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Abstract

Computational modelling of expressive music performance has been widely studied

in the past. While previous work in this area has been mainly focused on classical

piano music, there has been very little work on guitar music, and such work has

focused on monophonic guitar playing. In this work, we present a machine learning

approach to automatically generate expressive performances from non expressive

music scores for polyphonic guitar. We treated guitar as an hexaphonic instrument,

obtaining a polyphonic transcription of performed musical pieces. Features were

extracted from the scores and performance actions were calculated from the devi-

ations of the score and the performance. Machine learning techniques were used

to train computational models to predict the aforementioned performance actions.

Qualitative and quantitative evaluations of the models and the predicted pieces were

performed.





Resum

El modelatge computacional de interpretacions expressives de peces músicals ha es-

tat àmpliament estudiat en el passat. Tot i que el treball previ en aquesta àrea

s’ha centrat principalment en la música clàssica per piano, hi ha hagut molt poc

treball sobre música per guitarra i aquest s’ha centrat en la guitarra monofònica.

En aquest treball, utilitzem aprenentatge automàtic per generar automàticament

interpretacions expressives a partir de partitures de música no expressiva per a gui-

tarra polifònica. Tractem la guitarra com a un instrument hexafònic, obtenint una

transcripció polifònica de les peces musicals interpretades. A partir de les parti-

tures s’han extret diverses característiques i s’han calculat accions interpretatives a

partir de les desviacions entre la partitura i la interpretació del músic. Diverses tèc-

niques d’aprenentatge automàtic s’han utilitzat per entrenar models computacionals

i predir les accions interpretatives esmentades anteriorment. Finamlent s’han real-

itzat avaluacions qualitatives i quantitatives dels models i les peces predites.
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Chapter 1

Introduction

Music is a very important part of the life of most people. Depending on our mood

or moment in the day or lives, music can be understood in very different ways.

In some moments we understand music as a simple distraction, a soundtrack to

our daily tasks without paying much attention to it. In other moments, when we

consciously listen to music, we can be very touched and excited by it. This engaging

part of music is largely due to the human component added to the performance.

Instead of reading a score, musicians play the music on their own way, by changing

(unconsciously or consciously if the performer wants to achieve a specific goal) a lot

of "parameters" of it such as intensity, velocity, volume or articulation of each note.

Moreover, people can clearly distinguish the manipulation of sound properties done

by different performers and create preferences based on these differences.

The study of music expressive performance, from a computational point of view,

consists of characterizing the deviations that a musician, when performing a musical

piece, introduces in the performance. In this work we are going to focus on modelling

guitar scores and performances. In Section 1.1 we briefly explain how this thesis is

organised.

Computational modelling of expressive music performance has been widely studied

in the past. While previous work in this area has been mainly focused on classical

piano music, there has been very little studies on guitar music, and such work has

1



2 Chapter 1. Introduction

focused on monophonic guitar playing. One of the main challenges of focusing this

study to guitar is the polyphonic nature of the guitar. The complexity of polyphonic

sound transcription is well known, so to solve this issue, the use of a hexaphonic gui-

tar is chosen, in which each of the strings is processed as an independent monophonic

sound source, simplifying the transcription of the sounds.

In this thesis, we present a machine learning approach to automatically generate ex-

pressive performances from non expressive music scores for polyphonic guitar. We

treated guitar as an hexaphonic instrument, by transcribing each string separately

we were able to obtain a polyphonic transcription of performed musical pieces. Fea-

tures were extracted from the scores and Performance Actions were computed from

the deviations of the score and the performance. Machine learning techniques were

used to train computational models in order to predict the aforementioned Per-

formance Actions. Qualitative and quantitative evaluations of the models and the

predicted pieces were performed.

1.1 Structure of the report

In this chapter we discuss the motivation of this master’s thesis, the main objectives

and we explain briefly the structure of this report. The rest of this thesis is or-

ganised as follows: in Chapter 2, we present some related work on expressive music

performance modelling specially focused on polyphonic music. In Chapter 3, the

tools and resources (hardware, software and data) used in this work are described.

In Chapter 4, we present the proposed methodology. In Chapter 5, the evaluation

measures and results are presented. We conclude with a brief conclusion and provide

suggestions for future improvements in Chapter 6.

In order to complement this thesis we present 3 Appendices: Appendix A providing

links to all On-line resources from this thesis, Appendix B documenting the dataset

used for this work, and Appendix C gathering all responses to the On-line Survey.
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1.2 Motivation

While most studies about guitar modelling are focused on monophonic performances,

the aim of this master thesis is to investigate the modelling of expressiveness in poly-

phonic (hexaphonic) guitar music. We will base our approach on previous studies

by Giraldo [1] who computed expressive performance models for monophonic jazz

guitar. Treating guitar as a monophonic instrument limits hardly the polyphonic

nature of the instrument, but avoids the problems related to polyphonic music tran-

scription. The main objective of this thesis will be to define a set of features extend-

ing previous work on monophonic guitar performances to polyphonic performances.

Those features aim to represent the different nuances in time, duration or volume

that the guitarist introduces when performing a musical piece, appearing both in

the temporal or horizontal axis (as a monophonic melody), but also should represent

the vertical axis representing the simultaneity between notes. The features should

represent the variations in time and energy that the performer introduces, and those

will depend on the context of the note if it is part of the melody or the harmonic

accompaniment.

I personally believe that this concept of music expression plays a major role in how

we appreciate musical experiences. A musical piece does not sound the same (or we

do not feel it the same way) played by two different players. Even the same piece

does not sound the same when played twice by the same player.

Having a knowledge about the exact Performance Actions that a guitar player per-

forms when reading and performing a musical piece could help us in many directions.

By just replicating these nuances we would theoretically be able to sound like a con-

crete guitar player. Understanding little nuances that expert players perform could

also help less-trained musicians to improve their playing. These models could also

be implemented in music annotation software, in order to generate expressive per-

formances from user-composed scores. That way, the plain score to midi conversion

could be substituted by an expressive playback, much closer to the performance of

an expert guitarist, and thus improve the overall user experience.
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1.3 Thesis statement

In this section we present the main hypothesis of this master’s thesis:

It is possible to computationally capture and model the expressive nuances that a

musician introduces when performing a musical piece, taking the polyphonic guitar

as a study case.

1.4 Objectives

The aim of this work is to study and predict computationally predict the little

nuances or Performance Actions that musicians do when performing a musical score,

focusing on time (Onset Deviation) and amplitude (Energy ratio) deviations, taking

the polyphonic (hexaphonic) guitar as a study case. This study will consider, as

explained in section 1.2, both horizontal or melodic axis and vertical or harmonic

axis.

The specific objectives are as follows:

• To create a database of hexaphonic recordings played by a guitarist and their

corresponding scores.

• To automatically transcribe the audio of the hexaphonic recordings into a

machine-readable format (MIDI).

• To adapt existing code libraries to extract descriptors from the score which

allow us to characterise the notes vertically and horizontally.

• To create code libraries which allow us to align and compare the transcribed

hexaphonic recordings to the score in order to extract performance actions.

• To provide some examples of polyphonic performance to score alignments.

• To generate different models that try to predict performance actions (onset

deviation and energy ration) by using Machine Learning techniques.

• To analyse which descriptors influence more the accuracy of these models, so

to say, which descriptors represent more the behaviour of the musician.
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• To obtain not only quantitative machine learning results but also qualitative

results by surveying different users.





Chapter 2

State of the art

In this section we will review the state of the art in music expression, giving an

overview of the past and present research in the field. We specifically focus on

polyphonic music expression modelling where machine learning has been used to

predict some kind of performance actions.

The state of the art of this work can be divided in two parts: firstly, in section 2.1,

we review the works related to music expressive performances modelling. Secondly,

in section 2.2 we provide examples of works that try to automatically transcribe

guitar, focusing on those treating guitar as an hexaphonic instrument transcribing

each string separately.

2.1 Music expression modelling

Music Expression is defined as the manipulation a performer does in duration (en-

large shorten notes), onset (delay or anticipate notes), energy (play notes louder or

softer) and embellishment (add or substract notes).

Performance Actions (PAs) can be defined as musical resources used by musicians

to add expression when performing a musical piece, which consist of little nuances

(variations in timing, pitch, and energy) that are not indicated in a score. In the

same context, ornamentation can be considered as an expressive musical resource

7



8 Chapter 2. State of the art

used to embellish and add expression to a melody. These PAs are what make music

expressive and differentiate it from a robotic performance, these little nuances, done

mostly unconsciously, are part of our human nature and it’s what makes us feel and

enjoy a musical performance as something unique. This uniqueness of a performance

based on the variation in timing, dynamics, timbre and pitch was first proposed by

Juslin [2]. Ramírez and Hazan [3] add the gradation that those little variations

should be clearly distinguishable for listeners.

In the past, music expression has been mostly studied in the context of classical

music and most research focuses on studying timing deviations (onset nuances),

dynamics (energy) and vibrato (pitch nuances). Some studies try to obtain rules to

represent that performance actions by hand from music experts. There are several

expert-based systems studying this field from different perspectives. The KTH group

developed in 2009 a set of several rules [4] for predicting tempo, energy and pitch

variations included in a system called Director Musices. Parts of the rule system

were implemented in other programs (see for instance the work by Sundberg [5] that

tries to use rules to predict Inter Onset intervals or Bresin [6] who try to generate

macro rules for predicting PAs).

In Table 2.1 a brief summary of this three systems is displayed. This is not meant

to be an extensive overview of non-machine learning systems as our approach will

be purely computational. However, we found interesting to just mention briefly a

few of this works on trying to understand music expression from a theoretical and

rule-based point of view.

Author System Instrument
KTH [4] Director Musices General
Sundberg [5] Inter-Onset Piano
Bresin [7] [6] DM mapped to emotions General

Table 2.1: State of the art few expert-based methods table review.

On the other hand, machine-learning-based systems try to obtain the set of rules (ex-

pressive models) directly from the music performance by trying to directly measure

the PAs applied by the performer. This PAs are computed by measuring deviations
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of the expressive performance (done by a professional performer) with respect to a

neutral or robotic data (such as strict MIDI representations of the score). For an

overview of theses methods see the review by Goebl [8], from where we can see that

most of the proposed expressive music systems are in classical music, and most of

these systems are based on piano performances. Those kinds of machine-learning

systems started arising when simple synthesiser keyboards or digital pianos were

used to capture expressive performances. Those devices allowed accurate timing

and loudness data to be sent via MIDI (Musical Instrument Digital Interface) to a

computer.

In order to obtain these expressive performance models, several types of machine

learning algorithms have been used, Bresin [7] tries to model piano performances

using Artificial Neural Networks (ANN) by trying to learn automatically the Director

musices rules stated by KTH group. Camurri [9] also applied ANN in order to obtain

music expression for flute performances. He also developed a 2D representation

of the expression space using non-linear projections in order to be able to choose

between different emotions and their middle points.

Widmer [10] (also in [11]) used rule-based learning and meta-learning algorithms

in order to cluster piano performances. He developed a new rule discovery algo-

rithm named PLCG (Partition+Learn+Cluster+Generalise) that can find simple,

robust partial rules models (sets of classification rules) in complex data where it

is difficult or impossible to find models that completely account for all the data.

PLCG is an ensemble learning method that learns multiple models via some stan-

dard rule learning algorithm, and then combines these into one final rule set via

clustering, generalization, and heuristic rule selection. He also uses this algorithm

and discovered rules to predict multi-level timing and dynamics [11].

Grindlay [12] utilises Hidden Markov Models in order to extract Performance Actions

from performances from both students pianists and professional pianists in order

to model different performances. He uses HMM in order to predict time variations

from a non-expressive score. In his work Miranda [13] uses a generative performance

system based on genetic algorithms in order to predict those time variations.
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Contrary to classical music scores, performance annotations (e.g. ornaments, dy-

namics and articulations ) are seldom indicated in popular music scores, and it is

up to the performer to include them based on their musical background. Therefore,

in popular music it may not always be possible to characterise ornaments with the

archetypal classical music conventions (e.g. trills and appoggiaturas).

Several approaches have been proposed to generate expressive performances in non-

piano-classical music. Arcos [14] proposed a system that generates jazz solo saxo-

phone expressive performances, based on case-based reasoning. In his work, several

recordings of a tenor sax playing different Jazz ballads were made. These recordings

were analysed to extract information related to several expressive parameters. This

set of parameters and the scores constitute the set of cases of a case-based system.

From this set of cases, the system infers a set of possible expressive transformations

for a given new phrase applying similarity criteria, based on background musical

knowledge, between this new phrase and the set of cases.

Gratchen [15] also applies case-based reasoning to generate models for ornamentation

and tempo variations for jazz saxophone music. His system automatically performs

melodic and expressive analysis, and when a new musical performance must be

tempo-transformed, it uses the most similar example tempo-transformation to infer

the changes of expressiveness that are necessary to make the result sound natural.

Ramírez [3] generates a tool in order to both generate and explain expressive mu-

sic performances of monophonic Jazz melodies for saxophone. The tool consists of

three components a melodic transcription component which extracts a set of acoustic

features from monophonic recordings, a machine learning component which induce

both an expressive transformation model and a set of expressive performance rules

from the extracted acoustic features, and a melody synthesis component which gen-

erates expressive monophonic output (MIDI or audio) from inexpressive melody

descriptions using the induced expressive transformation model.

Puiggros [16] tries to generate automatic characterization of ornamentation from

bassoon recordings in order to generate expressive synthesis. His work addresses
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the characterization of expressive bassoon ornaments by analysing audio recordings

played by a professional bassoonist. This characterization is then used to generate

expressive ornaments from symbolic representations by means of Machine Learning

Previous work on guitar expressive performance modelling has mainly been done by

Sergio Giraldo [1] who uses machine learning techniques to model ornamentation

and PAs in monophonic jazz guitar performances according to the characteristics of

the notes’ context. Features extracted from scores and their corresponding audio

recordings performed by a professional guitarist are used to train computational

models for predicting melody ornamentation. Several machine learning techniques

were explored to induce regression models for timing, onset, and dynamics (i.e. note

duration and energy) transformations, and an ornamentation model for classifying

notes as ornamented or non-ornamented.

Bantula [17] models expressive performance for a jazz ensemble of guitar and piano.

The aim of her project is to study the influence of piano accompaniment into the

performance of a guitar melody and vice versa. Based on a set of real performances,

she extracts information from both score and recordings and using machine learning

techniques she trains models for both piano and guitar performances. From our

point of view, the interesting part of this work is the polyphonic treatment done

to the piano, extracting features for chords played such as density, weight or range.

Kirke et al [18] models polyphonic piano recordings with generative experiments that

show that multiple polyphonic expressive actions can be found in human expressive

performances.

In Table 2.2 we can see an overview of authors, methods and instruments where

music expression modelling using machine learning was applied.

2.2 Automatic hexaphonic guitar transcription

When we think about music transcription we usually think about a music expert lis-

tening repeatedly a musical piece and writing it down to a traditional score notation.

Defined by Klapuri [19] music transcription is "the process of analysing an acoustic
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Author Method Instrument Mono/Poly
Arcos [14] Case based reasoning Saxophone monophonic
Bantula [17] Several methods Jazz ensemble polyphonic
Bresin [6] [7] ANN Piano monophonic
Camurri [9] ANN Flute monophonic
Giraldo [1] Several methods Guitar monophonic
Gratchen [15] Case based reasoning Saxophone monophonic
Grindlay [12] HMM Piano monophonic
Kirke [18] Generative models Piano polyphonic
Miranda [13] Genetic Algorithms Piano monophonic
Puiggros [16] Several methods Bassoon monophonic
Ramirez [3] Several methods Saxophone monophonic
Widmer [11] [10] Rule-based meta-learning Piano monophonic

Table 2.2: State of the art machine learning methods table review.
Non exhaustive table.

musical signal so as to write down the musical parameters of the sounds that occur

in it". Thus, the traditional main goal of music transcription is to represent music

as detailed as possible, so it can be accurately reproduced afterwards.

Nowadays, we also think about music transcription as the way to convert acoustic

music signal to a machine readable format, such as MIDI, XML or piano-roll rep-

resentation in order to be analysed and processed produce a notation reflecting the

most relevant information about the musical events within it, as an output.

One of the main difficulties when facing automatic music transcription is given by

the number of voices a musical signal has, or the number of sound sources that are

present in it. The more sound sources in the same sound signal, the more difficult

the transcription becomes. Limiting the problem to one single source (as it is in our

case) makes us confront with another problem: monophonic and polyphonic source.

A monophonic source produces only one note at a time, while a polyphonic source

can play multiple notes simultaneously.

The monophonic transcription case is considered as solved by state of the art tech-

niques (Klapuri 2004 [19]). However, polyphonic case is really far from being solved

specially for multi-instrumental contexts. The main problem of polyphonic tran-

scription is multiple fundamental frequency estimation and tacking, which is a very



2.2. Automatic hexaphonic guitar transcription 13

difficult task when two or more concurrent sounds contain partials that share some

frequencies. Knowing in advance the different sources eases a bit the task [20].

There are some works with good results in multiple fundamental frequency detection

by Klapuri [21] who tries to estimate multiple fundamental frequencies calculating

the salience, or strength, of a F0 candidate as a weighted sum of the amplitudes

of its harmonic partials. This F0 salience spectrum is found by optimization using

generated training material. Benetos [22] proposes an efficient, general-purpose

model for multiple instrument polyphonic music transcription. His model is based on

probabilistic latent component analysis and supports the use of sound state spectral

templates, which represent the temporal evolution of each note (e.g. attack, sustain,

decay).

In our case, working with guitar music, transcription process is a difficult task due

to the polyphonic nature of the sound it emits. This polyphony is caused by the

different strings of the guitar played together, which leads to several notes sounding

at the same time (chords). As said before, limiting the player to just produce a

monophonic melody eases the process as there exist very good and state of the art

approaches for monophonic music transcription such as the autocorrelation method,

Yin or spectral peak picking, among others.

However, the main goal of this project is to extend a monophonic system to a poly-

phonic one, so polyphonic transcription is one of the main tasks of it. Reviewing

the literature we find a few approaches for transcribing polyphonic guitar music.

Fiss & Kwasinksi propose a system for automatic guitar audio transcription in real

time [23]. This approach is based on the STFT (Short Time Fourier Transform) to

compute the spectrogram used to extract information about peak locations. After-

wards they try to correct the note detector by taking into account the probability

of each note being produced among the six strings of the guitar, and thus, avoiding

the ambiguity of polyphonic guitar.

As stated above, avoiding polyphony makes the transcription task much easier. So,

the idea of capturing and transcribing each string separately makes the task at
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hands easier. Thus, in order to be able to record each string separately we could ask

the musician to think about the whole song but just play the notes on one single

string, and make him repeat the process six times changing the selected string. That

approach would probably be very difficult for the musician as well as non musical

at all.

Solving the hexaphonic recording problem, O’Grady & Rickard [24] proposed a

solution based on the Roland GK-3 divided pick-up [25] which captures separately

each string in order to be processed with a guitar synthesiser and create really strange

and creative sounds with it. For the transcription of these six different signals they

used Non-Negative Matrix Factorization (NMF) where a matrix V is factorised into

two matrices W and H, with the property that all three matrices have no negative

elements. In this case, for one string Wstring containing the magnitude spectrum of

all possible notes played on that string, the resulting Hstring is an activation matrix

indicating the position in time in which each note was played.

In the following sections, the steps followed towards the implementation of the

project are described, by firstly analysing the tools and resources that were used

(Section 3), and then explaining the methodology that we followed and all its little

steps (Section 4).



Chapter 3

Materials

For this project, we have used several materials which can be divided into 3 cate-

gories: hardware, software and data.

Hardware

• Roland GK-3: the hexaphonic recordings were done using this special divided

pick-up

• Breakout Box [24]: this adaptor box was needed in order to convert the output

from the GK-3 to 6 standard Jack connectors.

• PC: Intel Core i5-6600 CPU @ 3.30GHz, 16.0GB RAM

Software

• ProTools HD 10: it was used in order to generate a mix the 6 strings channels.

It also was used to synthesise midi both from the transcribed performances

and from the predicted performance.

• MuseScore 2: the scores in XML format for the performances were written

using MuseScore.

• Python: the code for transcribing guitar performances was developed by using

Python.

15
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• Essentia [26]: we used a few algorithms (in order to transcribe guitar) from this

open-source C++ library for audio analysis and audio-based music information

retrieval.

• Matlab: the code for extracting the features from the performance and from

the scores was developed using Matlab.

• MIDI Toolbox [27]: the MidiToolBox Library (implemented in Matlab) allowed

us to process easily MIDI data.

• Weka Data Mining Software [28]: it was used to train and test different ma-

chine learning models, to implement feature selection and to analyze the re-

sults.

• BealeJS [29] (browser based evaluation of audio quality and comparative listen-

ing environment) which provides a framework to create browser based listening

tests and is purely based on open web standards like HTML5 and Javascript.

Data

For this work we used a set of three recordings done by Helena Bantula for her

Master’s thesis [17] consisting of one recording of Darn that dream a Jazz standard

by Jimmy Van Heusen and Eddie De.Lange and two recordings of Suite en la a

classical piece by Manuel M. Ponce. Their corresponding scores where written using

MuseScore and extracted as XML files.

Please see Appendix B for a full review of the dataset, where to find it, how is it

structured and which files are used.



Chapter 4

Methodology

In Figure 4.1 we present a block diagram of the whole system from where we can

see that four separate stages of this thesis can be defined: data acquisition (guitar

recording), transcription, feature extraction and models computation. Expressive

hexaphonic guitar recordings were done using the Roland GK-3 divided pick-up,

which is able to separate sound from each string [30]. The main output of this

first stage is a new dataset consisting of hexaphonic recordings recorded by a guitar

player with different performance actions of the performance.

After this step, transcription of each individual string is computed. After doing a

score alignment with the original score and the transcription of the expressive guitar

performance, feature extraction needs to be done.

Feature extraction is performed following an approach in which each note is charac-

terised by its nominal, neighbouring, and contextual properties. Here is where the

most of the research in this thesis takes place: checking for literature in expressive

piano modelling, combining it with previously mentioned features of monophonic

expressive guitar modelling,... Afterwards, several machine learning and feature se-

lection algorithms are applied to predict those performance actions (timing, pitch,

energy,...) and ornaments introduced by the musician when performing a musical

piece.

17
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Figure 4.1: Block diagram of the whole system.

4.1 Data acquisition

In order to obtain hexaphonic recordings and get each string nicely separated we

used the Roland GK-3 divided pick-up that is easily attached to any steel-stringed

electric guitar and acts as a sound transducer device. It is able to separate very

good the sound from each string and delivers accurate performance data.

However, the output of this pick-up consists of a 13 pin DIN cable that allows to

connect the guitar to guitar synthesisers such as Roland’s popular GR-55 and at

the same time to fed electrically the pick-up. So, in order to be able to record each

string separately we need to adapt the pick-up output so the sound of each string

can be inputted to the computer through an independent input channel of an audio

interface.

To do this, a Breakout Box circuit was built by I.Angulo [30] for his master’s thesis

last year based on the specifications by O’Grady [24], so we reused it. As we can

see in Figure 4.2, the final box has an input for the 13 pin DIN cable and 6 separate
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Jack connector cables are outputted, one for each string. Also, two batteries are

needed inside the box in order to fed the pick-up.

Figure 4.2: Roland GK-3 and Breakout Box setting. (Angulo, 2016)

In this study, and as explained in chapter 3, the final dataset consists of 3 audio

recordings (one recording of Darn that dream and two recordings of Suite en La)

resulting in a total of 1414 notes recorded by an amateur guitarist and their corre-

sponding music scores saved as xml files using Muse Score 2. In Figure 4.3 we can see

a few bars from Darn that dream score with annotated chords. This score is saved

as an xml file in order to be able to characterise each note by a set of descriptors as

explained in the following sections.
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Figure 4.3: Darn that dream first 14 bars with annotated chords.

4.2 Hexaphonic guitar transcription

Once we have the six audio input signals, all the processing involved in the tran-

scription is done using Python and Essentia [26] algorithms. A Python script has

been created in which all the steps of the transcription are included, giving the user

the option to configure every parameter of it.

The aim of this section is to obtain machine readable (and understandable) repre-

sentation from the audio recordings in order to be able to compute descriptors and

performance actions. In order to obtain a note representation based on pitch, onset,

duration and offset for each note, the audio signal from each string from the gui-

tar is automatically transcribed into a MIDI format. Each signal is independently

processed, following the hexaphonic concept in which each string is considered as a

monophonic sound source.

This step is based on the previous work of Bantula, Giraldo and Ramírez [17].

However, the algorithm has been modified a bit in order to correctly transcribe the

hexaphonic audio (that can contain leakage from the other strings) instead of simple

monophonic ones.

For doing this, we first need a fundamental frequency detector in order to obtain the
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pitch of each string. The original algorithm used the YIN algorithm [31], however, in

order to improve the system we changed it to Melodia which offers more robustness

against the leakage from other strings and helps to detect the main pitch present in

the signal. In order to provide a better F0 detection, we also tuned the parameters of

this algorithm. The minimum and maximum frequency (the range) of the detector

is set differently to each string according to the frequencies that each guitar string

can produce. As can be seen in Table 4.1 we considered from each string a range of

one octave because in this particular recordings and scores the guitarist never passes

the twelfth fret (first octave).

String Frequency Pitch MIDI Range
1 (E’) 329.63 Hz E4 64 [320-660]
2 (B) 246.94 Hz B3 59 [240-500]
3 (G) 196.00 Hz G3 55 [190-400]
4 (D) 146.83 Hz D3 50 [140-300]
5 (A) 110.00 Hz A2 45 [100-230]
6 (E) 82.41 Hz E2 40 [80-170]

Table 4.1: Guitar Strings Frequencies. Frequency refers to the base
frequency of the string. MIDI refers to MIDI note number and
Range to the Frequency range in Hz considered for transcription.

The power envelope of the signal is used to apply an adaptive noise gate in order to

filter out none pitched sounds. That power envelope is also used in order to compute

MIDI velocity (energy is linearly mapped to a value from 0 to 127). Finally, the

filtered frequency pitch profile obtained is rounded to a MIDI note number.

In Figure 4.4 we can see the four stages of the process: we start from the audio (a),

we obtain a pitch profile using Melodia (b) and using an adaptive threshold over the

audio wave envelope (c) we obtain a filtered pitch profile.

Following the algorithm proposed by Bantula, a rule based filter is applied in order

to remove short notes and gaps merging them with corresponding neighbour notes

based on a cognitive perspective of the perception of time.

Following previous step, onsets and offsets are detected from differentiating the

cleaned pitch profile. This means for a pitch remove next one, so the changes in pitch
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Figure 4.4: One string automatic transcription

become positive or negative peaks. Positive ones (above a threshold) are labelled

as onsets and negative ones (below a threshold) are labelled as offsets. Duration is

computed by subtracting the offset to the onset.

After all this process, a few manual corrections were performed by changing pitch,

eliminating notes or time stretching the performance in order to have a better align-

ment with the score. Afterwards, all six transcriptions (one from each string) were

merged in order to obtain a single MIDI file from the performance. MIDI channel

was used in order to label the notes according to the string where were played.

In Figure 4.5 we can see a piano-roll representation of a transcribed hexaphonic

performance, showing each string in a different colour.
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Figure 4.5: Piano-roll representation of an hexaphonic performance.

4.3 Feature extraction

In this section we describe how we analyse the music scores in order to extract mul-

tiple descriptors for each note. Afterwards, performance to score alignment is com-

puted and performance actions (Onset Deviation and Energy ratio) are extracted.

4.3.1 Note Descriptors

Feature extraction from the music scores is performed following an approach simi-

lar to that of Giraldo [1] but extended and computationally adapted to polyphonic

scores, in which each note is characterised by its nominal, neighbouring and contex-

tual properties, taking into account both horizontal (time or melodic) and vertical

(simultaneous or harmonic) axis. The complete list of the descriptors extracted from

the music scores can be found in Table 4.2.

• Nominal: This descriptors refer to the intrinsic or intra-note properties of
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Code Descriptor Abbreviation Units Formula Range
7 Duration dsn Seconds ds0 [0,+∞]
2 Duration dbn Beats db0 [0,+∞]
6 Onset onsn Seconds ons0 [0,+∞]
1 Onset onbn Beats onb0 [0,+∞]
15 Onset in bar obmn Beats ob0%bpb [0,+bpb]
4 Pitch pn Semitones p0 [1,127]
16 Chroma chn Semitones p0%12 [0,11]
5 Energy vn MIDI vel v0 [1,127]
3 String strn String num channel0 [1,6]
10 Prev. duration pdsn Seconds ds−1 [0,+∞]
9 Prev. duration pdbn Beats db−1 [0,+∞]
12 Next duration ndsn Seconds ds1 [0,+∞]
11 Next duration ndbn Beats db1 [0,+∞]
18 Prev. interval pintn Semitones p−1 − p0 [-60,60]
19 Next interval nintn Semitones p1 − p0 [-60,60]
13 Prev. inter-onset dist. piodn Seconds os0 − os−1 [0,+∞]
14 Next. inter-onset dist. piodn Seconds os1 − os0 [0,+∞]
28 Narmour nar1n Label nar(p−1, p0, p1) [P, D, R, ID]
29 nar2n nar(p−2, p−1, p0) [VR, IR, VP, IP]
30 nar3n nar(p0, p1, p2) [dyadic,

monadic, none]
33 Is a Chord ichn Boolean isChord0 {true, false}
34 Is a Pedal pdln Boolean pdl0 {true, false}
17 Simultaneous notes simn Number simult0 [0,+∞]
8 Measure mn Bars m0 [0,+∞]
31 Tempo tn Bpm t0 [30,260]
20 Key kn Semitones k0 [-6,6]
35 Mode modn Label mod0 {major, minor}
23 Chord root chrn Semitones chr0 [0,11]
24 Chord type chtn Label cht0 {+, 6, 7, 7#11,

7#5, 7#9, 7alt,
7[5, 7[9, Maj7,
dim, dim7, m,
m6, m7, m7[5,
major}

21 Note to key n2kn Semitones ch0 − k0 [0,11]
25 Note to chord n2chn Semitones ch0 − chr0 [0,11]
26 Is chord note ichnn Boolean isChNote {true, false}
27 Metrical strength mtrn Label metStr0 {Very strong,

Strong, Weak,
Very weak}

32 Phrase phn Label phrase0 {initial, middle,
final}

Table 4.2: Complete list of descriptors extracted from music scores.
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score notes. So to say, this descriptors are needed in term to define completely

a note. Duration (computed from offset and onsets) and Onset are given both

in seconds and beats, as the descriptor in seconds depends on the tempo of

the piece. Onset in bar refers to the position of the onset related to the beats

per bar measure. If its 1 the first beat on the bar, 2 second beat on the bar,

and so on. Pitch is directly the MIDI note number, and Chroma is the pitch

modulus 12, so to say, the pitch class of the note, the pitch without taking

into account octave changes. Energy descriptor gives us how loud is the note

played (loudness), and its directly taken from MIDI velocity (how fast the note

is played). Finally, String number is also extracted for each note directly from

the MIDI channel.

This descriptors need no computation as they are intrinsic properties of each

note.

• Neighbouring: neighbouring or inter-note descriptors refer to the relations

of the note with its neighbouring or simultaneous notes. Each note is char-

acterised by Previous duration and Next duration given both in seconds and

beats by subtracting previous and next note duration to current one. Also

Previous interval and Next interval is the difference between in pitch between

the current note and the next or previous one given in semitones. Inter-onset

distance refers to the onset difference between current and previous or next

note. Simultaneous notes counts the number of simultaneous notes to the

current note within a given threshold.

The computation of Previous and Next note properties is a bit tricky when

talking about polyphonic scores. In order to clarify this problem, we will

explain it with an example as can be seen in Figure 4.6 where we focus in the

first bar of Darn that dream. From a computational point of view (or from a

digital score parser) if we focus on the low G note in the first chord, the next

note would be the F] note in the same chord. However, from a musical (or

harmonic) point of view, after that low G it comes the low B[ in the 3rd beat

chord. The same happens for the high G note in the second beat. Their next
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notes can be considered either the low B[ (parsing the score) or the high E[

(melodic continuation).
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Figure 4.6: Darn that dream first bar.

In our case, we decided to opt for the straight digital score parsing. When

reading and playing cords with a guitar they are not read as singles notes

but as a group, and they are usually played from lower to higher pitch in

an arpeggiated way. Following this methodology, in the previous example

(Figure 4.6, after the low G in the first chord it comes the F] note on top

of it with an Inter-onset distance of 0 seconds, then B, D, G, B[, G, and so

on. So, parsing chords from bottom to top instead of searching for melodic

continuation, in addition to make easier the computation, it helps the system

understand chords as a group of ordered notes with an Inter-onset distance of

0 seconds.

Following the work of Bantula [17] on piano polyphonic music, notes have been

also labelled as Chord notes or Pedal notes depending on the simultaneity of

other notes, differentiating between notes that have been played at the same

time as a chord and notes that are played as a basis in order to have a melody

in top of them.

In this neighbouring category of descriptors, categorization based on the

implication-realization (I-R) model of Narmour [32] has been also computed.

This model parses melodies and obtains for each note a label depending on

the previous and next notes. This computation has also been adapted in order

to take into account polyphonic melodies as explained in Figure 4.6.

• Contextual: This descriptors refer to the context, background or properties

of the song in which the note appears on. Some of this descriptors, such as

Measure, Tempo, Key or Mode, are the same for the whole song but may be
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useful if we merge different datasets (songs) into one. Chord root and Chord

type refer to the actual chord of that note (labelled manually per bar or per

measure in the score).

The rest of this descriptors are just computations of each note respecting to

those first descriptors. Note to key and Note to chord refer to the distance

in semitones of the actual note both to the general key root of the piece and

to the actual chord root. Is chord note gives us a boolean label depending if

the note is part of those notes pre-defined by the chord root and type as can

bee seen in Table 4.3. Metrical strength categorise notes occurring at strong

or weak beats within a bar. And Phrase descriptor labels notes depending on

the melodic segmentation approach by Cambouropulos [33] into initial, middle

and final notes.

4.3.2 Performance to score alignment

In this stage, and in order to compute performance actions in the next step, we need

to know which notes on the performance correspond to which notes in the score, or

mostly known as performance to score alignment.

This is done automatically and in this case we used Dynamic Time Warping (DTW)

techniques in order to match performance notes to score. Those notes are aligned

depending on a cost function based on onset, pitch and duration deviations. All

these deviations can be weighted with a parameter in order to penalise more errors

in pitch than in onset i.e. Firstly, and before applying DTW, performances have

been manually time-stretched to match the score length in order to obtain a better

automatic alignment. Afterwards, we compute a cost or similarity matrix of notes

on the performance against score notes. As we can see in Figure 4.7 after the cost

matrix computation, an optimal path is retrieved in order to found the alignment

with less global cost.

Some restrictions have been done to this optimal path computation in order to apply

some rules. Horizontal paths are forbidden in order to ensure that each performance
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Chord type Intervals Example (C as root)
M (major) 0 4 7 C E G
m (minor) 0 3 7 C E[ G
2 (sus2) 0 2 7 C D G
sus (sus4) 0 5 7 C F G
dim 0 3 6 C E[ G[
+ (Aug) 0 4 8 C E G]
Maj7 0 4 7 11 C E G B
6 (6th) 0 4 7 9 C E G A
m7 0 3 7 10 C E[ G B[
m6 0 3 7 9 C E[ G A
mMaj7 0 3 7 11 C E[ G B
m7[5 0 3 6 1 0 C E[ G[ B[
dim7 0 3 6 9 C E[ G[ A
7 (7th) 0 4 7 10 C E G B[
7#5 0 4 8 10 C E G] B[
7[5 0 4 6 10 C E G[ B[
7sus 0 5 7 10 C F G B[
Maj9 0 2 4 7 11 C D E G B
69 (6/9) 0 2 4 7 9 C D E G A
m9 0 2 3 7 9 C D E[ G A
9 (9th) 0 2 4 7 10 C D E G B[
7[9 0 1 4 7 10 C D[ E G B[
7#9 0 3 4 7 10 C D] E G B[
13 (13th) 0 2 4 7 9 10 C D E G A B[
7[9[13 0 1 4 7 8 10 C D[ E G A[ B[
7alt 0 1 3 4 6 8 10 C D[ E[ E G[ A[ B[

Table 4.3: Chord description. A list of chords definitions. Numbers
on the Intervals column indicate the index of the notes belonging
to the chord, (zero indexed, in 12 semitones).

note has just one score note as reference. However, we need to allow vertical paths

so one score note can be assigned to several performance notes in order to obtain

a minimum cost path, to allow the player add ornamentation notes and to ensure

that all performance notes have a score match. In Figure 4.8 we can see an example

of an automatic performance to score alignment. In this plot, score has been shifted

two octaves up in order to have a better visualization.

If we zoom in to the first 20 notes (Figure 4.9) we can see the result of aforemen-

tioned restrictions. Each performance note (bottom half, each colour represents one

string) has just one score note as reference while score notes can have multiple per-
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Figure 4.7: Suite en La similarity matrix with optimal path,

formance notes assigned. In this plot we can see how chords are usually played in

guitar, strumming from low pitch strings to higher ones and not playing all notes

simultaneously.

4.3.3 Performance actions

At this point we need to compute the performance actions that will be modelled

afterwards using machine learning. This is a simple stage as it only consists in com-

puting variations between score notes and they corresponding performance notes,

which alignment was computed in Section 4.3.2. The two performance actions that

we will be modelling in this work are Onset deviation and Energy ratio:

• Onset deviation: This performance action is computed by subtracting each

performance note onset (in seconds) to its corresponding score note onset.

Onset_devi = Ons_perj −Ons_scorei
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Figure 4.8: Darn that dream performance to score alignment.
(Score notes are shifted two octaves up)

• Energy ratio: Computed by dividing each performance note energy (or midi

velocity) to its corresponding score note energy (80 by default as it corresponds

to default score midi velocity).

Energy_ratioi =
V_perj
V_scorei

Note duration was also considered to be a performance action of this work, but was

finally rejected as the duration is not a characteristic of each note but a default

characteristic of each guitar or sound, depending on the decay function of it. As

each guitar has its own decay, it can be shortened by muting the strings with the

picking hand. However, a guitar decay can not be naturally extended, this is only

possible affecting the signal by plugging in the guitar to a driven amplifier, an effects

stomp box, or any digital signal processing software.
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Figure 4.9: Darn that dream first 20 notes performance to score
alignment.

After modelling these performance actions and in order to compute expressive midis

from predicted values we will just reverse the previous formulas in order to compute

Onsets and Energy from deviations and ratios. Predicted Onset deviation is added

to the score onset and predicted Energy ratio is multiplied by the score energy (or

MIDI velocity) in order to obtain predicted Onsets and Energy values.

4.4 Machine Learning modelling

In this stage we are trying to predict previous performance actions (Onset deviation

and Energy ratio) with all note descriptors computed in Section 4.3.1. We created

a dataset (an arff file) for each song and for each performance action. So we have

six different datasets, two performances of Suite en la and one performance of Darn

that dream, and we have Onset deviation dataset and Energy ratio dataset for each

performance.
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We also build two bigger datasets (one for Onset deviation and one for Energy ratio)

by merging all three performances datasets.

In order to model those datasets and obtain predicted performance actions we are

going to use Weka and we are going to train and test different machine learning

models in order to see which one models better our data. Feature selection will be

also done in order to see which features represent better our data.



Chapter 5

Results

In this chapter we are going to present the obtained results using the previous

models, both from a quantitative point of view, by measuring correlation coefficient

over predicted data and from a qualitative point of view, by surveying a few listeners

with predicted and real performance synthesis. Firstly, in Section 5.1 we are going

to explain what measures are we going to consider for both results analysis. In

Section 5.2 we are going to apply feature selection in order to see what features

are more relevant in order to obtain better prediction for performance actions. In

Section 5.3 we present separately the results from both evaluations, quantitative

and qualitative. Finally, in Section 5.4 we discuss the obtained results.

5.1 Evaluation Measures

For the quantitative evaluation we are going to use Correlation Coefficient as evalu-

ation metric. Correlation coefficient tells us how much predicted PAs and computed

ones are related. It gives values between -1 and 1, where 0 is no relation, 1 is very

strong linear relation and -1 is an inverse linear relation.

33
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Dataset Best Subset Ranked
"All (onset_dev)" 6, 8, 9, 10, 13, 14, 17 6, 17, 8, 13, 10, 14, 9, 5, 27, 26,

24, 31, 20, 18, 16, 35, 23, 25, 32,
29, 12, 11, 22, 4, 19, 15, 33, 3, 7,
34, 21, 2, 30, 28, 1

"All (energy_rat) 6, 7, 9, 20, 21, 24, 27, 32 6, 7, 22, 32, 9, 24, 20, 27, 5, 35,
23, 31, 1, 8, 2, 10, 13, 14, 19, 4,
18, 26, 3, 17, 30, 11, 15, 33, 34,
25, 12, 28, 29, 21, 16

Table 5.1: Selected Features using Best Subset and Ranker with
wrapped Decision Tree. Code for descriptors can be found in ta-
ble 4.2.

5.2 Feature Selection

In Table 5.1 we present for each PA dataset, two different feature selection algo-

rithms. In the middle column, best subset of features is shown and in the right

column all features are ranked using Ranker with wrapped Decision Tree. As we

can see, for Onset Deviation we achieve the best performance with just 7 features

out of 35, being those: Onset in seconds, Measure, Previous duration in beats, Pre-

vious duration in seconds, Previous inter-onset distance, Next inter-onset distance

and Simultaneous notes.

For Energy Ratio we achieve the best performance with a subset of 8 features out of

35, being those: Onset in seconds, Duration in seconds, Previous duration in beats,

Key, Note to key, Chord type, Metrical Strength and Phrase

In Figure 5.1 we present the Correlation Coefficients (CC) between predicted and

actual Performance Actions for Onset deviation and Energy Ratio while adding

features by ranking order. In red we show the accuracy for the whole Train dataset

and in blue the results with 10 fold Cross-Validation. For both PAs the best accuracy

(using CV) was obtained with the set containing the first 5 best ranked features, as

adding more features just makes CC decrease.
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Figure 5.1: Results depending on the number of selected features
according to table 5.1. Algorithm used: Decision Tree. Shown
values correspond to Correlation Coefficients.

5.3 Evaluation Results

In this section we present both quantitative and qualitative results. The proposed

approach was quantitatively evaluated by measuring Correlation Coefficient (CC)

obtained with the models studied and qualitatively evaluated by asking listeners to

compare predicted and real performances.

5.3.1 Quantitative evaluation

In Table 5.2 we show the results comparing different Machine Learning algorithms

both with cross-validation and with the whole Train dataset. In the top half of the

table we present the results by performance (1 Darn that dream and 2 Suite en La)

and by Performance Action (Onset deviation and Energy ratio). In the bottom half

of the table we merged those three performances into a big dataset and we present

the results for this complete large ("All") dataset, for this large dataset with just

the 5 top features ("All5features", and for this large dataset with the best subset of

features ("Allbestsubset").

Several machine learning algorithms have been tested for each one of this cases of

study. From left to right: Decision Trees, K-Nearest Neighbours (K=1), K-Nearest

Neighbours (K=2), K-Nearest Neighbours (k=4), Support Vector Machines and
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Dataset (feature) D.Tree k1NN k2NN k8NN SVM ANN
cv/train cv/train cv/ train cv/train cv/train cv/train

’Darn (energy)’ 0.37/0.53 0.18/1 0.27/0.78 0.28/0.52 0.37/0.55 0.26/0.98
’Darn (onset)’ 0.70/0.87 0.35/1 0.42/0.83 0.52/0.69 0.57/0.68 0.47/0.99
’Suite (energy)’ 0.35/0.59 0.24/1 0.31/0.77 0.32/0.53 0.23/0.38 0.17/0.70
’Suite (onset)’ 0.77/0.88 0.28/1 0.35/0.80 0.33/0.53 0.30/0.40 0.29/0.79
’Suite2 (energy)’ 0.32/0.70 0.21/1 0.24/0.77 0.17/0.45 0.19/0.31 0.18/0.66
’Suite2 (onset)’ 0.83/0.92 0.43/1 0.48/0.85 0.51/0.85 0.44/0.52 0.40/0.78
’All (energy)’ 0.35/0.51 0.22/1 0.26/0.78 0.27/0.51 0.21/0.33 0.23/0.63
’All (onset)’ 0.67/0.77 0.30/1 0.36/0.81 0.42/0.60 0.39/0.45 0.29/0.67
’All (energy)’5features 0.41/0.50 0.30/1 0.37/0.80 0.37/0.57 0.14/0.21 0.14/0.36
’All (onset)’5features 0.69/0.72 0.38/1 0.61/0.82 0.65/0.75 0.30/0.31 0.44/0.43
’All (energy)’bestsubset 0.41/0.51 0.30/1 0.37/0.79 0.37/0.57 0.16/0.21 0.15/039
’All (onset)’bestsubset 0.69/0.73 0.37/1 0.58/0.82 0.64/0.73 0.30/0.32 0.48/0.48

Table 5.2: Results comparing different ML models (10 fold Cross-
Validation). All datasets correspond to the three datasets merged
into one. Shown values correspond to Correlation Coefficients.

Train Test D.Tree ANN
energy onset energy onset

’Darn’ ’Suite’ 0.013 0.156 0.047 0.008
’Darn’ ’Suite2’ 0.091 0.183 0.033 0.075
’Suite’ ’Darn’ 0.017 0.140 0.107 0.032
’Suite’ ’Suite2’ 0.324 0.392 0.148 0.253
’Suite2’ ’Darn’ 0.043 0.099 0.079 0.027
’Suite2’ ’Suite’ 0.240 0.384 0.190 0.227

Table 5.3: Results mixing songs for Train/Test. Whole song
Datasets have been used in order to train or test. Shown values
correspond to Correlation Coefficients.

Artificial Neural Networks. All this models were computed using Weka.

In Table 5.3 we show the results of training with one dataset and testing with another

one. This results are generated using Decision Trees and Artificial Neural Networks

as they show to be the best algorithms in Table 5.2. As we can see, the results

are very poor as we are mixing two very different music styles (a Jazz standard

and a Classical piece). We also can see that if we train and test with different

performances of the same score we achieve a Correlation Coefficient around 0.3 which

might indicate that PAs are more performance dependant than piece dependant.
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intro1 intro2 middle end
Perf Pred Score Perf Pred Score Perf Pred Score Perf Pred Score

Med 40 39 50 63 46 76 45 52 68 42 42 69
Avg 41 43 52 59 48 71 47 48 65 44 46 69

Table 5.4: Numeric results of the on-line survey.

5.3.2 Qualitative evaluation

For the qualitative survey, several synthesised pieces obtained by the models were

compared to both the score (dead pan synthesis) and the performed (synthesised

version) piece. Participants were asked to to guess how "human" they sounded by

comparing among them through an on-line survey. Please see Appendix C for a

complete overview of the On-line survey. They were given 4 different tests with

three excerpts each one (Performance, Prediction and Score synthesis) and were

asked to rate from 0 to 100 the "humanness" of each one related to the other two.

In Table 5.4 we can see the median and average punctuation (over 12 participants)

that each concrete audio was given. As we can see, the on-line survey consisted on 4

different excerpts with three different synthesis each one (a Performance synthesis,

a Predicted synthesis and a plain Score synthesis). As we saw on the previous

Figure 5.2 values for Performance and Prediction are very close and there is a little

preference for Score synthesised midis.

In Figure 5.2 we display all On-line survey results gathered by type. I shows that par-

ticipants perceived the score synthesis more "human" than the actual performance

and predicted score. However, we obtained similar results among the performed

piece and the predicted one, which might indicate that our models predictions are

close to actual human performances. Full survey results can be found at Appendix C.

5.4 Discussion

Analysing the information provided in previous sections it can be seen that: in gen-

eral, the algorithm which achieves better results using 10 fold Cross-validation is the

Decision Trees, outperforming the three proposed K-NN, Support vector machines
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Figure 5.2: Results of the on-line survey with performance, pre-
dicted and score synthesised midis.

and artificial neural networks.

Figures 5.3 and 5.4 show an excerpt of Onset deviation and Energy ratio predictions

obtained with Decision Trees, respectively. The curves show Onset deviation with

respect the score, and Energy ratio with respect to the mean loudness . The blue

lines correspond to the deviations performed by the musician in the performance,

and the red lines correspond to the deviation predicted by the model. In both figures

it is shown how the model follows in a consistent way the deviations done in time

and energy by the performer.

In Figure 5.5 we can see a piano-roll representation of the first 20 notes with pre-

dicted Onsets. As we can see the model follows the typical strumming guitar pattern

by playing first the low strings and then the higher ones. This strumming pattern

was visible in the performance transcription (see Figure 4.9) where notes were played

(arpeggiated) from low pitch to high pitch so we can also visually see that our models

represent the performance actions done by the player.

In Figure 5.6 we can see how feature selection helps us to improve the results ob-

tained. In the Y-axis we plot the Correlation Coefficient while bars represent dif-

ferent datasets by using all features, the best subset or the 5 best ranked features.
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Figure 5.5: Darn that dream first 20 notes predicted with piano-roll
representation.

Displayed values are obtained from the bottom half of Table 5.2. We can see that by

using best subset (red column) or 5 best ranked features (green column) we can im-

prove the Correlation Coefficient by the same amount as we obtain the same results

with both feature selection algorithms.

This results are very important as they show that with just a few features ( 5

features) we can obtain better results than with all features (35 features), so probably

it makes no sense to research on adding more and more features to the system but

to improve those that obtained a better ranking using feature selection.

Our assumption about why the score synthesis is graded better than the performance

or the prediction in the qualitative evaluation is that the virtual instrument does not

synthesise very well the guitar and when two notes are played with very short inter-

onset time it creates very strange artefacts. Moreover, as it is a midi synthesis we

are used to hear it very perfect as it always comes from a music score, so introducing

those artefacts and time deviations can sound really strange to us, as if the score

wasn’t well written.
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Figure 5.6: Results with feature selection comparison using Deci-
sion Trees. In this plot we use the "All" dataset.

One of the comments received in the On-line survey was:

I based my "humanness" mainly in the attack of the instrument, when

the time between one attack and the next is really short, it feels robotic

and hasty. I tried not to guide myself on synthesis but it is difficult. The

best of my grades went to a somehow "slower" performance with more

"rallentando" than the other versions.

This comment reinforces our assumption that the problem of higher punctuation to

the score synthesis is due to the MIDI synthesis and the artefacts added when two

onsets are really close. As the user says, it is very difficult to rate "humanness" from

a MIDI synthesis as the sound itself is not human.

Another comment on the survey reflects the difficulty of rating "humanness". The

"human" term could be some how ambiguous as it may refer to the smoothness of

the performance or to the compositional aspect. In general we found that the qual-

itative evaluation is subjected to different perceptual aspects (mainly to the guitar
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synthesis) that are out of the main focus of this thesis work. However, from this

qualitative evaluation we can state two things: firstly, this is not a valid experiment

to rate how "human" the predictions are as the users prefer score synthesis over

synthesised human performances. Secondly, we think that this evaluation is a valid

experiment in order to confirm that our predictions and models are really close to

actual human performances.
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Conclusions

In this work we have applied machine learning techniques in order to generate mod-

els for musical expression in polyphonic guitar music, by training different models

for Onset Deviation and Energy Ratio. We treated polyphonic guitar as an hexa-

phonic instrument by capturing and transcribing each string separately. We ex-

tracted descriptors from the scores in terms of the melodic (Horizontal) as well from

the harmonic (Vertical) context. We computed PAs from the aligned transcribed

performance and the scores. We trained different models using machine learning

techniques. Models were used to predict PAs that later were applied to the scores

to be synthesised. Feature selection analysis and accuracy tests were performed

to assess models performance. Perceptual tests were conducted on the predicted

pieces to rate how close they sound to a human performance. Results indicate that

descriptors contain sufficient information to generate our models able to predict

performances close to human ones.

6.1 Contributions

Main contributions of this this Master’s thesis are:

• Most of the research in this topic has been carried out in monophonic jazz

guitar. As far as our knowledge goes it has not been done in polyphonic
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guitar.

• We proposed an new framework extending previous work from monophonic

guitar to polyphonic.

• We created a new analysed dataset consisting on hexaphonic audio recordings,

their corresponding scores, automatic transcriptions and score to performance

alignments.

• We provide an On-line repository with all code and data. Please see Ap-

pendix A.

• Our work has shown to have relevance in the research community as it has

been accepted at the MML 2017 - 10th International Workshop on Machine

Learning and Music.

6.2 Future Work

Future work of this Master’s thesis could be:

• To enlarge our dataset of hexaphonic recordings with their corresponding dig-

ital scores in order to have more solid models.

• To study the interpretability of the different models.

• To improve the performance to score alignment trying to avoid manual pre-

processing time-stretch step.

• To study how models generalise into the same musical style, performer,... This

means having the same performer performing different pieces and studying

variance between pieces or by having the same musical piece played by diverse

performers and study how each one performs it.

• To study the musical sense behind feature selection.

• To study a sequential modelling. Current implementation is note-based so

each note is modelled by its own descriptors. By implementing sequential

modelling, we would be able to model entire phrases or sequences at once.

• To improve our qualitative evaluation (i.e. by improving guitar synthesis)



Bibliography

[1] Giraldo, S. & Ramírez, R. A machine learning approach to ornamentation

modeling and synthesis in jazz guitar. Journal of Mathematics and Music 10,

107–126 (2016).

[2] Juslin, P. N. & Sloboda, J. Communicating emotion in music performance: A

review and theoretical framework. In Music and Emotion (2001).

[3] Ramirez, R. & Hazan, A. A Tool for Generating and Explaining Expressive

Music Performances of Monophonic Jazz Melodies. International Journal on

Artificial Intelligence Tools 15, 673–691 (2006).

[4] Friberg, A., Bresin, R. & Sundberg, J. Overview of the KTH rule system for

musical performance. Advances in Cognitive Psychology 2, 145–161 (2009).

[5] Sundberg, J., Friberg, A. & Bresin, R. Attempts to reproduce a pianist’s

expressive timing with Director Musices performance rules. Journal of New

Music Research 32, 317–325 (2003).

[6] Bresin, R. & Friberg, A. Emotional Coloring of Computer-Controlled Music

Performances. Computer Music Journal 24, 44–63 (2000).

[7] Bresin, R. Artificial Neural Networks Based Models for Automatic Performance

of Musical Scores. Journal of New Music Research 9800 (1998).

[8] Goebl, W. et al. ‘ Sense ’ in Expressive Music Performance : Data Acquisition

, Computational Studies , and Models. Artificial Intelligence 1–36 (2005).

45



46 BIBLIOGRAPHY

[9] Camurri, A., Dillon, R. & Saron, A. An experiment on analysis and synthesis

of musical expressivity. . . . of 13th Colloquium on Musical . . . (2000).

[10] Widmer, G. Discovering simple rules in complex data: A meta-learning algo-

rithm and some surprising musical discoveries. Artificial Intelligence Widmer

/ Artificial Intelligence 146, 129–148 (2003).

[11] Widmer, G. & Tobudic, A. Playing Mozart by Analogy: Learning Multi-level

Timing and Dynamics Strategies. Journal of New Music Research 32, 259–268

(2003).

[12] Grindlay, G. & Helmbold, D. Modeling, analyzing, and synthesizing expressive

piano performance with graphical models. Mach Learn 65, 361–387 (2006).

[13] Miranda, E. R., Kirke, A. & Zhang, Q. Artificial Evolution of Expressive

Performance of Music: An Imitative Multi-Agent Systems Approach. Computer

Music Journal 34, 80–96 (2010).

[14] Arcos, J. L., de Mántaras, R. L. & Serra, X. Saxex: A case-based reasoning

system for generating expressive musical performances. Journal of New Music

Research 27, 194–210 (1998).

[15] Grachten, M., Serra, X. & Universitat Pompeu Fabra. Expressivity-aware tempo

transformations of music performances using case based reasoning (Universitat

Pompeu Fabra, 2006).

[16] Puiggròs, M., Gómez, E., Ramírez, R.-F., Serra, X. & Bresin, R. Automatic

characterization of ornamentation from bassoon recordings for expressive syn-

thesis. 9th International Conference on Music Perception and Cognition (2006).

[17] Bantula, H., Giraldo, S. & Ramírez, R. Jazz Ensemble Expressive Performance

Modeling. Proc. 17th International Society for Music Information Retrieval

Conference 674–680 (2016).

[18] Kirke, Alexis, Miranda, E. R. An Overview of Computer Systems for Expressive

Music Performance. In Guide to Computing for Expressive Music Performance,

1–47 (2013).



BIBLIOGRAPHY 47

[19] Klapuri, A. P. Automatic Music Transcription as We Know it Today. Journal

of New Music Research 33, 269–282 (2004).

[20] Argenti, F., Nesi, P. & Pantaleo, G. Automatic music transcription: from mono-

phonic to polyphonic. In Musical Robots and Interactive Multimodal Systems,

27–46 (Springer, 2011).

[21] Klapuri, A. Multiple Fundamental Frequency Estimation by Summing Har-

monic Amplitudes. Proceedings of the International Symposium/Conference on

Music Information Retrieval (ISMIR) 216–221 (2006).

[22] Benetos, E., Weyde, T. et al. An efficient temporally-constrained probabilistic

model for multiple-instrument music transcription (2015).

[23] Fiss, X. & Kwasinski, A. Automatic real-time electric guitar audio transcrip-

tion. In ICASSP, IEEE International Conference on Acoustics, Speech and

Signal Processing - Proceedings, 373–376 (2011).

[24] O’Grady, P. & Rickard, S. Automatic hexaphonic guitar transcription using

non-negative constraints. IET Irish Signals and Systems Conference (ISSC

2009) 22–22 (2009).

[25] Roland. Roland GK-3 divided pickup. URL https://www.roland.com/

global/products/gk-3.

[26] Bogdanov, D. et al. Essentia: An audio analysis library for music information

retrieval. In ISMIR, 493–498 (2013).

[27] Eerola, T. & Toiviainen, P. Midi toolbox: Matlab tools for music research

(2004).

[28] Hall, M. et al. The weka data mining software: an update. ACM SIGKDD

explorations newsletter 11, 10–18 (2009).

[29] Kraft, S. & Zölzer, U. Beaqlejs: Html5 and javascript based framework for the

subjective evaluation of audio quality. In Linux Audio Conference, Karlsruhe,

DE (2014).

https://www.roland.com/global/products/gk-3
https://www.roland.com/global/products/gk-3


48 BIBLIOGRAPHY

[30] Angulo, I., Giraldo, S. & Ramirez, R. Hexaphonic guitar transcription and

visualization. In TENOR 2016, International Conference on Technologies for

Music Notation and Representation., 187 – 192 (2016).

[31] Cheveigne, A. D. & Kawahara, H. YIN, a fundamental frequency estimator for

speech and music 111 (2002).

[32] Narmour, E. The analysis and cognition of melodic complexity: The

implication-realization model (University of Chicago Press, 1992).

[33] Cambouropoulos, E. Musical rhythm: A formal model for determining local

boundaries, accents and metre in a melodic surface. Music, gestalt, and com-

puting 1317, 277–293 (1997).



Appendices

49





Appendix A

On-line Resources

An On-line Repository has been created in order to share all of this project’s re-

sources, so that researchers and every person interested in the topic can use this

information for future work. Code documentation can be found in file: Readme.md.

Data documentation can be found in Appendix B.

Link to the On-line repository with code and data:

https://github.com/Marcsiq2/masterthesis

Also, a few synthesised few synthesised MIDI examples have been uploaded to Soud-

ncloud in order to be accessible to everyone.

Link to Soundcloud:

https://soundcloud.com/marc-siquier-penyafort/sets/master-thesis

Finally, the On-line survey code can also be found at GitHub:

Link to On-line survey repository:

https://github.com/Marcsiq2/Marcsiq2.github.io
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Dataset Documentation

Data for this thesis can be found at our On-line repository (Appendix A) inside the

Files folder with the following structure:

Files
dataOut

arff
arff_cleaned
nmat

extracted_midi
Darn_that_dream
Suite_en_la

Figures
guitar_in

Darn_that_dream
Suite_en_la
Suite_en_la_v2

Predictions
Midis

scores
midi
musescore
pdf
xml

Synth
weka_files

results
xmlutils
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In folder dataOut/arff we can find the arff files for training the models

with extracted features and computed performance actions. Arff files inside

dataOut/arff_cleaned are the files used in section 5 for the evaluation (divided by

Onset, Energy and also "All" database files). In folder dataOut/nmat we can find a

few Matlab workspaces with all the variables used in the computation.

In folder extracted_midi we can find transcribed MIDI files from the au-

dio divided by musical piece (both performances of Suite en la are inside

extracted_midi/Suite_en_la subfolder).

In folder Figure we can find diverse figures used in this written report.

In folder guitar_in we can find the hexaphonic recordings (a wav file for each

string) for each performance.

In folder Predictions we can find csv files with the results of the models. First col-

umn indicates note number, second column reference value, third column predicted

value and fourth column the error difference. Inside Predictions/Midis subfolder

we can find a few re-constructed midis with the predicted values.

In folder scores we can find the scores of the musical pieces in four different formats.

In folder Synth we can find synthesised fragments used for the qualitative evaluation.

In folder weka_files we can find the experiment description both for the quanti-

tative evaluation and for the feature selection. Inside weka_files/results we can

find output files provided by Weka.

In folder xmlutils we can find a few utils needed in order to be able to read xml

files.
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On-line Survey

An On-line Survey for the quantitative evaluation was developed using BeaqleJS

(browser based evaluation of audio quality and comparative listening environment)

which provides a framework to create browser based listening tests and is purely

based on open web standards like HTML5 and Javascript.

Server was set in a Github pages account, and can be found at https://marcsiq2.

github.io/.

In Figure C.1 we can see the starting first page of the survey. This main page shows

a few instructions in order to complete the survey as well as my personal contact

information. By clicking "Start" the survey starts.

Survey consists of four different listening tests, each one looking like Figure C.2.

Three different excerpts are given to the user who can play, pause, rewind and listen

to them as many times as he wants. After listening to all of them he is asked to rate

How much "human" are the audios? from Bad to Excellent by using a slider for

each one, so no numerical value is given by the user. By navigating with "Previous

Test" and "Next test" he can go back and forth in order to change ratings if he

needs to.

After completing the four different tests (12 excerpts in total) the user is presented
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intro1 intro2 middle end
Perf Pred Score Perf Pred Score Perf Pred Score Perf Pred Score

1 20 51 43 63 43 83 40 26 75 75 34 40
2 31 29 76 73 33 91 13 29 52 13 25 88
3 61 39 62 48 35 69 57 30 61 45 47 62
4 49 49 55 63 43 83 29 66 76 45 67 78
5 46 37 50 45 47 81 70 50 76 40 37 80
6 35 69 26 70 65 50 39 70 50 32 91 68
7 50 71 49 50 50 50 68 54 87 35 68 69
8 33 72 50 70 71 29 66 68 47 90 47 68
9 40 19 53 49 61 72 49 30 49 20 9 52
10 31 12 50 66 46 96 51 63 67 44 66 88
11 57 30 65 42 31 62 38 32 69 45 34 61
12 40 39 49 73 50 82 41 59 70 40 29 75

Table C.1: Full table results of the on-line survey.

with the "Submit" page (Figure C.3), were he can input his own name and email

or write any comment about the test. Those fields are not mandatory. Not many

comments were given and the most meaningful one is I based my "humanness"

mainly in the attack of the instrument, when the time between one attack and the

next is really short, it feels robotic and hasty. I tried not to guide myself on synthesis

but it is difficult. The best of my grades went to a somehow "slower" performance

with more rallentando than the other versions..

In Table C.1 we can see the punctuation given to each excerpt by each one of the 12

users. This punctuation is directly mapped from the rating slider, being hard right

100 points and hard left 0 points.

In Figure C.4 we can see those punctuations merged by type (Performance, Predic-

tion and Score synthesis) and in Figure C.5 punctuations are divided and plotted

by test number.

In Figure C.6 and as a curiosity we can see a runtime plot for each one of the four

different tests, being intro_1 the test with higher average runtime.
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Figure C.1: On-line survey instructions.

Figure C.2: On-line survey example of a Test set.
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Figure C.3: On-line survey submit page.

Figure C.4: Results of the on-line survey with performance, pre-
dicted and straight score synthesised midis.
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Figure C.5: Results per test of the on-line survey with performance,
predicted and straight score synthesised midis.

Figure C.6: Runtime for each test of the on-line survey.
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