

Deliverable D2.5

PIACERE DevSecOps Framework – v3

Editor(s): Radosław Piliszek (7bulls)

Responsible Partner: 7bulls

Status-Version: Final – v1.0

Date: 31.08.2023

Distribution level (CO, PU): Public

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 47

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: PIACERE DevSecOps Framework – v3

Due Date of Delivery to the EC 31.08.2023

Workpackage responsible for the
Deliverable:

WP2 - PIACERE Requirements, Architecture and
DevSecOps

Editor(s): Radosław Piliszek (7bulls)

Contributor(s):

Radosław Piliszek (7bulls), Ismael Torres Boigues, Eliseo
Villanueva Morte (Prodevelop), Gorka Benguria, Josu
Díaz de Arcaya, Eneko Osaba, Iñaki Errazkin (Tecnalia),
Laurentiu Niculut, Debora Benedetto (HPE), Grega
Redek, Aleš Černivec, Matija Cankar (XLAB), Michele
Chiari (POLIMI)

Reviewer(s): Juncal Alonso (Tecnalia)

Approved by: All Partners

Recommended/mandatory
readers:

Mandatory: WP2, WP3, WP6
Recommended: WP4, WP5

Abstract: This deliverable (D2.5) is v3, the final one, of the series of

deliverables describing the PIACERE DevSecOps
Framework, its integration and the information about
the runtime-gluing component – the PIACERE Runtime
Controller (PRC). Different versions of the PIACERE
DevSecOps Framework have been provided following an
incremental approach. The first version was an initial
prototype with the core functionalities implemented; the
second version augmented these functionalities taking
into consideration the feedback coming from the use
cases analysis; this final version includes final corrections
and feedback coming from the implementation of the
use cases.

Keyword List: Framework, integration

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 47

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 29.06.2023 First draft version Radosław Piliszek
(7bulls)

v0.2 28.07.2023 Integration and PRC information
updates
Final version for internal review

Radosław Piliszek
(7bulls) and
contributors

v0.3 21.08.2023 Updates post internal review Radosław Piliszek
(7bulls), Juncal Alonso
(Tecnalia) and Matija
Cankar (XLAB)

v1.0 31.08.2023 Final check. Ready for submission Juncal Alonso
(Tecnalia)

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 47

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction .. 9

1.1 About this deliverable ... 9

1.2 Document structure .. 9

2 Scope of integration .. 10

2.1 Changes since v2 ... 10

2.2 Components used in the integration of v3 ... 10

2.3 Main points of integration .. 10

2.3.1 IDE: Design time to runtime .. 11

2.3.2 PRC: Control of the runtime .. 13

2.4 Delivery of the integrated components .. 14

2.5 Continuous Integration / Continuous Delivery (CI/CD) ... 14

3 Integrations implementation .. 15

3.1 Changes since v2 ... 15

3.2 IDE&IOP – IEC .. 15

3.3 IDE – DOML Model Checker .. 18

3.4 IDE – IOP .. 21

3.5 IDE – ICG .. 23

3.6 IDE – IaC Scan Runner ... 25

3.7 IDE – CSEP .. 31

3.8 IDE – PRC ... 32

3.9 IDE – Monitoring Dashboard ... 33

3.10 PRC – IEM .. 36

3.11 PRC – Monitoring Controller ... 39

3.12 Self-Healing – PRC ... 39

3.13 Monitoring Component – IEC .. 39

4 PRC Implementation ... 41

4.1 Changes since v2 ... 41

4.2 Functional description ... 41

4.2.1 Fitting into the overall PIACERE Architecture ... 41

4.3 Technical description .. 41

4.3.1 Components description ... 41

4.3.2 Technical specifications ... 42

5 PRC Delivery and usage ... 43

5.1 Changes since v2 ... 43

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 47

www.piacere-project.eu

5.2 Package information ... 43

5.3 Installation instructions ... 43

5.4 User Manual .. 43

5.4.1 PRC REST API ... 44

5.5 Licensing information .. 44

5.6 Download .. 45

6 Conclusions ... 46

7 References ... 47

 List of tables

TABLE 1 PIACERE FRAMEWORK V3 COMPONENTS ... 10

List of figures

FIGURE 1 PIACERE IDE INTEGRATION OPTIONS ... 11
FIGURE 2 ECLIPSE PLUGIN - INTEGRATION MECHANISM .. 11
FIGURE 3 EXTERNAL SERVICE: BACKEND SERVICE .. 12
FIGURE 4 INTERACTIVE SERVICE .. 12
FIGURE 5 INTERACTIVE SERVICE WITH VISUAL FEEDBACK ... 13
FIGURE 6 IDE PREFERENCES MENU FOR PIACERE ... 13
FIGURE 7 IDE - IEC TAB .. 15
FIGURE 8 IEC WEB GRAPHICAL USER INTERFACE ... 16
FIGURE 9 IEC REST API ... 17
FIGURE 10 EXCERPT OF THE OUTPUT RESPONSE TO THE IDE CALL .. 18
FIGURE 11 DOML MODEL CHECKER MENU OPTION ... 19
FIGURE 12 DMC REST API .. 19
FIGURE 13 MODEL CHECKER AND CSP COMPATIBILITY TOOL OUTPUT .. 21
FIGURE 14 SWAGGER UI PAGE FOR IOP .. 22
FIGURE 15 HOW THE IOP IS CALLED FROM THE IDE .. 23
FIGURE 16 IDE - ICG "GENERATE IAC CODE" MENU OPTION .. 24
FIGURE 17 ICG REST API ... 24
FIGURE 18 ICG IAC GENERATED FOLDER .. 25
FIGURE 19 SECTION FROM SWAGGER UI PAGE FOR IAC SCAN RUNNER REST API 26
FIGURE 20 FILTERING OUT CHECK FOR TERRAFORM IN THE IAC SCAN RUNNER REST API 27
FIGURE 21 CREATE IAC SCAN PROJECT .. 28
FIGURE 22 GET THE SCAN CHECK LIST ... 29
FIGURE 23 SETTING THE SCAN CHECK LIST ... 29
FIGURE 24 THE IAC PACKAGE SELECTION FOR SCANNING .. 30
FIGURE 25 IAC SCAN RESULT SUMMARY.. 30
FIGURE 27 CSEP MENU .. 31
FIGURE 28 CSEP API ENDPOINTS ... 32
FIGURE 29 IDE – PRC MENU AND OPTIONS ... 32
FIGURE 30 MONITORING ACCESS FROM DEPLOYMENT CONTEXT MENU ... 33
FIGURE 31 SWAGGER UI PAGE FOR PMC .. 34
FIGURE 32 OPENAPI FOR SMC .. 34
FIGURE 33 EVENT LOGS IN THE SH ... 35
FIGURE 34 PMC – GET DEPLOYMENT RESPONSE ... 35
FIGURE 35 GRAFANA MONITORING DASHBOARD DRAFT ... 35
FIGURE 36 SECURITY MONITORING DASHBOARD SHOWS WAZUH'S KIBANA DASHBOARD. 36

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 47

www.piacere-project.eu

FIGURE 37 IEM ENDPOINTS .. 37
FIGURE 38 IEM PUT /DEPLOYMENTS/ REQUEST SCHEMA. ... 37
FIGURE 39 IEM DELETE /DEPLOYMENTS/ REQUEST SCHEMA ... 38
FIGURE 40 IEM GET /DEPLOYMENTS/{DEPLOYMENT_ID} RESPONSE SCHEMA. .. 38
FIGURE 41 MC OPENAPI RENDERED IN EMBEDDED SWAGGER UI ... 39
FIGURE 41 PRC PACKAGE CONTENTS .. 43
FIGURE 42 PRC PACKAGE CONTENTS .. 43

http://www.medina-project.eu/
file:///C:/Users/rados/Downloads/D2.5%20-%20PIACERE%20DevSecOps%20Framework%20-%20v3%20radek-post-review.docx%23_Toc143517588
file:///C:/Users/rados/Downloads/D2.5%20-%20PIACERE%20DevSecOps%20Framework%20-%20v3%20radek-post-review.docx%23_Toc143517589

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 47

www.piacere-project.eu

Terms and abbreviations

API Application Programming Interface

BPMN Business Process Model and Notation

CRUD Create, Read, Update, Delete

CSEP Canary Sandbox Environment Provisioner, component of PIACERE WP5

CSP Cloud Service Provider

DevOps Development and Operations

DevSecOps Development, Security and Operations

DMC DOML Model Checker

DMN Decision Model and Notation

DoA Description of Action

DOML DevSecOps Modelling Language, as provided by PIACERE WP3

DMC DOML Model Checker

EC European Commission

GA Grant Agreement to the project

IaC Infrastructure as Code

ICG Infrastructural Code Generator, component of PIACERE WP3

IDE Integrated Development Environment, component of PIACERE WP3

IEC Infrastructural Elements Catalogue, component of PIACERE WP5

IEM IaC Execution Manager, component of PIACERE WP5

IOP IaC Optimization Platform, component of PIACERE WP5

ISR IaC Scan Runner

KR Key Result

KR13 Key Result 13 – PIACERE DevSecOps framework – the integration key result
that is presented in this deliverable

MC Monitoring Controller

PMC Performance Monitoring Controller

PRC PIACERE Runtime Controller

SH Self-Healing

SW Software

TSR Technical Specification Report (e.g., this document)

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 47

www.piacere-project.eu

Executive Summary

This document is the third version of same-named D2.3 and D2.4. It comes with the same
structure as v2 but updated contents and dedicated subsections discussing important
differences since the previous version (v2) so that it is easy to see the changes and the document
remains self-contained. Unlike v2, there is no appendix on Camunda – that approach has been
abandoned and this deliverable reports on the reasoning and the new architecture for the
current runtime. In summary, the PRC’s role (the main component implementing the PIACERE
DevSecOps Framework) has shifted to only mediate in self-healing and focus on the core
required functionality.

This document describes the integration of the PIACERE framework v3 as a whole (Key Result 13
[KR13] v3) and acts as the Technical Specification Report (TSR) for the integrated PIACERE
framework and the reported new software – PIACERE Runtime Controller (PRC), also in v3. The
PRC orchestrates the runtime of the PIACERE framework. The integration options of the IDE are
also discussed as the IDE is the central point of PIACERE framework’s design time.

The work reported here has been done as part of Task 2.3 (T2.3) in Work Package 2 (WP2) but
it involves all other technical WPs, that is WP3, WP4, WP5, and WP6, as they provide the tools
that compose the PIACERE framework. The PRC interacts with tools of the PIACERE runtime, i.e.,
those from WP5 and WP6.

The document starts with an introduction to the contents. Next, it has an explanation of the
scope of integration – this lays ground for the rest of the document. It is important to note that
this document does not dive into the WP-internal details of integration, e.g., those found mostly
in WP6 work but also in parts of other packages. Then, it moves onto the description of
integration points considered in this integration work which describe how the integration was
conducted. After that, sections on PRC implementation and usage are included which put the
PRC in context and describe it in detail. Finally, a conclusions section closes the document.

The main result of this deliverable is the integrated PIACERE framework and the PRC. Together
they allow the PIACERE user to reap the benefits of all the PIACERE tooling provided in the first
two and half years (i.e., by month 30) of the project and showcase that the PIACERE-provided
tools can be used together.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 47

www.piacere-project.eu

1 Introduction

1.1 About this deliverable

This document contains the details of the integration of the PIACERE framework v3 as a whole
(KR13 v) and is the TSR for it and the PRC v3. It also describes the CI/CD effort in the PIACERE
project. This is v3 of same-named D2.3 and D2.4.

The integration involves all tools produced as part of other technical WPs, i.e., from WP3 to
WP6. The PRC orchestrates the runtime and interacts with runtime tools from WP5 and WP6.
The goal of this deliverable is to put the technical results in context and present their details as
well as their usage. This v3 summarises also the changes made between v2 and v3 of the tools’
interfaces and their integration.

This document does not concern itself with internal integration of components inside their
respective deliverables as is the case with WP6 tooling as well as parts of other WPs.

1.2 Document structure

The document is comprised of 7 sections split into subsections. The 1st section is this
introduction. The 2nd section describes the scope of integration. The 3rd section goes into detail
on the integration points. The 4th section introduces PRC’s architecture and technical aspects.
The 5th section describes the usage side of PRC. The 6th section offers conclusion. The final 7th
section contains references.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 47

www.piacere-project.eu

2 Scope of integration

This section lays the ground for understanding the integration of the PIACERE DevSecOps
framework, also called PIACERE framework or simply PIACERE. The scope is described here along
with main points of integration.

2.1 Changes since v2

There are no changes in the scope of integration and thus this section remains mostly unchanged
except for references to current versions of components.

2.2 Components used in the integration of v3

In the first version of the PIACERE framework, the components used for integration are all those
available at month 30 of the project. They are summarised, along with the respective Key Results
and Deliverables in the table below (Table 1 PIACERE Framework v3 components, below).
Various sections refer back to these deliverables if the reader wants to know more about the
behaviour of a particular tool.

Table 1 PIACERE Framework v3 components

Key Results1 Deliverable Component name

KR13 D2.4
(this one)

PIACERE Runtime Controller (PRC)

KR3 D3.6 Infrastructural Code Generator (ICG)

KR2 D3.9 Integrated Development Environment (IDE)

KR5 D4.3 DOML Model Checker (DMC)

KR6, KR7 D4.6 IaC Scan Runner (ISR)

KR10 D5.3 IaC Execution Manager (IEM)

KR8 D5.6 Canary Sandbox Environment Provisioner (CSEP)

KR9 D5.9 IaC Optimization Platform (IOP)

KR9 D5.9 Infrastructural Elements Catalogue (IEC)

KR11, KR12 D6.3 Monitoring Controller (MC)

KR11 D6.3 Performance Monitoring Controller (PMC)

KR11 D6.3 Performance Self-Learning

KR11 D6.3 Self-Healing (SH)

KR11, KR12 D6.3 Security Monitoring and Self-Learning

All components used for the integration described in this deliverable (except the IDE) have their
interfaces follow the popular REST API practice and are described in the OpenAPI [1] format.
Certain details on interfaces and the interaction with them are described in section 3 (more
details can be found in each deliverable technical report, see Table 1 above). The IDE is a desktop
component and thus does not offer a REST API.

2.3 Main points of integration

This section describes two main points of integration in the PIACERE workflow – the IDE and the
PRC (PIACERE Runtime Controller). The latter’s details are reported in this deliverable.

1 After a longer inspection, one may notice KR1 and KR4 missing from the table. However, they are DOML
(DevSecOps Modelling Language) and its extensions, respectively, and thus are not providing software
components for integration.

http://www.medina-project.eu/
https://zenodo.org/record/8299709
https://zenodo.org/record/8299716
https://zenodo.org/record/8299718
https://zenodo.org/record/8299720
https://zenodo.org/record/8299722
https://zenodo.org/record/8299742
https://zenodo.org/record/8299734
https://zenodo.org/record/8299734
https://zenodo.org/record/8299738
https://zenodo.org/record/8299738
https://zenodo.org/record/8299738
https://zenodo.org/record/8299738
https://zenodo.org/record/8299738

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 47

www.piacere-project.eu

2.3.1 IDE: Design time to runtime

One of the pivotal tools of the PIACERE project is the IDE – being a Graphical User Interface (GUI)
of the PIACERE framework, it supports the design time of the PIACERE Framework and is a
gateway to the runtime. Several other Key Results (KRs) of the project are integrated with the
IDE using one of integration mechanisms that IDE and these technologies commonly provide.
The PIACERE IDE is customized with suitable plug-ins that integrate with the different tools, to
minimize the learning curve and simplify the adoption of the PIACERE DevSecOps IaC approach.

Figure 1 PIACERE IDE integration options

Several integration patterns, focusing on the Eclipse plugin architecture, are available. The
proposed ones are:

1. Native Extension/plugin. With this option, the tool will be integrated as an Eclipse
plugin and will be embedded into the PIACERE IDE:

Figure 2 Eclipse Plugin - Integration mechanism

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 47

www.piacere-project.eu

2. External Service: Backend Service. This option allows to integrate an external Tool
Service which could receive (for example, through a REST API) a DOML model (D3.1)
and any necessary configuration to perform some task, e.g., storing its results in a
repository.

Figure 3 External Service: Backend Service

3. External Service: Interactive Service. In this case, the external Tool Service provides
a response to the PIACERE IDE (either directly or via a callback) with some tool-
generated resources that can then be retrieve and stored by the IDE.

Figure 4 Interactive Service

4. External Service: Interactive Service with visual (Editor/Viewer) feedback. This

final case is an extension of the previous one where it is required to provide some
kind of Eclipse extension to visualize or to manage/edit tool-generated resources.

http://www.medina-project.eu/
https://www.piacere-project.eu/sites/d8piacere/files/D3.1%20PIACERE%20Abstractions%2C%20DOML%20and%20DOML-E%20-%20v1.0.pdf

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 47

www.piacere-project.eu

Figure 5 Interactive Service with visual feedback

The PIACERE tools integrated with the IDE can be grouped into two types. Design-time tools,
which allow designing/defining the solution to be deployed, and runtime tools, which try to
implement the designed system. All PIACERE tools, with the exception of the DOML which has
been integrated using pattern 1, have been integrated using a REST approach (as described in
the next section “Integrations implementation”) which corresponds to patterns 2 and 3 above.
Each tool publishes an API well defined using the OpenAPI notation. These APIs are invoked via
the different menus and submenus of the IDE and the endpoints are configurable. Some tools
require a visual interface to interact with or to show the results in a human-friendly manner (i.e.,
follow pattern 4 above). These interfaces have been developed and included in the IDE and are
described in the next section “Integrations implementation”.

Figure 6 IDE preferences menu for PIACERE

2.3.2 PRC: Control of the runtime

The other pivotal tool of the PIACERE project is the PRC – PIACERE Runtime Controller – which
orchestrates the runtime part of the PIACERE framework and is a bridge for the IDE to go from
design time to runtime. Various runtime components are interacted with and interact with the
PRC. The details of PRC are reported in this deliverable in sections 4 and 5. This section is kept
here short only to maintain the structure.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 47

www.piacere-project.eu

2.4 Delivery of the integrated components

All components were developed concurrently and their code history was tracked using the Git
version control system. The y3 branch tracks the progress for year 3 of the PIACERE project. All
components, except the IDE, are containerised and were co-installed on the project-internal
integration server. The Dockerfile [2] and docker-compose [3] recipes are available for easy
recreation of the integration environment. Each component has a dedicated internal network
which co-hosts the various subcomponents the tool might have. All REST API endpoints are
exposed on a common network to allow for communication between the components. Access
multiplexing is done with Traefik [4]. The PIACERE framework installation is done entirely using
docker-compose.

2.5 Continuous Integration / Continuous Delivery (CI/CD)

In addition to the “point releases” and their deployments maintained for demos and manual
testing and experimentation, the PIACERE project has adopted a CI/CD strategy that validates
each change to any of the PIACERE subcomponents. This is done with the help of GitLab CI/CD.
Each Merge Request (MR) runs a set of tests (code linting, container image building, unit tests,
integration tests) and their results determine whether the MR can be merged. The integration
test deploys the entire centralised PIACERE framework (i.e., all components except the IDE
which runs on user’s desktop) and runs simple flows against the deployed solution using
example DOML documents and the OpenStack cloud deployed by PIACERE Canary Sandbox
Environment Provisioner (CSEP). This ensures that the components work in tandem: that they
can be installed together, run together and, most importantly, used together in a coherent
manner as defined by the PIACERE project.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 47

www.piacere-project.eu

3 Integrations implementation

This section describes the implementations of integration points – between main integration
points and the other tools that are invoked or invoke the main integration points. The order of
components in section names is: invoker – invoked. The invoked component is described in the
context of being invoked by the invoker.

3.1 Changes since v2

Most integrations have had at least minor changes between v2 and v3. With respect to IDE’s
integrations, the two static verification tools, the DOML Model Checker and the IaC Scan Runner,
have had their interfaces enhanced to output a user-friendly web page rendering of the analysis
results. On the side of PRC, the PRC’s role has shifted to not handle self-healing internally but
only mediate in its realisation thanks to the centralised role and access to deployed IaC and
necessary credentials.

3.2 IDE&IOP – IEC

The Infrastructural Elements Catalogue (IEC) stores information about the services available at
service providers, and classify them based on their properties. as well as the instances of each
of these services deployed by the PIACERE infrastructure. The Catalogue is also expected to
receive and offer information about the status of the deployed instances.

Behaviour

The IEC is part of the optimization component and is not intended to be used directly by the
user. Instead, it is used behind the scenes (by the IOP and the IDE mainly). This use is made via
the APIs provided by the IEC and is transparent to the final user.

Figure 7 IDE - IEC tab

However, the Catalogue provides a GUI (Graphical User Interface) that allows user interaction
to check and edit the contained information. The GUI enables the create, read, update and
delete (CRUD) capabilities for several entities: services, service classes and instances (Figure 8).

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 47

www.piacere-project.eu

Figure 8 IEC web Graphical User Interface

The IEC receives information from different sources. What we have called “static information”,
concerns the available services provided by the CSPs. This information is pre-loaded in the IEC
database using an SQL script.

The IEC also provides a REST API that can be accessed for automation purposes.

Input

The interaction between the IDE and the IEC is performed through the API. The REST API enables
the interaction through a single endpoint (/catalogue). Currently, we include only one method
that is called by the IDE – GET /api/root-serv– GET /api/root-service/catalogue (see Figure 9) –
to obtain all the services present in the IEC.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 47

www.piacere-project.eu

Figure 9 IEC REST API

Output

The output that receives the IDE will be the list of services in a json format. In the next figure,
there can be seen a small excerpt of the response, showing part of the “C1_Spain” service of
type “Virtual Machine”.

[

 {

 "id": 1,

 "serviceName": "C1_Spain",

 "deletedDate": null,

 "serviceClass": {

 "id": 3,

 "serviceClassName": "Virtual Machine",

 "deletedDate": null

 },

 "serviceAttributeValues": [

 {

 "id": 1,

 "serviceAttributeValue": "00EU",

 "unitValue": "",

 "serviceAttributeType": {

 "id": 1,

 "name": "Region",

 "nfrName": "Region",

 "isEnumeration": true,

 "isForm": false,

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 47

www.piacere-project.eu

 "isCommon": true,

 "isFunctionalRequirement": false,

 "units": "",

 "unitFactor": "",

 "unitRule": "LIKE",

 "evalRule": ""

 }

 },

 {

 "id": 2,

 "serviceAttributeValue": "SPEU",

 "unitValue": "",

 "serviceAttributeType": {

 "id": 2,

 "name": "Zone",

 "nfrName": "Zone",

 "isEnumeration": true,

 "isForm": false,

 "isCommon": true,

 "isFunctionalRequirement": false,

 "units": "",

 "unitFactor": "",

 "unitRule": "LIKE",

 "evalRule": ""

 }

 },

(…)

Figure 10 Excerpt of the output response to the IDE call

The integrated PIACERE IDE gathers this information and offers a way of using the content of
the catalogue through a specific view (the “IEC View”), where the services are listed, grouped by
the element type (a further click on any of the services shows its properties).

3.3 IDE – DOML Model Checker

The DOML Model Checker (DMC) is a tool that statically analyses IaC for compliance with a pre-
defined or user-supplied specification. It reports to the user whether the specification is satisfied
or not. It now also includes a tool to verify Cloud Service Providers compatibility by checking a
selection of properties specified in DOML against a set of valid values.

Behaviour

The user requests the verification of the currently displayed DOML model in the IDE through an
appropriate user interaction (e.g., a button or menu entry). Then, the IDE sends to the DMC a
model checking request containing the DOML model. The DMC then processes the IaC and sends
the outcome of model checking back to the IDE. Finally, the IDE prompts the user to save the
verification outcome as a HTML file that can be viewed to inspect the results.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 47

www.piacere-project.eu

Figure 11 DOML model checker menu option

The interaction between the IDE and the DMC is performed through REST APIs. The REST API
enables the interaction by providing a set of endpoints, which accept a POST request containing
the DOML model in the DOMLX format. The endpoints /modelcheck and /csp provide a response
in JSON format, while the /modelcheck_html and /csp_html provide one in HTML, to allow for a
human-readable document when opened in a web browser. The result (described in the Output
section) of the model checking process is then sent to the client as the answer to its POST
request (Figure 12 DMC REST API). The HTML version of the results includes tables and cards
detailing missing or invalid properties of the DOML.

Figure 12 DMC REST API

Input

The DMC receives from the IDE a verification request containing:

▪ The DOML model to be verified in in DOMLX/XMI format (required).
Output

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 47

www.piacere-project.eu

In JSON endpoints, the DMC answers with:

▪ A string stating the verification outcome (required). This can be either “sat”, meaning
the model satisfies the requirements, “unsat”, meaning the model does not satisfy the
requirements, or “dontknow”, meaning the model checking process was inconclusive
due to a timeout.

▪ A string describing the issue(s) found in the model (optional, set if there are issues).

Alternatively, the output of HTML endpoints is shown below (Figure 13 Model checker and CSP
Compatibility Tool output):

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 47

www.piacere-project.eu

Figure 13 Model checker and CSP Compatibility Tool output

3.4 IDE – IOP

The IaC Optimization Platform is a tool for optimizing the IaC based on the constraints in the
DOML model.

Behaviour

In a nutshell, the IOP is responsible for finding the best possible infrastructure given the input
data received. In other words, the optimizer uses an optimization algorithm to find an optimized
deployment configuration of the IaC on the appropriate infrastructural elements that best meet
the predefined constraints, i.e., are optimal. This information is supposed to be presented to the
PIACERE user.

The IOP offers an embedded Swagger UI (Figure 14) to facilitate the understanding and usage
by the IDE. Furthermore, the IOP can also be called from the IDE as depicted in Figure 15.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 47

www.piacere-project.eu

Figure 14 Swagger UI page for IOP

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 47

www.piacere-project.eu

Figure 15 How the IOP is called from the IDE

Input

In v3, the input data is accepted in the DOML 3.0 format.

Output

Once the IOP completes the optimization, it returns as output an updated DOML model.

For details on IOP’s behaviour, please see D5.9.

3.5 IDE – ICG

The Infrastructural Code Generator (ICG) is the PIACERE component that allows generating
executable infrastructural code (IaC) from models written in DOML.

Behaviour

The ICG communicates with the IDE through REST API. The user can request the conversion of
the DOML model in IaC code by the IDE menu selection “Generate IaC Code”, as shown in Figure
15. After selecting the code generation, the user will be asked for two prompts before receiving
the output IaC, one being the request for the asset folder that can contain custom code that the
user needs and the second is the name to give to the output package.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 47

www.piacere-project.eu

Figure 16 IDE - ICG "Generate IaC Code" menu option

If the conversion is selected, the ICG expects a POST (Figure 17) call from the IDE containing in
the body of the call a compressed (.zip extension) package, inside the package there should be:
the metamodel with the information; the ecore used to generate the metamodel; the asset
folder containing all the user custom code to be added. After the ICG has generated all the IaC
files they will be sent back as a response (also compressed in a .zip package) and will be available
to the user through the IDE.

Figure 17 ICG REST API

The ICG also provides logs related to the process of generation of the IaC files, containing errors,
warnings and info useful to the end user. These logs need to be exported to the user in a way
that is easily readable and comprehensible. Complementary to the generated IaC code, it is
possible to generate the Gaia-X2 compliant self-description file, which includes all data necessary
for publishing the application in a Gaia-X Federated Catalogue. This means that results of
PIACERE design-time services and applications are digestible not only by the PIACERE runtime
framework (PRC, IEM, etc.), but also available to the wider European Gaia-X community, to
deploy them with the XFSC orchestrator or other connected services. The PIACERE provides the

2 https://gaia-x.eu/

http://www.medina-project.eu/
https://gaia-x.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 47

www.piacere-project.eu

initial template for describing the IaC Application and allow Gaia-X users to find and deploy
applications on to their infrastructure.

Lastly, the ICG uses configuration files on the local filesystem that allow the extensibility of the
tool through the definition of the components and templates, which are going to be expanded
when new components are added. To update these files, a new docker image with the update
files can be build and the service restarted.

Further details about the ICG component can be found in deliverable D3.6.

Inputs

The input of the ICG is a compressed package (.zip extension) containing the DOMLx model, the
ecore and the asset folder.

Outputs

The output of the ICG is a compressed package (.zip extension) containing the IaC files. Beside
the IaC files, the IDE offers us the generation of Self-description file – a meta file that provides
necessary information to publish the IaC resource in the Gaia-X catalogue.

Figure 18 ICG IaC generated folder

3.6 IDE – IaC Scan Runner

The IaC Scan Runner is a component providing a single interface to the functionalities of IaC
Security Inspector and Component Security Inspector. This component includes multiple IaC and
component checks that are used to perform scanning of IaC and returning the discovered
common security vulnerabilities and misconfigurations.

Behaviour

IaC Scan Runner is usually set up in a Docker container and gets exposed as a REST API service
that comes with OpenAPI Specification that allows users to interact with the API through
browser (Figure 19). There is a big difference from previous versions - API is now divided into
two sections. First section includes test endpoints which are used to test all available checks –
this approach was used in previous editions of IDE. Using the test/checks endpoint, the API
enables the user to list and filter the supported checks (those are described thoroughly within
IaC Scanner documentation: https://xlab-si.github.io/iac-scanner-docs/). Apart from IaC and
component distinctions, checks can also be local (executing on the machine where IaC Scan
Runner is running) or remote (executing partially or wholly on the remote service, e.g., Snyk,
SonarCloud, etc.). Checks can be enabled (using test/enable endpoint) or disabled (using
test/disable endpoint) for running. Some of them are disabled by default and need to be

http://www.medina-project.eu/
https://xlab-si.github.io/iac-scanner-docs/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 47

www.piacere-project.eu

configured (via test/configure endpoint by supplying necessary configuration files or/and
credentials) before running. When configuration steps are done, checks can be run by calling
test/scan, which expects the compressed IaC file and a list of checks to be executed while
scanning (if no list is supplied, then API runs all enabled checks).

Second section, named Project, serves as per project configured checks. That means that user
can define specific configuration per project, and this is a proposed way to allow co-existence of
multiple scans and temporary storing all results for some time. Project is created by calling POST
/project. Checks can be enabled, disabled, and configured in the same way as it is described in
first section of the API. It is also possible, to set project configuration beforehand with
appropriate JSON file (an example JSON can be seen in https://xlab-si.github.io/iac-scanner-
docs/). Once appropriate configuration file is created you can create new configuration instance
by calling /project/configuration and set its content by uploading your configuration file to
project/configuration/parameters. Configuration then needs to be bind to a project, calling
/project/configuration/bind endpoint. Once everything is configured you can initiate scan by
calling /project/scan. Each scan result is now saved and can be viewed by /project/results or
deleted by /project/results/{result_uuid}.

Figure 19 Section from Swagger UI page for IaC Scan Runner REST API

http://www.medina-project.eu/
https://xlab-si.github.io/iac-scanner-docs/
https://xlab-si.github.io/iac-scanner-docs/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 47

www.piacere-project.eu

Figure 20 Filtering out check for Terraform in the IaC Scan Runner REST API

IDE Integration of IaC Scan Runner

The IaC scan is performed from the IDE just after the ICG generates IaC code from the DOML.
The idea is that a user is able to locate the IaC code within the IDE and, from the context menu,
send it directly to the IaC Scan Runner Service. The output of the IaC scan runner will be a text
that is retrieved by the IDE and presented to the user.

With the latest version of IaC Scan Runner supporting the Scan projects approach, the interface
was brought to a level where user can manage multiple scan projects in the same workspace.
This means that the user can organise workspace in a way to have an IaC scanning process for
different stages, configure different list of checks per each project, and more. This also allows
maintaining different sets of results and comparing them later.

To initiate the IaC Scan Runner, one has to create initiate Create IaC Project command (see
Figure 21). The created project is represented with a file depicted with extension *.iac . The right
click to an IaC file allows to get the list of IaC Scans that can be performed (Figure 22) and gives
the form for changing the configuration (Figure 23). Afterwards one can initiate scan and select
the IaC package (Figure 24). The last figure shows a short summary of the test (Figure 25).

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 47

www.piacere-project.eu

Figure 21 Create IaC Scan Project

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 47

www.piacere-project.eu

Figure 22 Get the Scan Check list

Figure 23 Setting the Scan Check list

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 47

www.piacere-project.eu

Figure 24 The IaC package selection for scanning

Figure 25 IaC Scan Result summary.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 47

www.piacere-project.eu

Inputs

Input to the IaC Scan Runner is a compressed package (zip or tar/compressed-tar), including the
IaC code.

Outputs

Output is a text file (JSON or HTML) that includes the content – warnings and messages – that
describe the issues in IaC and the return codes from each of the selected checks. In case of using
IaC Scan Runner with project endpoints, the initial output is a short summary, while the detailed
response is still available for the user to query from IaC Scan Runner service. In case of using the
IDE, the output is also available in output file which appears in the Eclipse project workspace.

3.7 IDE – CSEP

The Canary Sandbox Environment Provisioner (CSEP) is a tool providing the PIACERE user with
the ability to create (provision) Canary Sandbox Environments based on OpenStack.

The Canary Sandbox Environment Mocklord (CSEM) is a provider of mocked-up AWS APIs and is
not meant for integration but as a target for, e.g., the PIACERE IEM.

Behaviour

It is expected that the PIACERE user will be able to issue new deployment requests and browse
existing deployments from the IDE.

Figure 26 CSEP menu

The CSEP provides a REST API with endpoints required to facilitate this (Figure 27). The CSEP
renders its own API documentation at the /docs path which allows the integrator to inspect the
API requirements.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 47

www.piacere-project.eu

Figure 27 CSEP API endpoints

There is a dummy deployment type provided for integrator’s convenience which does not
require actual target hosts to be available and the integration can be tested at no cost.

Inputs

As the input, the deployment creation API accepts JSON documents describing the details of the
requested deployment. Each deployment is identified by its name which is a user-provided string
and has to be unique on that instance of CSEP. The creation of deployments is facilitated by the
POST /deployments/ method. The other methods do not require any input.

Outputs

As the output, the API offers JSON documents describing the details of managed deployments.

3.8 IDE – PRC

The PIACERE Runtime Controller (PRC) is the orchestration tool of the PIACERE runtime. It is
described in detail in this document in later sections.

Expected behaviour

The IDE uses PRC to control the runtime of PIACERE. The PRC allows to create new deployments
and inspect the state of existing ones. The deployments are identified by their identifiers which
are mostly free-form names. Please refer to PRC REST API section in this document for details
on the behaviour and inputs and outputs.

Figure 28 IDE – PRC menu and options

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 47

www.piacere-project.eu

3.9 IDE – Monitoring Dashboard

The monitoring components allow gathering metric from the infrastructure resources that have
been deployed by PIACERE framework. PIACERE supports two types of monitoring:

▪ The Performance Monitoring component focuses on gathering performance-related
measures from the infrastructure resources. The measures are gathered by agents
running in the infrastructure resources. Examples of metrics are memory use, disk use,
processes, CPU usage, etc.

▪ The Security Monitoring component focuses on gathering security-related measures
from the infrastructure resources. The measures are gathered by agents running in the
infrastructure resources.

Behaviour

When a new IaC is deployed, an extra task is undertaken: the deployment of monitoring agents
along with the infrastructure, and the configuration of the monitoring components. Then, the
continuous gathering of performance/security metrics can start. These metrics are evaluated
against the expected thresholds or SLAs and, if needed, alerts are sent to the Self-Healing
component.

The IDE enables the user to reach the dashboards of the monitoring system. In the next image
we show the current approach to provide access on the monitoring aspects from the IDE. In the
next versions we will also include access to the self-healing component to provide access to the
monitoring event logs and self-healing strategies.

Figure 29 Monitoring access from deployment context menu

This is done via the Performance Monitoring Controller (PMC) which offers a REST API (Figure
30), the Security monitoring controller (Figure 31), and in the future the self-healing API (Figure
32).

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 47

www.piacere-project.eu

Figure 30 Swagger UI page for PMC

Figure 31 OpenApi for SMC

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 47

www.piacere-project.eu

Figure 32 Event Logs in the SH

Inputs

In order to retrieve the URL of dashboard for a specific deployment, the performance monitoring
controllers provide a method to get the URL of the dashboard. As an example of this approach,
we show the method can be explored and tested from the Swagger UI embedded in the
performance monitoring controller, and the response schema can be seen in Figure 33.

Figure 33 PMC – get deployment response

Outputs

The outputs to the IDE are the created Grafana dashboard’s access link. The dashboard is still in
design phase and the current draft is presented in Figure 34.

Figure 34 Grafana monitoring dashboard draft

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 47

www.piacere-project.eu

The output of the Monitoring system is reflected in one or more visual dashboards, where the
metrics, thresholds, etc. can be consulted in a graphical/numerical view. At the time of writing,
the dashboards are not designed yet, but a graphic or table is expected for each of the metrics
gathered like memory, disk, CPU usage or availability. These dashboards are created on the fly,
once the information of the deployed infrastructure is available. For this, pre-defined templates
or the Grafana API can be used. Grafana dashboards are HTML elements, and will be integrated
in the PIACERE IDE, as iframes or a similar technology. Moreover, Security Monitoring Dashboard
provides Kibana dashboard showing an overview of security-related events (Figure 35)
throughout the time of the infrastructure’s lifecycle (from the time of deployment of Security
Monitoring agents on the infrastructure – which is implicitly already included with the definition
of the rest of Monitoring infrastructure within DOML).

Figure 35 Security Monitoring Dashboard shows Wazuh's Kibana dashboard.

3.10 PRC – IEM

The IEM serves the purpose of deployment and redeployment of IaC. It supports different IaC
technologies present in the market and provides a common interface to execute the
deployments of the different elements present in the PIACERE project. In addition, the current
prototype handles the redeployment and tearing down of existing deployments.

Behaviour

The main purpose of the IEM is to handle the lifecycle of the deployments that are managed
within the PIACERE framework. The integration between the PRC and the IEM is handled by a
REST API. The PRC can perform the following actions this way on the IEM: i) query the status of
all active deployments, ii) trigger a deployment, iii) query the status of a particular deployment,
iii) delete a deployment, iv) trigger a self-healing strategy, and v) update the iac bundle. These
actions are depicted in Figure 36 as REST API endpoints.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 47

www.piacere-project.eu

Figure 36 IEM Endpoints

Inputs

The POST /deployments/ triggers or updates a deployment in the infrastructure. The IEM needs
a few fields to kick off a deployment, the schema for calling this endpoint is showcased in Figure
37. This schema is also valid for the POST /update-iac-bundle endpoint that oversees the
redeployment of the ecosystem via the self healing strategy.

Figure 37 IEM PUT /deployments/ request schema.

The POST /undeploy/ serves the purpose of tearing down a particular deployment. In Figure 38,
the request body required for the invocation of this endpoint is shown. This is also valid for the
POST /self-healing/{strategy}

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 47

www.piacere-project.eu

Figure 38 IEM DELETE /deployments/ request schema

Outputs

The output is present for GET /deployments/{deployment_id} and its schema is shown in Figure
39. This is also valid for the GET /deployments/ endpoint, that oversees querying for all the
deployments.

Figure 39 IEM GET /deployments/{deployment_id} response schema.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 47

www.piacere-project.eu

3.11 PRC – Monitoring Controller

The monitoring controller (MC) is a utility component that aims to simplify the configuration of
the monitoring, self-learning and self-healing component as PIACERE platform creates, updates
and destroys deployments. It also isolates the PRC from changes in those mentioned
components.

Behaviour

This component is in charge of the activation and deactivation of monitoring activities
throughout all the monitoring components: performance monitoring, security monitoring,
performance Self-learning and security Self-learning. It exposes a REST API (Figure 40).

PRC calls this component when initiating a new deployment to configure the monitoring stack
for it.

Figure 40 MC OpenAPI rendered in embedded Swagger UI

Inputs

The input is the deployment identifier of the deployment to be monitored as well as the IaC
bundle.

Outputs

The only output is an acknowledge that the request has been received and it is being processed
(that is, starting up monitoring and self-learning components).

3.12 Self-Healing – PRC

The PIACERE Runtime Controller (PRC) is the orchestration tool of the PIACERE runtime. It is
described in detail in this document in later sections.

Expected behaviour

The Self-Healing uses PRC to issue authenticated IEM command required for its self-healing
strategies. The PRC allows this via a dedicated per-deployment endpoint. Each deployment is
identified by an identifier which is a mostly free-form name. Please refer to PRC REST API section
in this document for details on the behaviour and inputs and outputs.

3.13 Monitoring Component – IEC

The purpose of this interaction is to add and update real time information about the quality (i.e.,
a set of attributes) pertaining to the infrastructure element.

Behaviour

The Monitoring gets real-time data from the different infrastructural elements used during the
operation of the started deployments. This information will be sent back to the IEC to its future

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 47

www.piacere-project.eu

use in IOP to adjust the properties that are used during the filtering and selection of the
infrastructure elements.

Monitoring will use the IEC REST API to keep some attributes up to date for each of the
infrastructure elements in use. It will add and update information about the number of
incidences with respect to performance, availability, and security.

Inputs

The information to be provided for IEC is a reference of the IEC element affected and the type
of the value that is being updated and the actual value to be included.

Outputs

The output is the confirmation that the request has been processed and resources updated.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 47

www.piacere-project.eu

4 PRC Implementation

4.1 Changes since v2

The internals of PRC have changed substantially between v2 and v3. Some follow the future
plans sketched in the previous version of this deliverable, others are a result of the new
approach to self-healing.

4.2 Functional description

The PRC (PIACERE Runtime Controller) is the heart of the PIACERE runtime integration. It is the
main component of the runtime called from the design-time tooling (IDE). It is also the main
component coordinating the work of the runtime, i.e., calling the other specific tools delivered
as part of the PIACERE framework for the runtime and allowing those tools to call back.

The runtime of PIACERE is responsible for ensuring that the designed infrastructure is deployed,
monitored, self-healed, and optimized as expected. To this end, the basic concept in the runtime
is deployment. Each deployment is managed individually and can be updated by providing an
updated design (specifically, IaC). In v3, the IaC is provided directly to the PRC, without the Git
repository intermediary to make it more decoupled.

There were no PRC-specific requirements collected. The PRC satisfies the self-imposed
requirement of being usable to realise the designed workflow.

The main innovation of PRC is the integration of runtime components to create a coherent
workflow for deployment, its monitoring, self-healing and optimization.

4.2.1 Fitting into the overall PIACERE Architecture

The PRC coordinates the workflow, the other tools themselves are concerned with work details.
The PRC is responsible for calling the other tools at relevant times. To this end, it has to
communicate with them using the interfaces they offer.

There are 2 tools that are called by the PRC v3:

▪ IEM (IaC Execution Manager): responsible for executing IaC, called due to creation of a

new deployment, update of an existing deployment or in the course of a relevant self-

healing strategy,

▪ MC (Monitoring Controller): responsible for configuring the WP6 monitoring, self-

learning and self-healing suite of tools.

PRC v3 itself is called by 2 PIACERE tools:

▪ IDE (the PIACERE GUI in Eclipse): the IDE is user’s default starting point for interaction
with PRC, the initial deployment request will likely originate from it,

▪ Self-Healing (SH): SH uses PRC to request authenticated IEM actions on its behalf.

4.3 Technical description

4.3.1 Components description

The PRC v3 is made of a single component, the API, which offers the PRC REST API (HTTP)
interface that can be used by the external world. This is to be used by other PIACERE tools, such
as the IDE and Self-Healing. The interface itself is described in detail in the User Manual section.
The API component handles all the communication aspects internally and no longer relies on
intermediaries to make it simpler, more flexible and focused strictly on its role of being the

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 47

www.piacere-project.eu

runtime intermediary, handling the authentication for IEM requests and ensuring that the
monitoring subsystem is informed about the new deployment.

4.3.2 Technical specifications

The PRC API is written in Python and tested with Python 3.10. The PRC API uses the FastAPI [5]
framework, currently in version 0.95.0. This framework supports Asynchronous Server Gateway
Interface (ASGI). ASGI must be understood by the used web server. The one chosen for this
project is uvicorn [6], currently in version 0.21.1. FastAPI relies on Python’s type annotations to
handle API definition and validation of inputs and outputs. FastAPI also generates OpenAPI
specification automatically and allows rendering docs in Swagger UI [7] and Redoc [8].
Additionally, Pydantic [9] is used both indirectly, for the purposes of FastAPI, as well as directly
for the management of settings (via environment variables). Pydantic’s version is managed by
FastAPI. Pydantic provides additional type annotations and validation of objects. Finally, a suite
of robust, asynchronous libraries for networking (aiodns, aiohttp) is used to handle the
communication with other components.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 47

www.piacere-project.eu

5 PRC Delivery and usage

5.1 Changes since v2

The PRC’s delivery and usage have both changed considerably since v2. These changes reflect
the re-architecture of PIACERE runtime described in the previous sections.

5.2 Package information

The contents of the package at-a-glance are shown in Figure 41
(on the left). The most important elements are listed and
described below:

▪ api directory contains a Python module with the PRC API
layer as well as the Dockerfile and requirements listing
necessary to build reproducible container images,
▪ docker-compose.yml and docker-compose.override.yml
together offer a quick way to deploy PRC on any Docker-enabled
machine,
▪ pyproject.toml and tox.ini define the code quality checks
and applicable linting rules.

5.3 Installation instructions

The software is offered containerised and the container image
recipe is provided along with an example docker-compose
deployment. The users are recommended to install a relatively
modern Docker (19.03+) and docker-compose (1.29+).
Then, it is only a matter of running docker-compose up -d to get

the software running.

5.4 User Manual

The PRC offers interfaces to allow for integration. These are dedicated to the tools expected to
be able to integrate with PRC.

The main assumption is that the user is able to create a process instance which overlooks a
particular deployment, allowing to trigger further actions on it. The deployment (process
instance) should be identified by a name provided by the user (there could be an additional
identifier, but the name has to be easily usable for integration purposes as it is passed in by the
tools and passed on to the tools).

IDE actions:

▪ Creating a deployment

▪ Getting deployments

▪ Get details (status) of a deployment

▪ Update an existing deployment

Self-healing actions:

▪ Update an existing deployment

Figure 42 PRC package contents

Figure 41 PRC package contents

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 47

www.piacere-project.eu

5.4.1 PRC REST API

This section contains a detailed description of PRC REST API. The API revolves around
deployments, each identified by unique user-provide deployment_id.

Below, a list of all exposed endpoints is presented.

▪ Create a new deployment:

POST /deployments

With a request body:

{

 "deployment_id": "string",

 "deployment_bundle": {

 "base64": "string"

 },

 "credentials": {

 ...

 }

}

The IaC bundle is provided in the request, base64-encoded. The credentials are opaque to PRC
and are stored to be passed safely to IEM on each occasion.

▪ Get a list of all deployments:

GET /deployments

The response is a list (potentially empty) of all deployments.

▪ Get a specific deployment:

GET /deployments/{deployment_id}

Possible responses are a deployment description with status code 200 or a resource not found
as an error with status code 404.

▪ Replay (aka “redeploy”) the deployment

POST /deployments/{deployment_id}/redeploy

This action causes the deployment to be realised again, possibly using a modified IaC bundle
and/or credentials.

▪ Undo (aka “undeploy”) the deployment

POST /deployments/{deployment_id}/undeploy

This action causes the deployment to be undone.

5.5 Licensing information

The PRC is closed-source software, licensed for the PIACERE consortium.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 47

www.piacere-project.eu

5.6 Download

The code is available for review at Tecnalia’s GitLab, in the private part of the PIACERE project:
https://git.code.tecnalia.com/piacere/private/t23-runtime-controller

The source code can be provided under request through an email to the address appearing on
the website (https://www.piacere-project.eu/) in the footer under “Contact Us”. However, no
open-source license is granted.

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t23-runtime-controller
https://www.piacere-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 46 of 47

www.piacere-project.eu

6 Conclusions

This deliverable has described the integration of the PIACERE framework (KR13) v3 and the
crucial component of it – the PRC – in detail. The context, architecture, implementation, and
usage of PRC were all described.

This final integration involves all tools delivered in year 3 (after M30) of the PIACERE project,
that is the KRs of other technical WPs: WP3-WP6. The tools used in the integration were
summarised in this document and important integration points described.

http://www.medina-project.eu/

D2.5 – PIACERE DevSecOps Framework – v3 Version 0.3 – Draft. Date: 31.08.2023

© PIACERE Consortium Contract No. GA 101000162 Page 47 of 47

www.piacere-project.eu

7 References

[1] ‘The OpenAPI Specification’. OpenAPI Initiative, Nov. 09, 2021. Accessed: Nov. 09, 2021.
[Online]. Available: https://github.com/OAI/OpenAPI-Specification

[2] ‘The Moby Project (Docker)’. Moby, Nov. 09, 2021. Accessed: Nov. 09, 2021. [Online].
Available: https://github.com/moby/moby

[3] ‘Docker Compose’. Docker, Nov. 09, 2021. Accessed: Nov. 09, 2021. [Online]. Available:
https://github.com/docker/compose

[4] ‘traefik/traefik’. Traefik Labs, Feb. 18, 2022. Accessed: Feb. 18, 2022. [Online]. Available:
https://github.com/traefik/traefik

[5] S. Ramírez, ‘tiangolo/fastapi’. Nov. 09, 2021. Accessed: Nov. 09, 2021. [Online]. Available:
https://github.com/tiangolo/fastapi

[6] ‘encode/uvicorn’. Encode, Nov. 09, 2021. Accessed: Nov. 09, 2021. [Online]. Available:
https://github.com/encode/uvicorn

[7] ‘swagger-api/swagger-ui’. Swagger, Nov. 09, 2021. Accessed: Nov. 09, 2021. [Online].
Available: https://github.com/swagger-api/swagger-ui

[8] ‘redoc’. Redocly, Nov. 09, 2021. Accessed: Nov. 09, 2021. [Online]. Available:
https://github.com/Redocly/redoc

[9] S. Colvin, ‘pydantic’. Nov. 09, 2021. Accessed: Nov. 09, 2021. [Online]. Available:
https://github.com/samuelcolvin/pydantic

http://www.medina-project.eu/

