example that may be modified significantly in 4D or 5D, the dominant term for
particle energy will originate from the angular terms 9, see [A2.1]. 
The Einstein tensor component G00 will be:
G00 = - ρ0

2/r4 ev  (10)
and using equ. (3) will give:

ρ0
2

r4 e v  ≈ w
εc

     =>     
εc ρ0

2

r4 ev  ≈ w     (11)

The volume integral over (11) gives the energy of particle n according to:

W n  = εc ρ0
2  ∫

0

rn
ev (n)

r4  d3 r  = 4 π εc ρ0
2  ∫

0

rn
e v(n)

r2  dr (12)

Solutions for integrals over ev, with v according to (7), times some function of r can be given by:

∫
0

r n

exp(−(ρn /r)
N )r−(m+1)dr  = Γ (m /N ,(ρn/rn)

3)  
ρn
−m

N
  =  ∫

(ρn/ rn)
3

∞

t
m
N

 −1
e− t dt  

ρn
−m

N
     (13)

in this work used for N = {3; 4}, m = {-2; -1; 0; +1;+2}. The term Γ(m/N, (ρn/rn)3) denotes the upper incomplete
gamma function, given by the Euler integral of the second kind 10. In the range of values relevant in this work, for
m/N ≥ 1 the complete gamma function Γm/N is a sufficient approximation, for m/N ≤ 0 the integrals have to be
calculated numerically, requiring an integration limit, see 2.4. 
Equation (12) will give as energy for a particle n: 

W n, elstat  = 4 π εc ρ0
2  ∫

0

rn
ev (n)

r2  dr =  b0 Γ(+1/3, (ρn/rn)3) ρn
-1/3 ≈  b0 Γ+1/3 ρn

-1/3    (14)

including  the  integral  for  the  energy  of  a  point  charge  term  modified  by  ev.  Particles  are  supposed  to  be
electromagnetic objects possessing photon-like properties, thus it will be assumed that particle energy has equal
contributions of electric and magnetic energy, i.e.:
Wn = Wn,elstat + Wn,mag  = 2Wn,elstat  ≈  2 b0 Γ+1/3 ρn

-1/3                (15)

Except for the Coulomb-term, ρ0, entering via the Kaluza ansatz, the only other terms in ρ may be given as
function of the fine-structure constant, α 11, which is a consequence of the boundary condition of spin 1/2 ħ.
  
2.4 Angular momentum, coefficient σ 
The integral limits required for  Euler integrals of (13) with  m/N ≤ 0 are rn („particle radius‟ of state n; with
respect to JZ; rn ≠ λC, see (63)) in integrals over ev and (ρn/rn)3 in the Euler integrals. The latter will be expressed via
a constant defined as 8/σ  12: 
(ρn/rn)3 = 8/σ (16)

whose value may be derived from the condition for angular momentum Jz = 1/2 [ħ]. A simple relation with
angular momentum Jz for spherical symmetric states will be given by applying a semi-classical approach 13:

J z  = r2 x p (r 1) = r2 W n(r 1)/c0 ≡ 1/2 [ħ] (17)
Using term 2b0 of equ. (15) as constant factor and integrating over a circular path of radius |r 2| = |r1|, equation

8 A solution of (7) with N = 1 could be inserted directly in Kaluza’s term Φ2AαAβ of (4). Using the coefficients of this 
work this would yield the energy of the electron, however, not the energy relation (24)ff, etc. A more general solution of
(7) with N = {1;2;3} is discussed in [A2.2]. 
9 Consistent with curvature being due to the lateral extension of the E-vector in the quaternion / dreibein model;
10 Euler integrals yield positive values, the sign convention of Γ-functions gives negative values for negative 
arguments. The abbreviation Γ-1/3 will be used for |Γ(-1/3)|; 
11 Or the related Γ functions, see below;
12 Chosen to give coefficient σ in the exponent of ev, see [A3.2]. 
13 In 1st approximation: using the term for energy (15) and length (31) requires σ1/3 to be of order of the inverse fine-
structure constant α-1: 1/c0∫w(r) dr * ∫dr ≈ b0/ρn * σ1/3ρn /c0 ≡  ħ/2   =>   σ1/3 ≈ α-1. 
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(13) will give for m = 0:

Jz = ∫
0

rn

∫
0

2π

J z(r , φ)dφdr  = 4 π
b0

c0
 ∫

0

rn

ev r−1 dr  = 4 π αħ∫
0

rn

ev r−1 dr  = 4 π
3

αħ ∫
8/σ

∞

t -1e-t dt ≡ 1/2 [ħ] (18)

To obtain Jz = 1/2 [ħ] the integral over evr-1 dr of (18), has to yield α-1/8π.

∫
0

rn

ev r−1 dr  = 1 /3∫
8/σ

∞

t -1 e-t dt  ≡  α−1

8 π
 ≈ 5.45  (19)

Relation (19) may be used for a numerical calculation of the integration limit, 8/σ, giving a value of σ0 for
spherical symmetry, σ0 = 1.810E+8 [-]. Assuming the coefficient Γ-1/3/3 according to (13) has to be part of the
expression  for  σ0 14 this  results  in  σ0 ≈ 8(1.5α-1Γ-1/3/3)3.  This  value  may be  interpreted  as  a  coefficient
representing geometry, with a value close to the numerical one:

σ0 ≈ 8 (1.5 α-1 Γ-1/3 /3)3  ≈ 8 (4 π Γ -1/3
3

3 )
3

= 1.772E+8 [-]      (20)

As a consequence a dimensionless volume-like term appears in the denominator of the energy expression
(15) for spherical symmetry. Expression (20) is closely related to the value of  α and will be used in this
context in chpt. 2.10.
In [A3] some additional aspects of the terms supposed to comprise σ will be discussed, giving an alternate
expression for (20) and demonstrating that coefficient σ has to be part of the exponent of ev: ρn

3 ~ σ,  
Φσ ~ exp(-σAel

3) (21)
Calculating energy according to Φσ and (5) will give ≈ 0.1 eV, a value in the estimated energy range of a
neutrino. 

2.5 Lower limit of σ
The minimal possible value for σ is defined by the Γ-term in the integral expression for length, Γ-1/3/3, (13),
and the integers in (55) to be: 
σmin = (2Γ-1/3/3)3                                15 (22)

leaving a term
α lim  ≈ 1.5α−1 ≈ 4 π Γ-1/3

2 (23)
as variable part in σ to consider non-spherical symmetric states (see 2.7, [A3]) 16). 

2.6 Quantization with powers of 1/3n over α
Most relations given here are valid for any particle energy which should be expected as there is a continuous
spectrum of energies according to special relativity. However, a particular set of energies may be identified
by relaxing the condition of orthogonality of different states according to quantum mechanics to requiring
different states to be expressible in simple terms of a ground state coefficient, α0, in the exponent of ev and
not to exhibit any dependence on intermediary states 17.
There are 2 lines of thought for an estimation of α0.
2.6.1 Condition a)
The condition that energy/length of a charged particle has to be higher/smaller than the value given by a pure
electrostatic term. 
 Since rl according to (13), (16), (20)f will be proportional to α-2 the term in the exponential has to be:  α0 <
α6. The relationship between a photon-like object and a point charge object of elementary charge is based on
the coefficient α, suggesting a photon-like state to differ by a factor of α from a pure point charge state and to
use a ground state coefficient α0 ≈ α9. This fits the relationship of a set of fundamental particle energies with

14 Since according to (16) σ1/3 is proportional to a length parameter, rn, which according to (13) includes Γ-1/3 /3. 
15 If the term of (20) is interpreted as a (cube of a) volume parameter, a term of the kind of (22) would approximately 
represent the (cube of a) 1D parameter.
16 σ0 ≈ (αlim 2Γ-1/3/3)3

17  cf. W n
2  ~ (α0

1 /3α0
1/ 9 ....α0

1/(3 ^(n-1)) α0
1/ (3^n ))  / (α0

1α0
1/ 3 α0

1/ 9 ....α0
1 /(3 ^(n-1) ))  = α0

1 /(3 ^n)/ α 0
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the charged particle of lowest energy, the electron, as a ground state quite well, however, requiring an ad hoc
factor ≈ 3/2 for the electron itself. With We as ground state, Wn would be given by (24)ff relative to the
electron state as:

Wn /We  ≈ 3 /2 α ^(1.5 /3n)
α1.5  ≈  3 /2Πk=1

n α^(-3/3k )                                                             n = {1;2;..} (24)

see table 1. 
However, to calculate absolute values of energy requires another factor in addition to α0.
2.6.2 Condition b)
In a series expansion of the exponential in terms of force, potential,  etc.,  such as given below, particles
beyond the electron enter the terms according to their coefficients from (24)ff. In order for the 2nd order term
not to exceed the 1st order term the energy of spherical symmetric particles - including relativistic effects -
should not exceed α0

-1 = α-9. However, this restriction should apply for non-spherical symmetric particles as
well, requiring αlim ≈1.5/α as additional factor. With some minor assumptions one will get (cf. chpt. 4):

1.53 α 0

2α lim
 = 1.52 α10/2  = 4.8 E - 22  ≈ 

W e

W Pl
 = αPl (25)

The additional factor of  ≈ 2/3 of the electron might be related to the difference in α0 and αPl.  The electron
coefficient in the exponential of ev and the energy term equ. (15) would be given as: αe ≈ (3/2)3 α9. ρn may be
given as (δ = 1 for electron, = 0 otherwise;   n = {0;1;2;..}):
 ρn

3 ≈ (1.5)δ σ0 αlim
-1/2 1.53 α9 α4.5/α^(4.5/3n)  (ec/(4πεc))3  ≈ (1.5)δ σ0 αPl α4.5/α^(4.5/3n) (ec/(4πεc))3 (26)

2.7 Non-spherical symmetric states
Assuming the angular  part  to  be related to  spherical  harmonics and exhibiting the corresponding nodes
would give the analog of an atomic p-state for the 1 st angular state, y1

0. With the additional assumption that
Wn,l ~ 1/rn,l ~ 1/Vn,l

1/3 ~ (2l+1)1/3 (Vn,l = volume) is applicable for non-spherically symmetric states as well,
this would give W1

0/W0
0 = 31/3  = 1.44 and σ1/3 = 3-1/3  σ0

1/3. The considerations of chpt. 3.1 support that a y1
0-

like symmetry for particle states has to be considered and a second partial product series of energies in
addition to (24) corresponding to these values approximately fits the data, see tab. 1. 
A change in angular momentum has to be expected for a transition from spherical symmetric states, y0

0, to y1
0

which is actually observed with ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2. 
With σ1/3/2 = {4πΓ-1/3

3/3 (y0
0);  3-1/34πΓ-1/3

3/3 (y1
0); Γ-1/3/3 (max)} energy relative to the electron state may be

given as:

Wn /We  ≈ 3 /2
α ^(1.5 /3n)

α1.5

σ 0
1/3

σ 1/3  = 3 /2Πk=0
n α^(-3/3k ) 

σ0
1 /3

σ1 /3         n = {1;2;..}         (27)

According to the  variable part in  σ, (23), the maximum additional contribution to Wmax with respect to a
spherical symmetric state would be:
ΔWmax

 ≈ 3/2 α-1   (28)
With (24) and (28) the total maximum energy will  be Wmax ≈ We 9/4 α-2.5 = 4.05E-8 [J] ( = 1.03 Higgs
vacuum expectation value, VEV = 246GeV = 3.941E-8 [J] [7]) 18.

2.8 Results of energy calculation
Table 1 presents the results of the energy calculation according to (15), (26) for y0

0 (bold), y1
0. Only states

given in [7] as 4-star, characterized as „Existence certain, properties at least fairly well explored‟, are included,
up to Σ'0 all states given in [7] are listed. Coefficients given in col. 4 refer to  (24), (26), starting with the
electron coefficient in We, including its extra term of 2/3. Exponents of -9/2 for Δ and tau are equal to the
limit of the partial product of α(n), including the electron coefficient. The term [3/2α -1] represents (28).
In col. 5 equ. (15) and (26) are used to calculate energy with σ0 according to the value of the fit for JZ =1/2
and αPl given by We/WPl according to the experimental value of the electron and definition (25) for Planck
energy. 

18 For the Higgs boson see [A6.3].
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W n= 2b0∫
0

rn

exp(−(1.53 δ σ0 αPl
α4.5

α(4.5 /3n) ( ec
4 πεc r )

3

))r−2 dr    =>    W µ= 2
3

Γ+1 /3 α−1

(σ 0α Pl)1/ 3  ec (29)

(n = {0;1;2;..}; 1.5δ = extra coefficient for the electron only, δ = δ(0,n); bold: particle coefficient; muon given
as example19).  In col.  6 an alternate version for calculating σ0 according to (61)f  of  [A3.3] is given for
comparison.
Additional particle states and blanks in the table are discussed in [A6]. The values of physical constants are
taken from [7].
To illustrate possible QED-effects and the non-linearity of the Γ-functions, a calculation of σ0 with values of
(18)f varying within +/-1.00116 gives a range of energy values of +/-1.006, varying within +/-1.001162 gives
a range of energy values of +/-1.013 compared to the values given in table 1. Additional effects due to e.g.
different charge in the nucleons have to be expected.
The accuracy of ~1% of the values calculated for leptons, mesons and baryons is comparable to that of
LQCD calculations for baryons [10].

Table 1: Particle energies; col.2: radial, angular quantum number; col.4: α-coefficient in Wn according to (29), n =
{0;1;2;..}; col.5,6: ratio of calculated energy, Wcalc according to (29), (62) and literature value [7]; col.7: angular
momentum Jz [ħ]; 

2.9 Photon energy
In the following a term for length expressed via the Euler integral of (13) will be introduced for λC,n: 

rx = ∫
0

rx

ev dr  = ρn /3 ∫
(ρn/ rx)

3

∞

t -4/3 e-t dt ≈ Γ(-1/3, (ρn/rx)3)  ρn/3 (30)

19 The term for the muon is given as reference to avoid ambiguities due to extra term ≈ 3/2 of the electron.
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n, l J uds

v -1 *   0 1/2
0, 0 0.51 1.014 1.002 1/2 O
1, 0 105.66 1.007 0.996 1/2 O
1, 1 139.57 1.101 1.088 0 uds

K 495 see I 3.8 0 uds
2, 0 547.86 1.002 0.990 0 LC
2, 1 775.26 1.022 1.009 1 LC
2, 1 782.65 1.012 1.000 1 LC

K* 894 see I 3.8 1 uds
3, 0 938.27 1.011 0.999 1/2 uds

n 3, 0 939.57 1.010 0.998 1/2 uds
958 see I 3.8 0 LC

1019 see I 3.8 1 uds
4, 0 1115.68 1.020 1.008 1/2 uds
5, 0 1192.62 1.014 1.002 1/2 uds

Δ 1232.00 1.012 1.000 3/2 uds
1318 1/2 uds

3, 1 1383.70 0.989 0.977 3/2 uds
4, 1 1672.45 0.982 0.970 3/2 uds

N(1720) 5, 1 1720.00 1.014 1.002 3/2
1776.82 1.012 1.000 1/2 O

Higgs 1.25 E+5 1.042 1.066 0

VEV 2.46 E+5 1.059 1.083

Wn,Lit       
[MeV] 

α-coefficient in Wn
                                         

α(n)-1/3 [f(l)]
Wcalc/ Wlit 
Equ.(29)

Wcalc/ WLit  
Equ.(62)

~ E-7 (calc)

e+-  2/3 α-3

µ+-  α-3α-1

π+-  α-3α-1 [31/3] 

η 0  α-3α-1α-1/3

ρ0  (α-3α-1α-1/3) [31/3] 
ω0  (α-3α-1α-1/3) [31/3] 

p+-  α-3α-1α-1/3α-1/9

 α-3α-1α-1/3α-1/9

η'
Φ0

Λ0  α-3α-1α-1/3α-1/9α-1/27

Σ0  α-3α-1α-1/3α-1/9α-1/27α-1/81

∞, 0  α-9/2

Ξ
Σ*0  (α-3α-1α-1/3α-1/9) [31/3]  
Ω-  (α-3α-1α-1/3α-1/9α-1/27) [31/3]  

 (α-3α-1α-1/3α-1/9α-1/27α-1/81) [31/3] 
tau+- ∞, 1  (α-9/2) [31/3] 

∞,∞ **  (α-9/2) [3/2 α-1] /2

∞,∞***  (α-9/2) [3/2 α-1] 



In the limit (ρx/rx)N -> 0

Γ(-1/N, (ρx/rx)N) = ∫
(ρx /r x)

N

∞
t−(1/ N +1)e−t dt ≈ N (ρx/rx)-1 = N σ1/3/2     (31)

holds. Equation (31) inserted in the right side of (30) gives back rx, however, (30)f may be seen as expressing
rx in terms useful for this model, i.e. ρn, σ0 and Γ-functions. Using equ. (31) for the incomplete Γ-function and
multiplying rx in the integration limit (ρn/rx)3 by √3, the ratio of total angular momentum and its z-component
(see [A4, (63)]), gives in good approximation (using (20)):
λC,n  ≈ 31.5 σ0

1/3/2 ρn/3 ≈ 30.5 4π Γ-1/3
3/3 ρn (32)

With (32) energy of a photon may be expressed as:

WPhot,n = hc0/λC,n  = hc0  / ∫
λC , n

e v dr =
2hc0

30.5 ρn σ 0
1 /3 ≈ 

3 hc0

30.5 4 π Γ−1/3
3 ρn

(33)

2.10 Fine-structure constant, α
The energy of a particle  is assumed to be the same in both photon and point charge description. Equating
(15) with (33) gives:

Wpc,n = WPhot,n = 2b0 Γ+1/3 ρn
-1 /3 ≈

2hc 0

30.5 ρn σ 0
1 /3 ≈

3 hc0

30.5 4 π Γ−1/3
3 ρn

(34)

Solving equ. (34) for α involves a term of two Γ-functions with an argument of same value and opposite sign
for which the relation Γ(+x)Γ (-x) = π /(x sin(πx) holds [11], giving for the Γ-functions of (15) and (33):

Γ+1/3 Γ−1/3  = 30.5 2π (35)
Using equation (34) with (35) will give (note: h => ħ):

α−1  = 
hc0

2π b0
 ≈ (2Γ +1/3

30.5 2π )  (4 π
3

Γ−1/3
3 )  ≈ 2

3
Γ−1/3

Γ +1/3
4 π Γ+1/3 Γ−1/3  ≈ 4 π Γ+1/3 Γ−1/ 3 (36)

The last expression is emphasized since it has a simple interpretation in terms of the coefficients of the
integrals over exp(-(ρ/r)N). Equations (34)ff are based on the integral over a 3-dimensional point charge term
modified by the exponential term according to (7) with N = 3, and  a complementary integral - in 3D for
length, λC - to yield a dimensionless constant. This may be generalized to N dimensions  (N ={3; 4}), to give
a point charge term (SN = geometric factor for N-dimensional surface, in case of 3D: 4π; 4D: 2π2):

∫
0

r

ev ( N )r−2(N−1)  d N r  = SN∫
0

r

e v( N )r−(N−1)dr (37)

that has to be multiplied by a complementary integral 

∫
0

r

ev ( N )r (N−3)dr      (38)

The exact result depends on the integration limit of the second integral, cf. [A4]. However, in terms of the Γ-
functions both electroweak coupling constants can be given in 1st approximation as

α N
−1  = SN  

Γ (+m /N )Γ (−m/ N)
m2  =  S N

Γ (+(N −2)/N )Γ (−(N−2)/ N )
(N−2)2     (m = N-2, cf. (13)) (39)

Table 2: Values of electroweak coupling constants 20

20 Values of coupling constants refer to a rest frame and the related charges (i.e. αweak is not defined via lifetime). 
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4D
3D 136.8

Dimension – 
space

coupling 
constant Value of inverse of coupling constant, αN

-1

α4 = αweak 2π2 Γ+1/2 Γ-1/2 /4  =  π3  = 31.0
α3 = α 4π Γ+1/3 Γ-1/3  = 4π Γ+1/3 Γ-1/3 =



The ratio of α and αweak represents the weak mixing angle, θW, and may be expressed as:

sin2θW  = α
αweak

 = π3

4 π Γ+1/3 Γ−1/3
 = 0.227   (40)

(Experimental values: PDG [7]: sin2θW = 0.231, CODATA [8]: sin2θW = 0.222). The mass ratio of the W- and
Z-bosons will be given by cos θW,calc = (mW/mZ)calc = 0.879 = 0.998(mW/mZ)exp [7]. 

3 Quaternion ansatz
3.1 Basic approach
The model as described above emphasizes a Kaluza-like ansatz with spin as boundary condition. Reversing
the main focus, emphasizing angular momentum and implicitly assuming curvature of space as necessary
boundary condition for localization is a straight forward alternate way to get additional information about the
states of this model [9], details are given in [A5].
A circular polarized photon with its intrinsic angular momentum interpreted as having its E- and B-vectors
rotating  around  a  central  axis  of  propagation,  C  21,  will  be  transformed  into  an  object  of  SO(3)-type
symmetry where the center of rotation is the origin of an EBC-dreibein, supposed to be locally orthogonal
and subject to standard Maxwell equations. This has the following qualitative consequences:
1) Such a rotation is related to the group  SO(3) and  SU(2) as important special case. In the following a
quaternion ansatz will be used for modeling the respective rotations. 
2)  E-vector  constantly  oriented  to  a  fixed  point  implies  charge.  As  implicitly  assumed  above,  neutral
particles are supposed to exhibit nodes separating corresponding equal volume elements of reversed E-vector
orientation and opposite polarity.
3) A local coordinate system = rest system implies mass.
4) In case of any lateral extension of the E-field, for r -> 0 the overlap of a rotating E-vector implies rising
energy density, resulting in rising curvature of space-time according to GR or its modification as of equ. (3).
5) The EBC-dreibein can be given in 2 different chiral states (left- right-handed).
6) As essentially electromagnetic waves such states are consistent with a “point-like” structure function on
the other hand imply a spatial distribution of energy density and angular momentum / spin.
7) Antiparticles may be constructed by reversing orientation of the fields.
For quantitative results 3 orthonormal vectors E, B, C, each described as imaginary part of a quaternion with
real part 0, will be subject to alternate, incremental rotations around the axes E, B and C. In the following
only solutions where one of the incremental angles of rotation has half the value of the other two will be
considered.  This  may  serve  as  a  primitive  model  for  spin  JZ =  1/2.  There  are  3  possible  solutions
corresponding to half the angular frequency for each of the components E, B, or C. The trajectory of the E-
vector encloses a  spherical  cone,  the spherical  cap of the cone encompasses a fraction of the area of a
hemisphere of 2/3, 1/3 and 1/3, respectively. Mirroring at the center of rotation gives the equivalent double
cone (dark grey in fig.1), the fractions of both caps in relation to the surface of the total sphere may be
interpreted to give partial charges of  2/3, 1/3 and 1/3 according to Gauss’ law.  It is suggestive to identify
such components with uds-quarks. In the following the assignment (half-frequency-E-rotation, charge +2/3,
U),  (half-B, charge -1/3, D), (half-C, charge -1/3, S) will be used. 
The E-vector might as well be interpreted to enclose the complement of the double cone of a 3D-ball (white
in fig.1), to be called a spherical wedge in the following. This gives the objects complement-U, complement-
D, complement-S with charges 1/3, 2/3, 2/3. These objects may be attributed to c, b, t-quarks 22. 
Such UDSCBT-entities of (single) spherical cones and toroidal wedges may be used as elementary building
blocks to be combined to form more complex objects pending on fitting charge / phase / angular momentum
and chirality as well as interference of the fields itself. A mismatch in charge /phase / chirality may result in
nodal  planes  and  higher  energy  states.  In  the  following  it  will  be  left  undecided  if  more  complex
compositions of such objects might be interpreted to represent time averages of propagating EBC-vectors or
a standing wave.

21 In the limit r -> λC  => |C| -> c0;
22 There exist no data to compare calculated properties with experiments. However, it may be expected that their more 
extended geometry might be less favourable in a combination for hadrons, leading to higher energy states.
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Fig.1: Trajectories of the E-vector, enclosing spherical cones and spherical wedges
A combination of two cones to give a double cone will always give a valid solution with any spin or chirality
and is considered to correspond to the y1

0 solutions of chpt. 2.7  23.
The simplest combination will consist of 2 complementary segments of same charge etc., to recover a simple
sphere with no nodal planes (last row of fig. 1). Such particles should represent the lowest possible energy
state, JZ = 1/2 should still be valid and their charge could have values of +/-1 or 0.  An electron might be
considered e.g. as an (anti-U + (U-Complement = B)) particle, however, unlike a B-meson with spin 1/2.
While this is not possible with quarks, i.e. objects with particle character, it is the simplest solution for such a
type of an electromagnetic wave. 
The neutral configuration will have to be distinct from all other particles by representing a state where the
center of rotation is not at the “tip” of an E-vector, but at its “middle”, see last row right in figure 1. This will
be an “intrinsically” neutral particle unlike particles consisting of components of opposite charge, such as the
neutron and a unique solution that for spatial reasons is not suited as component to build other particles. It
will not be subject to the conditions of 2.6.1, 2.6.2 and αPl, which are related to “charge”. 

3.2 Magnetic moments of baryons
There is a crucial test for the applicability of such a quaternion ansatz: calculation of magnetic moments of
uds-baryons. Though it is possible to give values for all combinations of the uds-octet of spin 1/2 that match
the experiment within a few percent they have to be selected from a large set of solutions. Unique solutions
require additional boundary conditions. For nucleons this will be isospin. Exchanging U- and D-components
results in switching the values for magnetic moment of p and n 25.
In  the  quaternion/dreibein  model  both  E-  and  B-fields  are  oriented  to  the  center  (magnetic  monopole
character on particle level) and will feature average fields of 1/3 and 2/3 for quark-like objects. The B-field
for u- and d-entities will have Cartesian components of ± 2/9, ± 2/9, ± 1/9 (d)  and ± 4/9, ± 4/9, ± 2/9 (u).
Permutations  of  these  values  give  a  large  set  of  solutions,  isospin  will  serve  as  a  restricting  boundary
condition  for  the  nucleons.  Unique  solutions  (except  for  arbitrary  orientation  in  space)  for  B-field
components of nucleons will be e.g. (Bavg=((∑xi)2+(∑yi)2+(∑zi)2)0.5/3):
proton   - uud -4/9, -4/9, -2/9 / -2/9, -4/9, -4/9 / +2/9, -2/9, +1/9 Bavg = 1410.5/27 ≈ 0.440 
neutron - ddu -2/9, -2/9, -1/9 / -1/9, -2/9, -2/9 / +4/9, -4/9, +2/9 Bavg =660.5/27 ≈ 0.301
To get  absolute  values  one  has  to  multiply  by  ec0λC/2  =  2πµB (λC  = Compton wavelength,  µB =  Bohr
magneton), see tab. 3. The ratio of both values is (141/66)0.5 = 1.461631, which compared to the ratio from
experiments [7] gives 1.461631 / 1.459898 = 1.001187.  

Table 3: Magnetic moments for proton and neutron; For greater accuracy values of λC according to [7] are used;

23 Composite objects - in particular if composed of 3 UDS-components – may feature sufficient spherical symmetry to
conform to the respective energy equation  (29). The spherical symmetry of nucleons as assumed in chpt. 2 may be
given by suitable linear combinations of the states discussed in [A5], [A6.2, η].
25 U and D are symmetric in their E and B-fields while in S-components E- and B-fields are symmetric to each other.
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B_Avg
UUD 1.32E-15 3.17E-26 0.440 1.39E-26 1.41E-26 0.988

n DDU 1.32E-15 3.17E-26 0.301 9.55E-27 9.66E-27 0.988

λC e c0 λC /2 ec0λC Bavg/2 |M|Exp[Am2]
|M|Calc/ |

M|Exp
p+-

Elementary fermions 
of the standard model 
of particle physics

2/3

e.g.
+1

++

= ==

e.g. 
 0

e.g.
-1

U D

B C

+
S

T

2/32/3

1/3

1/3

1/3

6 quark-like entities

6 lepton-like entities
(3xcharged, 3x neutral)



These solutions are distinguished by one U and one D-component being collinear  26, indicating a particular
stable configuration involving oppositely charged components (see [A7]).
Table 4 compares some ratios of particle pairs for calculations with the average of the B-field as calculated
above,  i.e.  geometry  only,  and  calculations  of  the  actual  moment,  using  the  experimental  value  of  the
Compton wavelength. A simple analysis for particles with S-components is not possible since the U- and S-
components of the B-fields are identical (cf. tab. 5 in [A5]).

Table 4:  Ratio of particle magnetic moments of baryon pairs compared for calculated and experimental
values [7] (col.3: geometry only, B_avg; col.2 inc. exp. particle energy); 

3.3 Chirality / Color 
The orthonormal EBC-vectors feature two possible chiral configurations, right-handed “R” and left-handed
“L”, suggesting to be a possible source for a factor 3 frequently appearing in the quantitative interpretation of
processes  involving  a  quark-antiquark-pair,  such  as  in  the  decay,  e.g.  of  the  W-  or  Z-boson,  or  in  the
coefficient R of electron-positron-annihilation. While this is attributed to the 3 “colors” of quarks in the SM,
the same factor would result for any UDS-pair having the possibility to exist in triplet-like states, “LL”,
“RR” and 1/√2 (LR+RL) 27 (referring to an axial vector representing the EBC-configuration). 

4 Recovering terms of the original Einstein field equation
4.1 Planck scale
In this work the expression
b0 = G mPl

2 = G WPl
2 /c0

4             (41)
is used as definition for Planck terms, giving for the Planck energy, WPl

 :
WPl

  = c0
2 (b0 /G)0.5 = c0

2 (αħc0/G)0.5 = 1.671 E+8 [J] (42)
The value of WPl according to definition (42) allows to identify the ratio of We and WPl with the α-terms 
given in (25), i.e. the relation between We and WPl is given by αe ≈ (3/2)3   α9, the electron coefficient in the 
exponent of ev divided by two times the limit factor, αlim, according to (23) 28. The constant G may be given 
as:

G  ≈ 
α Pl

2 c 0
4 b0

W e
2 (43)

Since We may be expressed as function of π, Γ+1/3, Γ-1/3 and ec only, (62), G may be expressed as a coefficient 
based on electromagnetic constants only, G ≈ 2/3 c0

4α24/(4πεc) ≈ 2/3 c0
4 (4πΓ+1/3Γ-1/3)24/(4πεc).

4.2 Gravitation
Terms for gravitation may be recovered via a series expansion of either Γ(+1/3 ,  (ρn/rn)3) of (14) [15] or the
exponential ev  in any suitable expression, e.g. potential ρ0/r, resulting in a general term such as:

 
ρ0

r [1  - σαPl ( ec

4 πεc r )
3]  ≈ Coulomb-term [1  - σαPl( ec

4 πεcr )
3 ] (44)

which is a very good approximation for r >  αλC. The 1st term is the classical Coulomb term, the 2nd term
contains by definition the ratio between Coulomb and gravitational terms for one electron, αPl. To turn this
into the exact Coulomb / gravitation relationship requires 
1) coefficient σ to approach unity, which may be approximately justified by considering the limit of chpt. 2.5
or [A3.2],

26 Time average! All E,B-components involved are orthogonal at any given point in time. 
27 With a singlet state corresponding to destructive interference; alternatively: 3 simple combinations RR, LL, RL;
28 A factor 2 might correspond to relate only the electrostatic contributions of (15) for the electron with the 
electrostatically defined value of a Planck state. 
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U,D,S-components B_avg
M(p/n)_Calc/M(p/n)_Exp UUD/DDU 0.999809 1.001187

UUS/DDS 1.007813 1.001111
USS/DSS 0.974652 0.969601

|M|Calc (λC exp)

M(Σ+/Σ-)_Calc/M(Σ+/Σ-)_Exp
M(Ξ0/Ξ-)_Calc/M(Ξ0/Ξ-)_Exp



2) parameter r in ec /(4πεcr) to turn into a constant,
3) parameter r to approach the value ec/(4πεc).
For condition 2) one has to consider that r in the exponential may not be considered to be a free parameter
for r > λC, the limit of a real solution for an equation such as (55). Using the limit of σmin of (22) and inserting
the Compton wavelength of the electron in (44) would give a value two orders of magnitude off to yield the
expected value for the electrostatic / gravitation ratio. Since σ is essentially related to spin of a particle and it
has to be assumed that spin does not play a role for r > λC, one might omit the related coefficient in (44) as
well as in the term for λC 29 and thus by definition of αPl recover the exact gravitational term.
The general expression for the series expansion would be: 

Coulomb-term (1 - αPl). 
Particle interaction would be given by the square of the αPl term multiplied by appropriate coefficients from
the α-series according to (24) for particles of spherical symmetry in a rest system. Since the 2 nd term of such
a series expansion should not exceed the 1st, electromagnetic one, the maximum relativistic mass for such
particles would be defined by αe

-1 ≈ α9, while the inverse of the maximum non-spherical symmetry term, i.e.
αlim

-1 as given in (25) secures that particles that are not spherical symmetric in a rest system can not exceed
the Planck limit either.  
The approach using assumptions 1) - 3), is supported by the considerations of chpt. 4.3, yielding a term for
the cosmological constant in the correct order of magnitude.

4.3 Cosmological constant Λ
The full 5D equation (5), including ~ 1/Φ (∇α (∂α Φ)  - gαβ □ Φ ) , offers the possibility to produce additional
terms that might be considered as a natural candidate for the cosmological constant term, gαβΛ. Its exact
expression will depend on the complete metric used. Nevertheless G00 may in general contain terms such as
ρn

3/r5 or ρn
6/r8 with all r originating from derivatives of the exponential only, see [A2] 30. Using r = ec/(4πεc)

as upper bound of r, as suggested in 4.2 will yield approximate values in the order of magnitude of critical,
vacuum density, ρc, ρvac: 

Φ ' '
Φ

 ≈ ρ3

r5  ≈ 
αPl

(ec/(4 π ε c))
5 ( ec

4 π εc
)
3

 =  αPl( 4 π εc

ec
)
2

= 0.089 [m-2] (45)

Multiplied by εc this gives an energy density of 2.97E-10 [J/m3].
Multiplied by the conversion factor for the electromagnetic and gravitational equations, equ. (2), 8πεcG/c0

4 
(45) gives as estimate for the cosmological constant, Λ:

αPl
(4 π )2 ε c

3

ec
2

8πG
c0

4  ≈ 6.17E-53 [m-2]    31 (46)

5 Discussion
Theory of everything is a somewhat ironic and pompous term and maybe an unachievable goal. At the time
Theodor Kaluza’s unification of general relativity (GR) and electromagnetism was conceived, it came pretty
close, yet the emerging theory of quantum mechanics (QM) moved the finish line. It is a common thought
ever since that the theory of GR somehow has to be unified with QM. The model presented here suggests
that the ansatz of Kaluza is sufficient to give an excellent model for particles, in particular in combination
with  the  boundary  condition  spin  1/2,  bypassing  QM  in  1st approximation.  The  major  deviation  from
conventional  GR is  dropping  the  constant  of  gravitation  in  the  field  equations,  a  minor  thing  from  a
mathematical  point  of  view.  The resulting objects of  interest  are  waves only,  which naturally  fits  basic
concepts of QM. Other general features of quantum mechanics that emerge from such an ansatz include
quantization of energy or the pivotal  constant of quantum mechanics,  Planck’s constant,  h, that may be
derived from the electromagnetic constants and geometry as expressed in the derivation of α. 

29 I.e. condition 2.6.2 would not have to apply to wavelength, while the more general condition 2.6.1, 1st term ≥ 2nd 
term, would still require αPl in the series expansion;
30 Such as ρ3/r5 in [A2.1] though this term cancels in the specific example for G00;  The 1st term of (54), representing 
field-free space, i.e. vacuum, might be a suitable starting point as well.  
31 Λ ≈ 1.11E-52 [m-2] with Hubble constant H0 = 67.66 [km/s/Mpc] [12]
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The results of the quaternion ansatz of chpt. 3 reproduce the set of elementary fermions of the standard
model of particle physics (SM). The number of 6 basic building blocks of matter can be traced back to the 3
possibilities to single out one of the orthogonal EBC-vectors and in a broad sense is a consequence of the 3
space dimensions in 4D space-time. While the properties of quarks, such as partial charges, are deduced from
experimental particle data, in particular symmetry, they can be derived in the quaternion ansatz. Leptons are
an integral part of the particle classification scheme.
Though the ansatz of this model yields features that match those of quarks, there seems to be no deeper
connection with the concepts of QCD, such as color or gluons. Properties such as confinement or the need
for adhering to the Pauli principle in e.g. the Δ++ are obsolete from the outset for an object that is basically a
(5D-) electromagnetic wave. The development of the SM from constituent quarks towards QCD, based on
valence and sea quarks plus gluons, was in part required by the limitations in explaining some scattering
experiments with 3 point-like objects only. The waves of this model are consistent with a point like structure
function and still feature spatial extension from the outset.
On the other hand, regarding electroweak theory, there are several features of the model that indicate a close
relationship in addition to the obvious common root in EM: SO(3), SU(2) symmetry, the energy of the Higgs
boson  /VEV as  upper  limit  for  particle  energy  32 and  the  possibility  to  calculate  the  IR-limits  of  the
electroweak coupling constants. As for chirality the inherent chiral character of a circular polarized EM-wave
is transferred via the quaternion model to particles. All of this strongly suggests a deeper connection of both
concepts, worth to be examined more closely in the future.
As far as other aspects of QM are concerned, QED terms are considered to be a necessary correction for the
results of this model. 
Comparing the computational power of the Kaluza ansatz with the SM, for e.g. calculating particle energy
and magnetic moments, in the SM calculations of relative energy/mass of hadrons by LQCD-calculations use
current-quark  masses  as  input  parameters,  see  e.g.  [10],  while  the  currently  best  results  for  magnetic
moments of uds-baryons originate from a fit to p, n and Λ0-magnetons related to constituent-quark mass [7].
The model presented here achieves a precision for energy comparable to the LQCD-calculations, however,
the energy range is not limited to hadrons but essentially covers the complete range of energy relevant for
particles (ignoring the sub-particle t-quark).  Magnetic moments can be given with a precision an order of
magnitude better than that of the values given in [7]. Both calculations do not rely on any input parameter
but are ab initio.
Not all details of the SM are reproduced by the particle model presented here, several SM assumptions seem
to become obsolete. Anyway the relevant benchmark is the agreement with experiments and the small set of
assumptions of a Kaluza ansatz, essentially based on established physical theories, should hardly offer any
points for a fundamental refutation. For potential minor discrepancies this model should be flexible enough
to adapt. The range of particle properties covered is quite comprehensive and in some aspects the capabilities
of the SM are exceeded considerably. 
The strongest point of this model is the root in Kaluza’s combination of GR and electromagnetism. Kaluza’s
ansatz was able to produce correct expressions for both theories but failed to reconcile the huge difference in
order of magnitude of both effects with the properties of particles. The remedy proposed here is an almost
trivial one, series expansion. That the coefficients used in this approach have some significance is attested by
both the results for particles as well as the possibility to produce a reasonable term for the cosmological
constant. The ansatz for a metric still needs considerable improvement, but there seems to be an opportunity
to gain a new perspective to address problems at the scale of cosmology as well.

32 Some additional relation with electroweak bosons might be given by [A6.3].
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Conclusion
A formalism based on  5D-differential geometry and electromagnetic concepts, with spin 1/2 as boundary
condition, provides a simple, coherent, comprehensive and first of all quantitative description of phenomena
related to particles, such as
- a convergent series of particle energies quantized as a function of the fine-structure constant, α, with
  electron and the Higgs VEV energy as lower and upper limit, equ. (27),
 - an energy for a distinct, neutral particle class at ca. 0.1 eV,
- a single expression for the values of electroweak coupling constants, equ. (39),
- 3D-space and spin 1/2 define a set of 6 lepton-like and 6 quark-like objects with the associated charges,
- magnetic moments of the nucleons.
A series expansion links electromagnetic and gravitational terms with a cosmological constant in the correct 
order of magnitude.
The  model  works  ab initio without  free  parameter  and  allows  to  remove  some values  from the  set  of
fundamental constants: 
electromagnetic constants, h, G, α, αweak, energies of elementary particles     =>  
electromagnetic constants.
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Appendix
[A1] Scalar potential Φ
The solutions for the scalar Φ depend on the complete metric used. The easiest method to get a solution of order N is to
use spherical coordinates of dimension N+1. Using e.g. the line element for a 4D metric of [4, equ. 6.76]

ds2  = eν dt2−e λ dr 2−eµ r2(dϑ2+sin2 ϑ dφ2) (47)
and Aα = (Ael, 0, 0, 0) gives as solution for equ.(6) (cf. [4, equ. 6.77], prime corresponds to derivatives with respect to r):

Φ ' '+( v '−λ '+2µ'
2

 + 2
r
)Φ '  - 1

2
Φ3 e−v (Ael ')2  = 0 (48)

This can be solved with a function of type (7) for N = 2:

 Φ2 '  = [−( ρ
r2 )  + 2 ( ρ3

r4 )]eν (49)

and

 Φ2 ' '  = [2( ρ
r3 )  - 10( ρ3

r5 )  + 4 ( ρ5

r7 )]e ν (50)

The ρ1 terms cancel in (48), the ρ3 terms can be eliminated by appropriate choice of v', λ' and µ', a remaining factor in
the ρ5 term could be compensated by assuming a corresponding factor in Ael. For N = 3 hyperspherical coordinates  with
the line element

ds2  = eν dt2−e λ dr 2−eµ r2(d ψ2+sin2 ψ(dϑ 2+sin2ϑ dφ2)) (51)
may be used. A more complex metric of the kind given in [A2] may be used as well to solve equation (8). 

[A2.1] Metric / point charge
A general metric using solutions for Φ according to [A1] will be:

g αα  = (ρ0

r )
N−1

exp(−(ρ
r )

N

) ,   - (ρ0

r )
N−1

exp((ρ
r )

N

),   −r2 ,   − r2sin2ϑ   (52)

The following uses the metric of (52) with N = 3. The exponential part represents Φ2 ~ ev in the metric. The variable r is
marked bold if originating from the exponential term to facilitate a discussion of the implications of its restricted range
of validity. 
Γ01

0 = Γ10
0 = - 1/r1 + 3/2 ρ3/r4 Γ00

1 = - 1/r1 e -2v + 3/2  ρ3/r4e -2v

Γ11
1 = - 1/r1  - 3/2 ρ3/r4

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = + 1/r1 Γ22
1 = − r3/ρ0

2 e-v   = Γ33
1/sin2 ϑ 

Γ23
3 = Γ32

3 = cot ϑ Γ33
2 = − sin ϑ cos ϑ

R00  =  e2v [+1/r2  + 6 ρ3/r5 - 9/2 ρ6/r8)]
R11 = +3/r2  - 6 ρ3/ r5 + 9/2ρ6/r8

R22  = - 1+  e+v [+ r2/ρ0
2 + 3ρ3r3 /(ρ0

2r4)]
R = + 2/r2 +  ev [(- 4/ρ0

2 - 6ρ3r/(ρ0
2r4)+ 12 a ρ3 r2/(ρ0

2 r5) - 9 a2 ρ6 r2/(ρ0
2 r8)]

G00 will be:
G00 = e2v [+1/r2 + 6ρ3/r5 - 9/2ρ6/r8)] - ev ρ0

2/r4 +  e2v [2/r2 + 3ρ3/(rr4) - 6 a ρ3/ r5 + 9/2 ρ6/(ρ0
2 r8)] = 

- ev ρ0
2/r4  +  e2v [3/r2 + 3ρ3 /(rr4)]  

Volume integrals over any ρn/rn+2 terms will yield energy results  εc∫ev  ρn/rn+2 d3r ≈ εc ρ ≈ 1E-22 [J] compared to the term
εc∫ ev ρ0

2/r4 d3r ≈ εc  ρ0
2 ρ-1  ≈ 1E-13 [J] (both with coefficients for the electron, σ0αPl) giving negligible contributions to

particle energy within the parameter range discussed here. This leaves the first term as leading order:  
G00 = − ev ρ0

2/r4  

[A2.2] General solution N = {1; 2; 3} 
This article has a focus on a solution of (7) with N = 3. However, all solutions in a 5D space-time according to [A1], i.e.
up to using hyperspherical coordinates,  N = {1; 2; 3}, might be used for the ansatz of a metric such as 

g00  = ∑
N =1

3

(ρ0

r )
N−1

exp(−(ρ
r )

N

)   (53)

With the approximation σ ≈ 1 this gives for g00:

g00  = exp(−αPl(ρ0

r ))   +  (ρ0

r )exp(−αPl(ρ0

r )
2

)   +  (ρ0

r )
2

exp(−α Pl(ρ0

r )
3

)   (54)
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Each term might be expanded and split in EM and gravitational part as shown in chpt. 4.2.
The 3rd term corresponds to the case discussed above, resulting in terms giving the square of the E-field in G 00 and
eventually particle energy as well as an equivalent term for gravitation from the series expansion. The second term is
the linear version and might be used to construct a Schwarzschild-like solution.
The first term might represent a general vacuum solution, i.e. without presence of any field  ρ0/r. A series expansion
would give the 1 for flat space-time, while the minor terms of G 00 could give Λ-like orders of magnitude equivalent to
the reasoning of chpt. 4.3.

[A3] Model coefficients
[A3.1] Coefficient σ as component in ρ
The exponential term, exp(-ρ3/r3), together with the r-2 dependence of the field of a point charge define a maximum of
particle energy near rW(max) ≈ ρ, rapidly approaching 0 for rW(max) > ρ, effectively allowing to calculate energy terms
without using a specific upper integration limit, rn 

33. On the other hand the weaker r-dependence of angular momentum,
~1/r results in the calculated values being completely dominated by an integration limit. The limit of the Euler integral
is given by ρn

3/rn
3, a constant which will be denoted 8/σ in this work.

A general exponential function of radius featuring a limit radius,  assumed to correspond to a damped oscillator-like
solution,  may be given in 1st approximation as:

  ev '  = exp(−( ßρ'3

2r3 +[( ßρ '3

2r3 )
2

– 4 ρ '3

2r3 ]
0.5

))   (55)

ß being some general coefficient. At the limit rn of the real solution (55)

(ßρ '3 /rn
3)2  = 8 ρ '3/rn

3     =>    ß  = 8 ( r
ρ

' )
3

= σ     (56)

holds, reproducing the definition of σ (16). Within the parameter range of this work the function ev’ ≈ exp(-(ßρ‘3/r3)) is a
very  good  approximation  of  an  equation  of  the  kind  of  (55)  and  consequently  coefficient  σ  will  be  part  of  the
exponential. 

[A3.2] Coefficient σ, coefficient 1.5x
The basic relation of α(n) and σ with the fine-structure constant α and coefficient Γ-1/3 /3 is due to the considerations of
chpt. 2.4 To get a more detailed description in a range of 1 percent precision is difficult since there are several options
conceivable and in this range of accuracy, QED and other minor effects may be expected which might be amplified due
to the non-linear nature of the Γ-functions involved. A factor ≈ 3/2 appears in several terms such as σ 0  ~ 1.5α-1 of (20),
the ratio of electron and muon energy =1.5088, Γ-1/3  /Γ+1/3 =1.516, π/2 = 1.5707 and the irregular electron coefficient in
the power series that is part of αPl as well. The following discusses some relevant aspects with a focus on identifying
possible underlying relationships while minimizing assumptions about the term ≈ 3/2 in particular. 
In this model elementary charge may be given as b0∫exp(-(ec/(4πεcr))3)r-2dr ≈ ec, the corresponding radial distribution of
energy has its maximum at rc ≈ ec/(4πεc). To get the exact value of ec coefficient  Γ(+1/3)/3 is required to appear as a
term in W(ec) due to the Euler integral, thus a counter term must be part of ρ in (14)f:

W (ec)  = 
ec

2

4 π εc
∫ exp(−Γ+1 /3

3
e c

4 π ε c
)
3

r−2 dr  = 
ec

2

4 π εc

Γ+1 /3

3 ( Γ+1 /3

3
e c

4 π εc
)
−1

 = ec (57)

For rc follows, considering the basic coefficients only, using (32), (35)

λC  ~ 30.5∫exp−( Γ+1 /3

3
ec

4 π εc )
3

dr  ~ 
Γ−1/3 Γ+1/3

30.5  
ec

4 π εc
 = 

ec

2εc
(58)

again removing all coefficients that are not part of a Coulomb-expression and suggesting an additional term of 2π in the
denominator of ρ (note: for elementary charge σ = 1 has to be assumed; otherwise one gets (59)). 
Looking only at the basic mathematical coefficients entering the equation (30)ff (i.e.  σ -> 2Γ-1/3/3) an additional term
((2π)-1Γ+1/3 /Γ-1/3)3 (bold in (59)) in ρ would cancel redundant Γ-1/3/3 terms in the length expression as well:

λC  ~ 30.5 Γ−1 /3

3
 σ 1/ 3

2
ρ  ~ 30.5 Γ−1 /3

Γ−1/3

3
2 Γ−1/3

3
 

Γ+1/ 3

2 π Γ−1/ 3
 = 

2Γ−1/ 3

3 (59)

The term ((2π)-1Γ+1/3 /Γ-1/3)3 consists of components related to angular momentum and (with an additional factor 2) seems
to be a suitable replacement for 1/(2αlim) e.g. in (25) and may thus be used in expressions such as (60)ff 34. 

33 For an upper limit rn ≥ 10ρ other limitations supersede the attainable precision.
34 The need of Γ+1/3 /Γ-1/3 to appear in (57)ff and its more pronounced relationship with angular terms is the reason to 
prefer (2αlim)-1 ≈ 2 ((2π)-1 Γ+1/3 /Γ-1/3)3 over (2αlim)-1 ≈ 2((2π)-1 2/3)3 which would give σ0=1.821E+8[-], i.e. a term very 
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Using these coefficients considered essential  for yielding basic quantities such as e c,  including the typical  term 2π
associated with angular momentum and corresponding to the 3rd power structure of the equations best would give for σ0:

σ 0  = [ 1
4 ( Γ−1/ 32π

Γ+1 /3
)
3 2Γ−1/ 3

3 ]
3

 = [( Γ−1/ 3π
Γ+1/ 3

)
3 4 Γ−1/3

3 ]
3

= 2.008E+8 [-] (60)

[A3.4] Model calculations for ev

In col. 6 of tab. 1 equ. (15) and (26) are used with σ0 according to (60), αPl will be replaced by αlim
-1/2 (3/2 α9) with αlim

being recalculated from αlim
-1 = σ0 

-1/3
 2Γ-1/3/3. This gives the following expression for ev  35: 

exp (−[ ( ρn/ r )3] )  ≈ exp(−[1.53 δσ0 α Pl α (n+1)(ec

4 πεc r )
3])  ≈ exp(−[1.53δ [(Γ−1 /3 π

Γ+1 /3
)
3 4 Γ−1/3

3 ]
3
α (n)
2 αlim

(ec

4 πεcr )
3])

 ≈ exp(−[1.53δ [(Γ−1/3 π
Γ +1 /3

)
3 4 Γ−1 / 3

3 ]
3

2(Γ+1/3

Γ−1/3 2 π )
3

(32 )
3
Πk=0

n α ^(9 /3k)(ec

4 πεc r )
3 ])  ≈ 

(exp(−[1.53 δ
π2 Γ−1/ 3

3

Γ+1 /3
2

Πk=0
n α ^(3/ 3k)

ec

4 πεc r ]
3

))
2

                                                                     n = {0;1;2;..}

(61)

Inserted in the equation for energy, (14)f, gives

W n  = 2b0∫
0

rn (exp(−[1.53δ
π2 Γ−1/3

3

Γ+1/3
2

Πk=0
n α ^ (3 / 3k)

ec
4 πεc r ]

3

))
2

r−2  dr    =>   

W µ  = 2 ec

Γ+1/3
3

 2−1/3[ Γ+1/3
2

π2 Γ−1 /3
3 α− 4]   =  2

2/3

3π2 (Γ+1/3
Γ−1/3 )

3

α−4  ec

        n = {0;1;2;..} (62)

(1.5δ = extra coefficient for the electron only, δ = δ(0,n); bold: particle coefficient; muon given as example)

[A4] Coupling constant in N dimensions
The integration limits for calculating angular momentum in z-direction, r n of Jz, (17)ff, and (Compton-)wavelength, λC,
supposed to represent the rotating E-vector and in turn total angular momentum J should be related by the factor √3 of
the ratio J/Jz:

                                             λC / rn  = (1/2(1/2 + 1))0.5 / (1/2)  = √3                  
36 (63)

The 3D case of the coupling constant is easy to interpret, for the 4D-case some assumptions have to be made concerning
the integration limit. The following gives an alternative, more detailed interpretation than 2.10 (φN = exp(-(ρ/r)N) ).

3D case:
The exact value of the product of the integrals (37)f, depends on the integration limit relevant for the second integral,
i.e. the lower integration limit of the Euler integrals, which can be expressed as 3D volume with Γ-1/3 as radius (20):

ρn
3 /λC , n

3  = 8/ (31.5 σ 0)  = (30.5 4 π
3

 Γ - 1/3
3)

−3

    (64)

The additional factor 30.5 may be interpreted as the ratio between rn of equ. (16) and λC,n as required in the expression for
photon energy. This gives Γ(-1/3, 1/σ0) ≈ 36π2Γ-1/3 and 

2∫
0

r

φ3 r−2d r∫
0

r

φ3dr  ≈ 2 [ Γ1 /3

3 ][2π 2π 9
Γ−1 /3

3 ]  = 4 π Γ1 /3 Γ−1 /3  2π  = 2 π  α−1  37 (65)

The result of (65) yields a dimensionless constant α' = h c0 4π ε/e2  and it is a matter of choice to include 2π in the
dimensionless coupling constant. Factor 9 cancels the corresponding factors from the Euler integrals. The remaining
factor of 4π is needed to yield the correct value of α. 

A general N-dimensional version of (64) may be given as:

close to the value of σ0 fitted to Jz. 
35 Expression intended to emphasize 3rd power relationship, a remaining factor of 2 is attributed to ev/2 being squared.
36 Alternatively: λC,n = 3ρhc0/(2b0Γ+1/3) = 3π α-1 ρ/Γ+1/3; rn = 3/2 α-1 ρ Γ-1/3/3  =>  λC,n/rn = 6π/(Γ+1/3Γ-1/3) = 6π/(2π√3) = 30.5

37 Factor 2 from adding electric and magnetic contributions to energy;
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8 /σ N  = (30.5δV N  (Γ (- 1/N ))N )−N /( N−2 )
    (66)

VN is the coefficient for volume in N-D, coefficient 30.5 will be omitted in 4D where coordinate r is considered to be
directly related to energy via rn ~ 1/Wn and rn might be directly identified with λC,n; subscript in σN corresponds to
dimension in the following.

4D case:
Using φ4 according to the definition (7)  and (66) for 4D:

ρn
4/rn

4  = 8/σ 4  = ( π2

2
 (Γ - 1/4)

4)
−2

= 1.232E-7   (67)

as integration limit, with (13) the non-point-charge integral in 4D will be given by:

∫
0

r

φ4r dr  ~ Γ (−1/2 ,8 /σ 4)  = ∫
8 /σ 4

∞

t−1.5 e−t dt  = 5687  ≈ 16 π 4 Γ−1/2 (68)

The 4D equivalent of (65) will be:

2∫
0

r

φ4r−3 dr∫
0

r

φ4 r dr  ≈ 2 [ Γ1 /2

4 ][16 π 4 Γ−1 /2

4 ]  = π 2

2
Γ 1 /2 Γ−1 /2 4π2  = π 3 4 π2   = αweak

−1 4 π2 (69)

The interpretation is the same as in the 3D-case:
A 4π2 term originating from the second integral of equation (69) is required for turning h2 into ħ2 since the integral refers
to ρn

2 and thus to the square of energy and h, ħ. Factor 16 cancels the corresponding factors from the Euler integrals.
The remaining factor of π2/2 is needed to yield the correct value of αweak .

2D case: 
the 2D case is not as straightforward as the 4D case. The integral over the 1D point charge  

∫
0

r

φ2 r−1dr  = Γ (0 , ρn
2/r2

2)  /2        (70)

features Γ(0, x), with Γ(0, x) -> ∞  for x -> 0 and m = N-2 = 0 in the equations above. Setting nevertheless m=1 in the
2D equivalent of the integration limit

ρn
2 /λC , n

2  = 8/ (σ 2)  = (30.5 π  Γ−1/2
2 )−2

 ≈ 1/ 4676      (71)

and calculating Γ(0, ρ2
2/r2

2) numerically gives ∫φ2r-1 dr ≈ Γ(0, ρ2
2/r2

2)/2 = 7.872/2. In the 2D case the complementary
integral would be identical to the point charge integral, giving 2(∫φ 2r-1 dr)2 ≈ 4π3/4 = π3  , i.e. the same value as 4D,
maybe giving an alternate candidate for αweak .

[A5] Quaternion-based quark-like model 
[A5.1] Quaternion UDS-components 
In the following the model described in chpt. 3 will be explained in some more detail. A standard algorithm for rotation
with quaternions will be used. 
Three orthonormal vectors E, B, C described as imaginary part of a quaternion with real parts set to 0, will be subject to
alternate, incremental rotations around the axes E, B and C. For each E, B and C the following variables will be defined:
- de, db, dc: incremental step for rotation angle, 
- de_sum, db_sum, dc_sum: total rotation angle, 
- ex, ey, ez, bx, by, bz, cx, cy, cz: Cartesian components of the respective vectors,
- eex, eey, eez, bbx, bby, bbz, ccx, ccy, ccz: Cartesian components of the respective vectors to be buffered until rotation 
around the axes E, B and C is complete, 
- sih, qw, qx, qy, qz: internal variables for quaternion-rotation calculation.
The following part of the algorithm gives the rotation of B around the E axis for an incremental step de:
de_sum = de_sum + de;   sih = Sin(de / 2);   qw = Cos(de / 2);    qx = ex * sih    qy = ey * sih;    qz = ez * sih;   
bx = bbx;    by = bby;    bz = bbz;    
bxx = bx * (qx * qx + qw * qw - qy * qy - qz * qz)  + by * (2 * qx * qy - 2 * qw * qz) + bz * (2 * qx * qz + 2 * qw * qy);    
byy = bx * (2 * qw * qz + 2 * qx * qy)   + by * (qw * qw - qx * qx + qy * qy - qz * qz) + bz * (-2 * qw * qx + 2 * qy * qz);
bzz = bx * (-2 * qw * qy + 2 * qx * qz)  + by * (2 * qw * qx + 2 * qy * qz) + bz * (qw * qw - qx * qx - qy * qy + qz * qz);  
bx = bxx;  by = byy;  bz = bzz;
This has to be followed by rotation of C around the E axis; and equivalent routines for the rotation of E, B around the C 
axis and the rotation of E, C around the B axis. After each incremental step for de, db, dc the Cartesian components of 
the E, B, C vectors may be stored in a list,  tab. 6 gives an example for the results. A rotation is considered complete if 
all vectors regain there starting values, see flowchart, fig.2.
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Fig. 2: Flowchart quaternion calculation
The vectors are thought to indicate spatial orientation only, polarity of E and B has to be considered in the analysis of 
the results. Orientation of angular momentum remains a free parameter.
In the following only solutions where one of the incremental angles of rotation has half the value of the other two will
be considered. This may serve as a primitive model for spin J = 1/2.
There are 6 possible solutions for de, db and dv, respectively, to be called U, D, S, C, B, T:

Tab.5: Inc. average of x,y,z-components (E,B-comp) and total average (E,B-avg) of E-and B-field for complete rotation;
The average of the x, y, z-components of the fields are multiples of 1/9th of the original vector length, the average total
sum of E- and B-fields is 1/3 or 2/3, respectively. Surface area / fractional charge of 1/3 and 2/3 correspond to an
average of the E-field of 2/3 and 1/3.
The diagram for the E,B, C-components as function of the angle dc_sum is given in fig. 3a.
From a coordinate transformation to  a  representation with one Cartesian coordinate as  axis of  rotation (in  fig.  3b
transformation of  z-axis  +26,6°,  x-axis  -41,8°,  to  give  y-axis  as  axis  of  rotation)  one  can  infer  that  the E-vector
circumvents a spherical cap of area 2πr 2/3r. Mirroring at the center of rotation gives a value of 2/3 of the surface of a
sphere, which according to Gauss’ law may represent 2/3 of a full point charge. The analogue procedure yields a value
of 1/3 of a point charge for D and S-rotations.

Fig. 3.: a) E-components for Cartesian starting values  b)  E-components after coordinate transformation 

[A5.2] Magnetic moments of baryons from U, D, S-components
To calculate magnetic moments of uds-baryons three components of U,D,S will be combined that represent orthonormal
starting conditions for E, B. Spin/angular moment of the 3 components has to add up to J Z = 1/2. Within this model this
is not an assumption but may be calculated in principle in detail. In the following it will be sufficient to have two
components sharing the same orientation of the axis of rotation, i.e. both can be transformed according to fig. 3 above
with the same set of rotation angles, or - in a trivial case – to have 2 identical components. Together with the freedom in
choosing direction of rotation, allowing for canceling or adding up spin as needed, this will be sufficient to model JZ =
1/2 baryons. Table 6 gives an example for UUD and DDU. 
In D_inv and U_inv the sign of E- and B-components is inverted. The D and U for calculation of the effective B-field
include  the  appropriate  sign  from  their  charge  while  U_inv,  D_inv  components  represent  the  actual  geometric
orientation of the E, B-vector only, which is needed for calculation of the angular momentum J from the square of the
electromagnetic fields. In table 6 ”Rot_X_axis” and ”Rot_Z_axis” give the angle of rotation needed to transform to a
representation with y-coordinate as axis of rotation for the B-field. For U_1 and D_inv of the proton as well as for D_2
and U_inv of the neutron the angles of transformation are identical, so is their transformed y-axis, i.e. they posses
identical  orientation  of  spin  (average  of  B)  while  still  maintaining  their  orthonormal  relationship  (B(t)).  Since
orientation of rotation is a free parameter opposite spin will cancel both contributions, leaving the 3 rd component’s spin
of JZ = 1/2 as total spin of the nucleon. 
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E-comp E-avg B-comp B-avg E-comp E-avg B-comp B-avg E-comp E-avg B-comp B-avg

2/9, 2/9, 1/9 1/3 4/9, 4/9, 2/9 2/3 4/9, 4/9, 2/9 2/3 2/9, 2/9, 1/9 1/3 4/9, 4/9, 2/9 2/3 4/9, 4/9, 2/9 2/3
U D S

4/9, 4/9, 2/9 2/3 2/9, 2/9, 1/9 1/3 2/9, 2/9, 1/9 1/3 4/9, 4/9, 2/9 2/3 2/9, 2/9, 1/9 1/3 2/9, 2/9, 1/9 1/3
C B T

Spherical 
cone
Toroidal 
wedge

E,B,C- starting coordinates

Incremental rotation of E,B around C-axis

Incremental rotation of B,C around E-axis

Incremental rotation of E,C around B-axis

Output E,B,C- coordinates

E,B,C- coordinates =
starting coordinates?

No
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The U and D components of proton / neutron are complementary with respect to the sign and relative value of the
components of the E- and B- fields (given in tab. 6 only for the Bx, By, Bz-components (bold) relevant for calculating a
geometry-based average value of B, B_Avg). The starting values of E, B, C are given for reference only, each pair
represents the same rotation.

Table 6: Example for appropriate combinations of U- and D-components for proton and neutron;
The results for U and D are exceptional in regard to the exchangeability of U and D-components. Exchangeability of
components for other particle pairs is difficult to asses due to identical B-field components of U and S, different internal
symmetry of S-components may play a role as well. 
In  the  case of  the solutions examined,  compliance with condition JZ =  1/2 for  the  lambda-particle  (UDS) can be
maintained  by  using  a  spin-cancelling  UD-solution  in  combination  with  an  S-component,  for  UUS,  DDS,  USS-
combinations trivial solutions with two identical components exist, in the case of DSS, Xi -, one can resort to the method
used for the nucleons to find a JZ = 1/2 solution. Results for the best fitting appropriate UDS-combinations are shown in
tab. 7. 

Table 7: Combinations of UDS-components for calculating magnetic moments of baryons.
To calculate magnetic moments, above factors of B_avg, derived from the purely geometric quaternion model, have to
be multiplied by a factor considering the absolute strength of fields. Using the simple model of a current loop, M = I*A,
gives for magnetic moments of baryons with JZ = 1/2:

Mn  ≈ ec0 λC /2  *  B_avg   (= 2 πµBohr∗ B_avg)       (72)
see tab. 8. Factor 2π of the Bohr magneton, µBohr, applicable for the electron and muon, is considered to represent a
degree of rotational freedom of simple particles that more complex structures composed of several U, D, S-components
do not exhibit.

Table 8: Magnetic moments for UDS-Baryons; col.3: Compton wavelength [7]; col.4: magnetic moment for current
loop;  col.5:  average  B-component  from quaternion  calc.;  col.6:  calculated  magnetic  moments;  col.7:  values  from
experiment  [7];  col.8:  ratio  calculated  /  experiment  value;  col.9:  ratio  (calculated  constituent  quark  model,  [7])  /
experiment [7]), *calc. via Clebsch-Gordan coefficients relative to p; Σ, Ξ via fit based on p, n, Λ0.
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USD Lambda UUS Sigma + DDS Sigma - USS Xi 0 DSS Xi -

U U D S S
Bx, By, Bz -0.444 0.444 -0.222 -0.222 0.4444 -0.444 -0.111 -0.222 0.222 -0.222 -0.444 -0.444 0.444 -0.222 0.444

S U D S S
Bx, By, Bz 0.444 -0.444 0.222 -0.222 0.4444 -0.444 -0.111 -0.222 0.222 -0.222 -0.444 -0.444 -0.444 0.444 -0.222

D S S U D
Bx, By, Bz 0.222 0.222 0.111 0.4444 0.4444 0.222 0.444 0.444 0.222 0.444 0.444 0.222 0.222 -0.222 0.111

0.074 0.074 0.037 0.000 0.444 -0.222 0.074 0.000 0.222 0.000 -0.148 -0.222 0.074 0.000 0.111
B_Avg 0.111 0.497 0.234 0.267 0.134

Bx, By, Bz  
Avg(UUD)

UUD Proton DDU Neutron
U_1 D_1
-Ez -Bx Cy -Ex -Bz Cy

Bx, By, Bz -0.444444 0.444444 -0.222222 -0.222222 0.222222 -0.111111
E B E B

Rot_Z_axis -45 135 -45 135
Rot_X_axis 19.47 19.47 19.47 19.47

U_2 D_2
-Ex By -Cz Ey -Bx -Cz

Bx, By, Bz -0.222222 0.444444 -0.444444 -0.111111 0.222222 -0.222222
E B E B

Rot_Z_axis -26.57 116.56 -26.57 116.56
Rot_X_axis 41.82 41.81 41.82 41.81
E, B inverted D_inv U_inv

-Ey -Bz Cx -Ez -By Cx
E B E B

Rot_Z_axis -45 135 -26.57 116.56
Rot_X_axis 19.47 19.47 41.82 41.82

D U
Ey Bz Cx Ez By Cx

Bx, By, Bz 0.222222 0.222222 0.111111 0.444444 0.444444 0.222222

-0.148148 0.37037 -0.185185 0.037037 0.296296 -0.037037
B_Avg 0.439790 0.300890

Start value

Start value

Start value

Start value

Bx, By, Bz  
Avg(UUD)

B_Avg
UUD 1.32E-15 3.17E-26 0.440 1.39E-26 1.41E-26 0.988 -

n DDU 1.32E-15 3.17E-26 0.301 9.55E-27 9.66E-27 0.988 0.973*
UDS 1.10E-15 2.64E-26 0.111 2.94E-27 3.10E-27 0.949 -
UUS 1.04E-15 2.50E-26 0.497 1.24E-26 1.24E-26 1.002 1.090
DDS 1.04E-15 2.50E-26 0.234 5.83E-27 5.86E-27 0.994 0.897
USS 9.43E-16 2.26E-26 0.267 6.05E-27 6.31E-27 0.958 1.152
DSS 9.38E-16 2.25E-26 0.134 3.01E-27 3.06E-27 0.983 0.784

λC e c0 *λC /2
|M|Calc =  
ec0λC Bavg/2 |M|Exp[Am2]

|M|Calc/  
|M|Exp

|M|Calc/|M|Exp 
Const. quark

p+-

Λ0

Σ+

Σ-

Ξ0

Ξ-



[A6] Additional particle states
Assignment of more particle states will not be obvious. The following gives some possible approaches.
[A6.1] Partial products
One more partial product might be inferred from considering the next spherical harmonic, y2

0 with a factor of (2l+1)1/3 =
51/3 as energy ratio relative to η, giving the start of an additional partial product series at 51/3 W(η) = 937MeV i.e. close
to energy values of the first particles available as starting point, η', Φ0. However, in general it is not expected that partial
products can explain all values of particle energies.
[A6.2] Linear combinations 
Though the model reproduces basic properties of the quarks the fundamental differences might offer some alternate
interpretations based on extended, non-point-like objects. 
The linear combination state of the kaons, the first particle family that does not fit to the partial product series scheme,
and the η-particle might be an example for such an interpretation:
The kaons are designated to the linear combination of (ds +/- ds)/√2 in the SM. They might be considered to be a linear
combination of 2 extended  y1

0  states (double cones of s|d,  s|d, etc., composition with 1 angular node) similar to the
linear combination of 2 atomic p-orbitals, assumed to exhibit 2 angular nodes. A linear combination which would yield
the basic symmetry properties of the 2 neutral kaons would be a planar structure such as:

        s          d
KS

o    d       s KL
o     s        s 

        d                        d
providing two neutral kaons of different structure and parity (considering either flavour or chirality), implying a decay
with different parity and MLT values.
A linear combination of 3 such  states would result  in a linear  combination of 3 orthogonal  y1

0  states implying an
essentially spherical symmetric object which might be attributable to the η-particle ((uu + dd - 2ss)/√6).

[A6.3] Electroweak bosons
The considerations of chpt. 2.4, 2.5 suggest to interpret the Higgs VEV as 1D object and the Higgs boson with half its
energy value might be interpreted correspondingly if both objects are considered to be in the relationship of a double
cone/cone with opening angle approximating 0°.  The use of the maximum term for angular contributions implies a
minimum lateral extension of the E-vector and essentially no space left for rotation, i.e. Spin -> 0 38. 
Using the alternate definition of the Higgs VEV as〈Φ〉= VEV/√2 [7] would relate a Higgs boson to〈Φ〉through the
“1D”-term, Γ-1/3/3. Moreover, the Z boson would correspond to a 2D-object, the W bosons to a 3D-object (if the inverse
of the coefficient of the integral for energy, 3/Γ+1/3, is considered to represent a length parameter attributed to λC). Except
for a factor of 2 the volume term of (20) would give the Δ-particle as starting point of the energy series from the high
energy side. This seems to be another hint that some aspects of this model might be expressible in terms of Euclidean
geometry.

Tab. 9: Electroweak bosons and Δ-particle relative to the Higgs VEV/√2 

[A7] Nucleons – stability, bonding in nuclei, scattering
Apart  from the quantitative results  for  partial  charges  and magnetic  moments  some qualitative  trends for  nucleon
properties may be inferred from the quaternion-based model.
The spin-cancelling of a UD-unit involves 2 collinear components with opposite charges occupying approximately the
same spatial area, which is energetically favorable. This suggests among other things:
1) Comparatively lower energy for particles with UD-component;
2) High stability / life time of the nucleons;
3) A possible contribution to bonding in nuclei via UD-U—D-UD, a direct U-D-bond even without meson intermediate;
4) If such an inter-nucleon UD-bond plays a role in bonding in nuclei this would suggest a significant change in UD-
structure between isolated and bound nucleons, which might play a role in the “EMC-effect” [13];
5) In DIS-experiments the ratio of the structure functions of neutron and proton, F 2

n(x)/F2
p(x) approaches 1 for x -> 0 (x

= Bjorken-scale) which would be in agreement with a supposed identical field distribution of E and B-fields in the
nucleons. For x -> 1 this model predicts the ratio F2

n(x)/F2
p(x) to approach

(z(UD)2 + Z(D)2)/(z(UD)2 + Z(U)2) = ((+1/3)² + (-1/3)²)/((+1/3)² + (+2/3)²) = 2/5 
which is in good agreement with high precision scattering experiments which yield values in the range 0.4 – 0.5 [14].

38 Assuming that an extremal, not rotating E-vector state is not accompanied by a B-field gives factor 1/2 as well.
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W  [GeV]

174.1
Higgs 125.4 128.6 1.026

91.2 95.0 1.041
80.4 84.8 1.055

Δ 1232 1.24/2 1.006

Electroweak 
bosons + VEV/√2

Γ-coefficient 
relative to VEV/√2

VEV/√2 divided by 
Γ-coeff. [GeV]

W( calc)/ W( Lit.)

VEV/√2
Γ-1/3/3

Z0 (Γ-1/3/3)2

W+/- (Γ-1/3)2    /(3Γ+1/3)
4π/3 (Γ-1/3)3  


