Thomas Wagner1*, Henrique
Galante1, Tomer J. Czaczkes1
1 Animal Comparative
Economics Laboratory, Department of Zoology and Evolutionary Biology,
University of Regensburg, 93053 Regensburg, Germany
This document contains the statistical analysis output for the
manuscript. https://doi.org/10.5281/zenodo.10953783 provides the
entire raw data on which this analysis is based and the code used to
process it. Note that much of the analysis is divided into sections
using tabs. Click on the section you wish to inspect, and scroll down
for the full analysis.
Setup
Load packages
require(betareg) # For beta regression
require(car) # To assess model fit
require(DHARMa) # To evaluate model fit
require(dplyr) # For data wrangling
require(emmeans) # For post-hoc analysis
require(ggplot2) # For plots
require(lme4) # Linear mixed-effects models
require(lmtest) # To assess model fit
require(MuMIn) # For adjusted R^2
require(stringr) # For handling strings
require(tidyr) # For data wrangling
Clean-up
rm(list = ls()) # Remove all variables/objects
graphics.off() # Close any open graphics
set.seed(11122) # Ensure all results are reproducible
Load data
linear_spoiling = read.csv2("../Data/DF_D1_Linear_Runway_Spoiling.csv")
dualfeeder = read.csv2("../Data/DF_D2_Sucrose_Quinine_Controls.csv")
Linear Runway
Spoiling
Specify variable class
linear_spoiling$Collection_Date = as.factor(linear_spoiling$Collection_Date) # Data collection date
linear_spoiling$Experimenter = as.factor(linear_spoiling$Experimenter) # Experimenter who collected the data
linear_spoiling$Ant_ID = as.factor(linear_spoiling$Ant_ID) # Ant ID
linear_spoiling$Colony_ID = as.factor(linear_spoiling$Colony_ID) # Which colony did the ant belong to
linear_spoiling$Solution = as.factor(linear_spoiling$Solution) # What solution was the ant given
linear_spoiling$Quinine_Concentration = factor(linear_spoiling$Quinine_Concentration, levels = c("0", "0.31", "0.63", "0.94", "1.25")) # How much quinine was the ant given (mM)
linear_spoiling$Spoiled_Status = as.factor(linear_spoiling$Spoiled_Status) # Was the ant spoiled? 0 = No | 1 = Yes
linear_spoiling$Acceptance_First_10_sec = as.factor(linear_spoiling$Acceptance_First_10_sec) # Did the ant touch/drink the solution in the first 10 seconds? 0 = No | 1 = Yes
linear_spoiling$Acceptance_90_sec = as.factor(linear_spoiling$Acceptance_90_sec) # Did the ant have a visibly expanded gaster after 90 seconds? 0 = No | 1 = Yes
Linear Runway Spoiling Data
Biological model
Hide
Initial 10s
Sample size
1M Sucrose |
39 |
39 |
1M Sucrose + 0.31mM Quinine |
20 |
40 |
1M Sucrose + 0.63mM Quinine |
29 |
40 |
1M Sucrose + 0.94mM Quinine |
25 |
40 |
1M Sucrose + 1.25mM Quinine |
30 |
40 |
Define biological model
bio_mod = glmer(Acceptance_First_10_sec ~ Solution * Spoiled_Status + (1 | Ant_ID/Colony_ID) + (1|Experimenter), data = linear_spoiling, family = "binomial")
Model validation

Goodness of fit
R2m: Variation explained by fixed effects (%)
R2c: Variation explained by fixed + random effects
(%)
theoretical |
94.36261 |
94.36261 |
delta |
90.79887 |
90.79887 |
Model summary - Fixed effects
Solution |
55.18474 |
4 |
0.0000000 |
Spoiled_Status |
39.31174 |
1 |
0.0000000 |
Solution:Spoiled_Status |
1.63065 |
4 |
0.8032731 |
Model summary - Random effects
Colony_ID:Ant_ID |
(Intercept) |
NA |
0 |
0.0001378 |
Ant_ID |
(Intercept) |
NA |
0 |
0.0000705 |
Experimenter |
(Intercept) |
NA |
0 |
0.0000000 |
Estimated Marginal Means
1M Sucrose |
0 |
100.0 |
0.0 |
Inf |
0.0 |
100.0 |
10s |
1M Sucrose + 0.31mM Quinine |
0 |
100.0 |
0.0 |
Inf |
0.0 |
100.0 |
10s |
1M Sucrose + 0.63mM Quinine |
0 |
96.6 |
3.4 |
Inf |
61.7 |
99.8 |
10s |
1M Sucrose + 0.94mM Quinine |
0 |
92.0 |
5.4 |
Inf |
59.2 |
98.9 |
10s |
1M Sucrose + 1.25mM Quinine |
0 |
90.0 |
5.5 |
Inf |
62.0 |
98.0 |
10s |
1M Sucrose |
1 |
87.2 |
5.4 |
Inf |
63.9 |
96.3 |
10s |
1M Sucrose + 0.31mM Quinine |
1 |
90.0 |
4.7 |
Inf |
67.2 |
97.5 |
10s |
1M Sucrose + 0.63mM Quinine |
1 |
80.0 |
6.3 |
Inf |
56.9 |
92.4 |
10s |
1M Sucrose + 0.94mM Quinine |
1 |
37.5 |
7.7 |
Inf |
19.3 |
60.0 |
10s |
1M Sucrose + 1.25mM Quinine |
1 |
20.0 |
6.3 |
Inf |
7.6 |
43.1 |
10s |
Contrasts
1M Unspoiled / 1M Spoiled |
1.256074e+08 |
8.442406e+09 |
Inf |
1 |
0.2774577 |
1.0000000 |
0.31mM Q Unspoiled / 0.31mM Q Spoiled |
9.489767e+07 |
1.728302e+10 |
Inf |
1 |
0.1008568 |
1.0000000 |
0.63mM Q Unspoiled / 0.63mM Q Spoiled |
6.999998e+00 |
7.642394e+00 |
Inf |
1 |
1.7823427 |
0.3734669 |
0.94mM Q Unspoiled / 0.94mM Q Spoiled |
1.916666e+01 |
1.546111e+01 |
Inf |
1 |
3.6609568 |
0.0012564 |
1.25mM Q Unspoiled / 1.25mM Q Spoiled |
3.600001e+01 |
2.614798e+01 |
Inf |
1 |
4.9337159 |
0.0000040 |
Initial 90s
Sample size
1M Sucrose |
39 |
39 |
1M Sucrose + 0.31mM Quinine |
20 |
40 |
1M Sucrose + 0.63mM Quinine |
29 |
40 |
1M Sucrose + 0.94mM Quinine |
25 |
40 |
1M Sucrose + 1.25mM Quinine |
30 |
40 |
Define biological model
bio_mod = glmer(Acceptance_90_sec ~ Solution * Spoiled_Status + (1 | Ant_ID/Colony_ID) + (1|Experimenter), data = linear_spoiling, family = "binomial")
Model validation

Goodness of fit
R2m: Variation explained by fixed effects (%)
R2c: Variation explained by fixed + random effects
(%)
theoretical |
92.29295 |
92.29295 |
delta |
0.00000 |
0.00000 |
Model summary - Fixed effects
Solution |
17.0628645 |
4 |
0.0018793 |
Spoiled_Status |
6.0149006 |
1 |
0.0141856 |
Solution:Spoiled_Status |
0.2924738 |
4 |
0.9902948 |
Model summary - Random effects
Colony_ID:Ant_ID |
(Intercept) |
NA |
0 |
2.57e-05 |
Ant_ID |
(Intercept) |
NA |
0 |
4.24e-05 |
Experimenter |
(Intercept) |
NA |
0 |
0.00e+00 |
Estimated Marginal Means
1M Sucrose |
0 |
97.4 |
2.5 |
Inf |
68.9 |
99.8 |
90s |
1M Sucrose + 0.31mM Quinine |
0 |
100.0 |
0.0 |
Inf |
0.0 |
100.0 |
90s |
1M Sucrose + 0.63mM Quinine |
0 |
96.6 |
3.4 |
Inf |
61.7 |
99.8 |
90s |
1M Sucrose + 0.94mM Quinine |
0 |
100.0 |
0.0 |
Inf |
0.0 |
100.0 |
90s |
1M Sucrose + 1.25mM Quinine |
0 |
90.0 |
5.5 |
Inf |
62.0 |
98.0 |
90s |
1M Sucrose |
1 |
94.9 |
3.5 |
Inf |
70.7 |
99.3 |
90s |
1M Sucrose + 0.31mM Quinine |
1 |
92.5 |
4.2 |
Inf |
69.6 |
98.5 |
90s |
1M Sucrose + 0.63mM Quinine |
1 |
87.5 |
5.2 |
Inf |
64.7 |
96.4 |
90s |
1M Sucrose + 0.94mM Quinine |
1 |
70.0 |
7.2 |
Inf |
47.0 |
86.0 |
90s |
1M Sucrose + 1.25mM Quinine |
1 |
67.5 |
7.4 |
Inf |
44.6 |
84.3 |
90s |
Contrasts
1M Unspoiled / 1M Spoiled |
2.054054e+00 |
2.559691e+00 |
Inf |
1 |
0.5776243 |
1.0000000 |
0.31mM Q Unspoiled / 0.31mM Q Spoiled |
6.827367e+07 |
1.526103e+10 |
Inf |
1 |
0.0807017 |
1.0000000 |
0.63mM Q Unspoiled / 0.63mM Q Spoiled |
4.000000e+00 |
4.497527e+00 |
Inf |
1 |
1.2329391 |
1.0000000 |
0.94mM Q Unspoiled / 0.94mM Q Spoiled |
3.609000e+08 |
7.708684e+10 |
Inf |
1 |
0.0922494 |
1.0000000 |
1.25mM Q Unspoiled / 1.25mM Q Spoiled |
4.333333e+00 |
3.015699e+00 |
Inf |
1 |
2.1070165 |
0.1755807 |
Proportion of acceptance at initial
10sec and 90sec

Dual-Feeder
Proportion of time spent at initial
choice
dualfeeder$time_initial_choice_s = ifelse(dualfeeder$Initial_Decision == "L", dualfeeder$Drinking_Time_Left_s, dualfeeder$Drinking_Time_Right_s)
dualfeeder$prop_time_initial_choice = dualfeeder$time_initial_choice_s / (dualfeeder$Drinking_Time_Left_s + dualfeeder$Drinking_Time_Right_s)
If an ant spent 100% of the time at one
feeder it is likely it didn’t perceive both and therefore we cannot be
sure the ant made a choice. Therefore, these points are excluded.
dualfeeder$prop_time_initial_choice = ifelse(dualfeeder$prop_time_initial_choice == 1, NA, dualfeeder$prop_time_initial_choice)
Initial choice solution
dualfeeder$solution_initial_choice = ifelse(dualfeeder$Initial_Decision == "L", dualfeeder$Solution_Left, dualfeeder$Solution_Right)
dualfeeder$solution_initial_choice = ifelse((dualfeeder$Solution_Left == "1M Sucrose") & (dualfeeder$Solution_Right == "1M Sucrose"), "1M_L", dualfeeder$solution_initial_choice)
dualfeeder$solution_initial_choice = ifelse((dualfeeder$Solution_Left == "1M Sucrose") & (dualfeeder$Solution_Right == "1M Sucrose") & (dualfeeder$Initial_Decision == "R"), "1M_R", dualfeeder$solution_initial_choice)
Is initial choice random?
Number of times each solution was placed on the
left
0.5M Sucrose |
63 |
0.75M Sucrose |
32 |
1M Sucrose |
443 |
1M Sucrose+ 0.156mM Quinine |
38 |
1M Sucrose+ 0.313mM Quinine |
39 |
1M Sucrose+ 0.625mM Quinine |
38 |
Number of times each solution was placed on the
right
0.5M Sucrose |
77 |
0.75M Sucrose |
33 |
1M Sucrose |
427 |
1M Sucrose+ 0.156mM Quinine |
39 |
1M Sucrose+ 0.313mM Quinine |
38 |
1M Sucrose+ 0.625mM Quinine |
39 |
Ants seem to have a side bias towards the right especially in the
0.75M VS 1M and 1M VS Quinine experiments. However, all experiments were
balanced regarding how many times each solution was placed on which side
of the feeder.
L |
66 |
21 |
110 |
86 |
R |
74 |
44 |
107 |
145 |
##
## Chi-squared test for given probabilities
##
## data: table(dualfeeder$Initial_Decision)
## X-squared = 11.591, df = 1, p-value = 0.0006627
Specify variable class
dualfeeder$Collection_Date = as.factor(dualfeeder$Collection_Date) # Data collection date
dualfeeder$Experimenter = as.factor(dualfeeder$Experimenter) # Experimenter who collected the data
dualfeeder$Ant_ID = as.factor(dualfeeder$Ant_ID) # Ant ID
dualfeeder$Colony_ID = as.factor(dualfeeder$Colony_ID) # Which colony did the ant belong to
dualfeeder$Experiment = as.factor(dualfeeder$Experiment) # What experiment is the data referent to
dualfeeder$Set = as.factor(dualfeeder$Set) # Some experiments were conducted in multiple sets
dualfeeder$solution_initial_choice = factor(dualfeeder$solution_initial_choice, levels = c("0.5M Sucrose", "0.75M Sucrose", "1M_L", "1M_R", "1M Sucrose", "1M Sucrose+ 0.156mM Quinine", "1M Sucrose+ 0.313mM Quinine", "1M Sucrose+ 0.625mM Quinine")) # Which solution was first touched
dualfeeder$prop_time_initial_choice = as.numeric(dualfeeder$prop_time_initial_choice) # Proportion of time spent drinking the first solution touched
Dual Feeder Data
Quinine Sensitivity
Sample Size
0.156 |
33 |
29 |
0 |
0 |
0.313 |
26 |
0 |
34 |
0 |
0.625 |
19 |
0 |
0 |
38 |
Hide
0.156mM of quinine
Biological Model
bio_mod = betareg(prop_time_initial_choice ~ solution_initial_choice, data = subset(quinine, quinine$pair == "0.156"))
Model Summary
## Likelihood ratio test
##
## Model 1: prop_time_initial_choice ~ solution_initial_choice
## Model 2: prop_time_initial_choice ~ 1
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 3 17.330
## 2 2 16.884 -1 0.8912 0.3451
##
## Call:
## betareg(formula = prop_time_initial_choice ~ solution_initial_choice,
## data = subset(quinine, quinine$pair == "0.156"))
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -2.5554 -0.6991 0.0805 0.6587 1.5785
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.9689 0.1816 5.334 9.58e-08 ***
## solution_initial_choice0.156 -0.2395 0.2527 -0.948 0.343
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 3.0704 0.5062 6.065 1.32e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 17.33 on 3 Df
## Pseudo R-squared: 0.01726
## Number of iterations: 15 (BFGS) + 2 (Fisher scoring)
## model term df1 df2 F.ratio Chisq p.value
## solution_initial_choice 1 Inf 0.895 0.895 0.3440
## Analysis of Deviance Table (Type II tests)
##
## Response: prop_time_initial_choice
## Df Chisq Pr(>Chisq)
## solution_initial_choice 1 0.8983 0.3432
Estimated Marginal Means
0 |
0.7248925 |
0.0362199 |
Inf |
0.6437092 |
0.8060758 |
0.156 |
0.6746629 |
0.0411192 |
Inf |
0.5824982 |
0.7668276 |
Contrasts
solution_initial_choice0 -
solution_initial_choice0.156 |
0.0502296 |
0.053083 |
Inf |
0.9462464 |
0.3440229 |
0.313mM of quinine
Biological Model
bio_mod = betareg(prop_time_initial_choice ~ solution_initial_choice, data = subset(quinine, quinine$pair == "0.313"))
Model Summary
## Likelihood ratio test
##
## Model 1: prop_time_initial_choice ~ solution_initial_choice
## Model 2: prop_time_initial_choice ~ 1
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 3 29.535
## 2 2 22.951 -1 13.167 0.0002849 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## betareg(formula = prop_time_initial_choice ~ solution_initial_choice,
## data = subset(quinine, quinine$pair == "0.313"))
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -2.6345 -0.6313 0.1156 0.5185 2.1822
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.5899 0.2025 7.850 4.17e-15 ***
## solution_initial_choice0.313 -0.9159 0.2454 -3.732 0.00019 ***
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 4.2975 0.7521 5.714 1.1e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 29.53 on 3 Df
## Pseudo R-squared: 0.2439
## Number of iterations: 13 (BFGS) + 1 (Fisher scoring)
## model term df1 df2 F.ratio Chisq p.value
## solution_initial_choice 1 Inf 15.252 15.252 0.0001
## Analysis of Deviance Table (Type II tests)
##
## Response: prop_time_initial_choice
## Df Chisq Pr(>Chisq)
## solution_initial_choice 1 13.925 0.0001903 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Marginal Means
0 |
0.8306056 |
0.0284987 |
Inf |
0.7667286 |
0.8944826 |
0.313 |
0.6624081 |
0.0343740 |
Inf |
0.5853622 |
0.7394540 |
Contrasts
solution_initial_choice0 -
solution_initial_choice0.313 |
0.1681974 |
0.0430687 |
Inf |
3.905325 |
9.41e-05 |
0.625mM of quinine
Biological Model
bio_mod = betareg(prop_time_initial_choice ~ solution_initial_choice, data = subset(quinine, quinine$pair == "0.625"))
Model Summary
## Likelihood ratio test
##
## Model 1: prop_time_initial_choice ~ solution_initial_choice
## Model 2: prop_time_initial_choice ~ 1
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 3 18.376
## 2 2 13.071 -1 10.611 0.001124 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## betareg(formula = prop_time_initial_choice ~ solution_initial_choice,
## data = subset(quinine, quinine$pair == "0.625"))
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -2.1806 -0.4001 0.1484 0.5056 2.4698
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.4113 0.2622 5.383 7.33e-08 ***
## solution_initial_choice0.625 -1.0034 0.3058 -3.282 0.00103 **
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 2.3756 0.4034 5.89 3.87e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 18.38 on 3 Df
## Pseudo R-squared: 0.2216
## Number of iterations: 14 (BFGS) + 1 (Fisher scoring)
## model term df1 df2 F.ratio Chisq p.value
## solution_initial_choice 1 Inf 12.789 12.789 0.0003
## Analysis of Deviance Table (Type II tests)
##
## Response: prop_time_initial_choice
## Df Chisq Pr(>Chisq)
## solution_initial_choice 1 10.769 0.001032 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Marginal Means
0 |
0.8039783 |
0.0413203 |
Inf |
0.7113630 |
0.8965937 |
0.625 |
0.6006017 |
0.0415239 |
Inf |
0.5075299 |
0.6936734 |
Contrasts
solution_initial_choice0 -
solution_initial_choice0.625 |
0.2033767 |
0.0568701 |
Inf |
3.576163 |
0.0003487 |
Graph

Sucrose Sensitivity
Sample Size
1M VS 0.5M |
71 |
0 |
69 |
0 |
0 |
1M VS 0.75M |
0 |
28 |
37 |
0 |
0 |
1M VS 1M |
0 |
0 |
0 |
110 |
107 |
Hide
0.5M of sucrose
Biological Model
bio_mod = betareg(prop_time_initial_choice ~ solution_initial_choice * Set, data = subset(sucrose, sucrose$pair == "1M VS 0.5M"))
Model Summary
## Likelihood ratio test
##
## Model 1: prop_time_initial_choice ~ solution_initial_choice * Set
## Model 2: prop_time_initial_choice ~ 1
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 5 70.389
## 2 2 53.366 -3 34.047 1.937e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## betareg(formula = prop_time_initial_choice ~ solution_initial_choice *
## Set, data = subset(sucrose, sucrose$pair == "1M VS 0.5M"))
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -3.1385 -0.5033 0.1385 0.5866 2.2588
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5586 0.2012 2.777 0.00549 **
## solution_initial_choice1 0.5250 0.2936 1.788 0.07376 .
## SetB 0.1848 0.2575 0.718 0.47294
## solution_initial_choice1:SetB 0.7477 0.3841 1.947 0.05158 .
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 3.0702 0.3919 7.835 4.69e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 70.39 on 5 Df
## Pseudo R-squared: 0.3916
## Number of iterations: 19 (BFGS) + 2 (Fisher scoring)
## model term df1 df2 F.ratio Chisq p.value
## solution_initial_choice 1 Inf 18.373 18.373 <.0001
## Set 1 Inf 5.794 5.794 0.0161
## solution_initial_choice:Set 1 Inf 1.625 1.625 0.2023
## Analysis of Deviance Table (Type II tests)
##
## Response: prop_time_initial_choice
## Df Chisq Pr(>Chisq)
## solution_initial_choice 1 24.5018 7.424e-07 ***
## Set 1 7.3288 0.006786 **
## solution_initial_choice:Set 1 3.7892 0.051585 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Marginal Means
0.5 |
A |
0.6361318 |
0.0465645 |
Inf |
0.5198274 |
0.7524363 |
1 |
A |
0.7471753 |
0.0413425 |
Inf |
0.6439138 |
0.8504368 |
0.5 |
B |
0.6777413 |
0.0360806 |
Inf |
0.5876225 |
0.7678600 |
1 |
B |
0.8824781 |
0.0212136 |
Inf |
0.8294929 |
0.9354634 |
Contrasts
## NOTE: Results may be misleading due to involvement in interactions
solution_initial_choice0.5 -
solution_initial_choice1 |
-0.1578902 |
0.0368355 |
Inf |
-4.286363 |
1.82e-05 |
0.75M of sucrose
Biological Model
bio_mod = betareg(prop_time_initial_choice ~ solution_initial_choice, data = subset(sucrose, sucrose$pair == "1M VS 0.75M"))
Model Summary
## Likelihood ratio test
##
## Model 1: prop_time_initial_choice ~ solution_initial_choice
## Model 2: prop_time_initial_choice ~ 1
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 3 25.657
## 2 2 20.031 -1 11.252 0.0007956 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call:
## betareg(formula = prop_time_initial_choice ~ solution_initial_choice,
## data = subset(sucrose, sucrose$pair == "1M VS 0.75M"))
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -2.3031 -0.5965 0.1168 0.6589 1.4716
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5770 0.2034 2.837 0.00455 **
## solution_initial_choice1 1.0396 0.2963 3.509 0.00045 ***
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 3.2680 0.6489 5.036 4.75e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 25.66 on 3 Df
## Pseudo R-squared: 0.2536
## Number of iterations: 13 (BFGS) + 2 (Fisher scoring)
## model term df1 df2 F.ratio Chisq p.value
## solution_initial_choice 1 Inf 12.598 12.598 0.0004
## Analysis of Deviance Table (Type II tests)
##
## Response: prop_time_initial_choice
## Df Chisq Pr(>Chisq)
## solution_initial_choice 1 12.312 0.00045 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimated Marginal Means
0.75 |
0.6403743 |
0.0468367 |
Inf |
0.5353943 |
0.7453542 |
1 |
0.8343259 |
0.0320770 |
Inf |
0.7624284 |
0.9062234 |
Contrasts
solution_initial_choice0.75 -
solution_initial_choice1 |
-0.1939517 |
0.0546441 |
Inf |
-3.549358 |
0.0003862 |
1M of sucrose
Biological Model
bio_mod = betareg(prop_time_initial_choice ~ solution_initial_choice * Set, data = subset(sucrose, sucrose$pair == "1M VS 1M"))
Model Summary
## Likelihood ratio test
##
## Model 1: prop_time_initial_choice ~ solution_initial_choice * Set
## Model 2: prop_time_initial_choice ~ 1
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 7 87.894
## 2 2 86.712 -5 2.3649 0.7967
##
## Call:
## betareg(formula = prop_time_initial_choice ~ solution_initial_choice *
## Set, data = subset(sucrose, sucrose$pair == "1M VS 1M"))
##
## Standardized weighted residuals 2:
## Min 1Q Median 3Q Max
## -2.8080 -0.5817 -0.0247 0.6047 2.3207
##
## Coefficients (mean model with logit link):
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.05155 0.17267 6.090 1.13e-09 ***
## solution_initial_choice1_R 0.12469 0.25345 0.492 0.623
## SetB 0.30976 0.24121 1.284 0.199
## SetC 0.03364 0.23755 0.142 0.887
## solution_initial_choice1_R:SetB -0.23179 0.34730 -0.667 0.505
## solution_initial_choice1_R:SetC 0.04557 0.34121 0.134 0.894
##
## Phi coefficients (precision model with identity link):
## Estimate Std. Error z value Pr(>|z|)
## (phi) 4.649 0.484 9.604 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 87.89 on 7 Df
## Pseudo R-squared: 0.01629
## Number of iterations: 16 (BFGS) + 2 (Fisher scoring)
## model term df1 df2 F.ratio Chisq p.value
## solution_initial_choice 1 Inf 0.236 0.236 0.6274
## Set 2 Inf 0.695 1.390 0.4992
## solution_initial_choice:Set 2 Inf 0.412 0.824 0.6623
## Analysis of Deviance Table (Type II tests)
##
## Response: prop_time_initial_choice
## Df Chisq Pr(>Chisq)
## solution_initial_choice 1 0.2075 0.6487
## Set 2 1.3369 0.5125
## solution_initial_choice:Set 2 0.7926 0.6728
Estimated Marginal Means
## NOTE: Results may be misleading due to involvement in interactions
1_L |
0.7615070 |
0.0184529 |
Inf |
0.7201465 |
0.8028674 |
1_R |
0.7735133 |
0.0181694 |
Inf |
0.7327884 |
0.8142383 |
Contrasts
1_L - 1_R |
-0.0120064 |
0.0247355 |
Inf |
-0.4853912 |
0.6273989 |
Graph
