
TheQuickref Cohort
Didier Verna
EPITA, LRE

Le Kremlin-Bicêtre, France
didier@lrde.epita.fr

ABSTRACT
The internal architecture of Declt, our reference manual generator
for Common Lisp libraries, is currently evolving towards a three-
stage pipeline in which the information gathered for documentation
purposes is first reified into a formalized set of object-oriented data
structures. A side-effect of this evolution is the ability to dump that
information for purposes other than documentation. We demon-
strate this ability applied to the complete Quicklisp ecosystem. The
resulting “cohort” includes more than half a million programmatic
definitions, and can be used to gain insight into the morphology of
Common Lisp software.

CCS CONCEPTS
• Information systems→ Information extraction; Presenta-
tion of retrieval results; • Software and its engineering →
Software libraries and repositories.

KEYWORDS
Information Extraction, Software Analysis, Morphological Statistics
ACM Reference Format:
Didier Verna. 2024. The Quickref Cohort. In Proceedings of the 17th European
Lisp Symposium (ELS’24). ACM, New York, NY, USA, 4 pages. https://doi.
org/10.5281/zenodo.10947962

1 INTRODUCTION
Cohort: a group of individuals having a statistical

factor (such as age or class membership) in common in
a demographic study.

– The Meriam-Webster Dictionarya, definition 2.b.
ahttps://www.merriam-webster.com/dictionary/cohort

1.1 Context
Declt is a reference manual generator for Common Lisp libraries.
The project started in 2010, leading to a first stable release in 2013 [2].
Four years later, the Quickref project was born [1, 4–6] (at the time,
Declt was at version 2.3 [3]). Quickref runs Declt over the whole
Quicklisp1 repository and offers a website2, currently aggregat-
ing more than two thousand reference manuals for Common Lisp
libraries.
1https://www.quicklisp.org/
2https://quickref.common-lisp.net

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 6–7 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-8-3
https://doi.org/10.5281/zenodo.10947962

Declt runs by loading an ASDF system into memory and intro-
specting its contents. Because it is unrealistic to load the complete
set of Quicklisp libraries into a single Lisp environment, Quicklisp
runs Declt as a separate process for each library. The unfortunate
consequence is that the information gathered by Declt is not di-
rectly available to the Quickref instance. Under those conditions, it
remains easy to build a library index (by sorting the listing of the
generated reference manuals directory), but it is for instance less
straightforward to build an author index, as the author information,
extracted from each ASDF system, needs to survive each and every
Declt run.

Originally, Declt was designed to generate reference manuals
in GNU Texinfo3, an intermediate format suitable for software
documentation, which can in turn be converted into a number
of user-readable ones such as HTML, PDF, etc. Hence its name:
Documentation Extractor from Common Lisp to Texinfo…

Over the years, there has been some pressure to extend Declt’s
rendering capabilities to other output formats (including HTML
without the Texinfo intermediary). This led to an architecture over-
haul, which is ongoing.

1.2 The Declt Pipeline
The goal is to implement Declt as a three-stage pipeline, as depicted
in Figure 1. Declt’s historical entry point, the declt function, trig-
gers the whole pipeline, but for a more advanced usage, each stage
of the pipeline is meant to be accessible separately and directly via
its own entry point function.

(1) The first stage of the pipeline is called the assessment stage.
At this stage, Declt loads the library and introspects the Lisp
environment in order to extract the pertinent information.
This information is stored in a so-called report.

(2) The second stage of the pipeline is called the assembly stage.
At this stage, Declt organizes the information provided by a
report in a specific way. The result is called a script. A script
begins to look like a properly organized reference manual,
but is still independent from the final output format.

(3) Finally, the third stage of the pipeline is called the typeset-
ting stage. At this stage, Declt renders a script to a file by
typesetting its contents in a specific documentation format.

In 2022, we released version 4.0b1 of Declt, marking the achieve-
ment of stage 1 of the pipeline [7]. Declt now provides a function
called assess, which takes an ASDF system name as argument,
loads the corresponding library, introspects it, and creates the re-
port. The rest of the pipeline, which is not yet implemented, is
wrapped in a temporary function called declt-1, going directly
from a report to a Texinfo file.

3https://www.gnu.org/software/texinfo/

https://orcid.org/0000-0002-6315-052X
https://doi.org/10.5281/zenodo.10947962
https://doi.org/10.5281/zenodo.10947962
https://www.merriam-webster.com/dictionary/cohort
https://www.quicklisp.org/
https://quickref.common-lisp.net
https://doi.org/10.5281/zenodo.10947962
https://www.gnu.org/software/texinfo/


ELS’24, May 6–7 2024, Vienna, Austria Didier Verna

System Assessment Assembly Typesetting Manual
report

(declt system ...)

(assess system ...) (declt-1 report ...)

Figure 1: The Declt Pipeline

The first direct benefit of this evolution is the ability for Quickref
to build an author index file in a much simpler and robust way.
Instead of calling the global declt function, Quickref now triggers
Declt in two steps. First, it calls the assess function to get a handle
on the generated report, and then continues with declt-1. In the
meantime however, the library’s contact information is extracted
from the report and dumped into a specific file. Once Quickref has
finished processing the full set of Quicklisp libraries, it loads back
all the contact information for all the libraries to create the index.

The funny thing is that once this was implemented, it quickly
occurred to us that Declt reports, now in a stable format, could be
fully dumped into files and used for all sorts of purposes other than
documentation. In fact, it is relatively easy to “hijack” the Quickref
infrastructure in order to dump Declt reports for the whole set of
Quicklisp libraries, effectively creating a cohort of programmatic
definitions.

In the following sections, we describe a preliminary cohort im-
plementation, which currently contains more than half a million
entities, and is already publicly accessible. Additionally, we show
how such a cohort can be used to gain insight into the current
shape of Lisp software.

2 DECLT REPORTS
A Declt report is a data structure containing general information
about a library (authors, license, copyright, etc.), and a flat list of
the discovered ASDF components and programmatic definitions
(packages, variables, functions, classes, etc.).

2.1 Definitions
Definitions are themselves reified in an object-oriented fashion
which is described in the Declt User Manual4. An excerpt of the
definitions hierarchy is given in Figure 2.

For documentation purposes, the information provided by each
kind of definition is as exhaustive as introspection permits. Most of
them point back to the original Lisp object, can access the object’s
docstring if any, etc. On top of that, the assessment stage finalizes a
library’s definitions list by constructing an extensive set of cross-
references (definitions pointing to definitions) that will eventually
lead to internal hyperlinks in the generated reference manual.

For example, a generic function definition contains a list of
method definitions (not raw method objects; pointers to the corre-
sponding method definitions), a reference to it’s method combina-
tion definition, but also a reference to a setf expander using this
function for access, and a list of (short form) setf expanders using
this function for update, if applicable.

4https://www.lrde.epita.fr/~didier/software/lisp/declt/bibliography/

definition

symbolASDF package

funcoidvaroids classoids

setfable-funcoidmethods
method combinations

function

compiler macros
types

setf expanders

macro

ordinary-function generic-function

Figure 2: Definitions Hierarchy Excerpt

2.2 Dumping
Asmentioned before, Declt reports were originally used byQuickref
only to dump library author information, so as to build an author in-
dex afterwards. When the idea of a full cohort emerged, we decided
to evaluate the potential usefulness of the idea by first creating a
quick cohort prototype.

To this aim, the current prototype only dumps an incomplete and
simplified version of Declt reports, that is, without performing true
serialization. Pointers to the original Lisp objects can of course not
be preserved in the dump. Cross-references between definitions are
not currently preserved either, and only a few interesting attributes
of each definition kind are retained, with some amount of pre-
processing for subsequent statistical analysis.

Figure 3 provides an excerpt from the dump of Declt’s own re-
port.The contents should be mostly self-explanatory. Programmatic
definitions start by a keyword denoting the definition kind, and
name. Docstrings are replaced by their length, and cross-references
by their number.

Such a simple dump already provides enough information to
perform all sorts of interesting morphological studies on the 2000+

https://www.lrde.epita.fr/~didier/software/lisp/declt/bibliography/


TheQuickref Cohort ELS’24, May 6–7 2024, Vienna, Austria

("net.didierverna.declt"
(:CONTACTS 1)
...
(:SYSTEM "net.didierverna.declt.assess"
:DOCSTRING 44 :DEPENDENCIES 2 :CHILDREN 2
:DEFSYSTEM-DEPENDENCIES 0)
...
(:PACKAGE "NET.DIDIERVERNA.DECLT.ASSESS"
:DOCSTRING 39
:EXTERNAL-SYMBOLS 169 :INTERNAL-SYMBOLS 119
:USE-LIST 2 :USED-BY-LIST 1)
...
(:CLASS "GENERIC-FUNCTION-DEFINITION"
:DOCSTRING 154
:DIRECT-SUPERCLASSES 1 :DIRECT-SUBCLASSES 1
:DIRECT-METHODS 11
:DIRECT-SLOTS 3)
...
(:GENERIC-FUNCTION "DOCUMENT"
:DOCSTRING 45 :MEHTODS 39)
...)

Figure 3: Declt Dump Excerpt

libraries available in Quicklisp, as will be exemplified in the next
section.

3 QUICKREF COHORT ANALYSIS
The current (beta) version of Quickref dumps Declt reports, as
shown in the previous section, for every Quicklisp library. The
resulting cohort (containing more than half a million programmatic
definitions) is available for download from the website5. In order
to demonstrate its potential usefulness, Quickref also performs a
number of example statistical computations on the cohort, and
generates subsequent plots, also visible on the website. Some of
them are reproduced below.

3.1 Symbols Morphology
Figure 4 presents the histogram of symbol names lengths in Quick-
lisp, showing a peak at 11 characters, but also going as far as 135
characters for a single symbol name. Two other plots, not included
in this article but visible on the website, show that most composed
symbols have a cardinality (the number of com-po-nents) of 1, 2,
or 3. The longest symbol appears to have 13 components. Most
symbol components are 4 characters long, although one symbol
(with a cardinality of 2) has a 126 characters long component. In
fact, it is the very same symbol that is 135 characters long in total.

3.2 Documentation Shape
Another interesting area of investigation is the current state of
Lisp documentation. Figure 5 shows the percentage of documented
definitions per kind. For most types of programmatic entities, only
20 to 40% get a docstring. Slightly above this range are method
combinations: half of them seem documented. On the other hand,

5https://quickref.common-lisp.net/cohort/

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105110115120125130135

Symbol Names Lengths

Sy
m
bo

ls
nu

m
be

r

Symbol name length

Figure 4: Symbol Names Lengths Histogram

0

20

40

60

80

100
Documentation percentages

Co
ns

ta
nt

Sp
ec
ia
l

O
rd
in
ar
y
Fu

nc
tio

n
M
ac
ro

G
en

er
ic

Fu
nc

tio
n

M
et
ho

d

M
et
ho

d
Co

m
bi
na

tio
n

Cl
as
s

Sl
ot

Co
nd

iti
on

Se
tf
Ex

pa
nd

er
Co

m
pi
le
r M

ac
ro

Ty
pe

D
oc

um
en

te
d
de

fin
iti
on

sp
er
ce

nt
ag

e

Programmatic definitions

Figure 5: Documentation Percentages

Lisp programmers seem to disregard the documentation capabilities
of methods, slots, setf expanders and compiler macros.

3.3 Classoid Profiles
As a final example of cohort analysis, Figure 6 presents the average
number of direct slots, methods, parents, and children for structures,
classes, and conditions. The most striking element in this plot is the
average number of direct methods on classes, a little more than 6,
which is much higher than on structures or conditions. It also seems
that the multiple inheritance capability of classes and conditions
is not used extensively, as the average number of parents remains
only slightly above 1 (of course, it is exactly 1 for structures). Finally,
we can see that the average number of direct slots is significantly
higher in structures than in classes (and evenmore so in conditions),
probably because of slot inheritance. Indeed, we can also see, by
looking at the average number of children, that subclassing is more
frequent than “substructuring”.

https://quickref.common-lisp.net/cohort/


ELS’24, May 6–7 2024, Vienna, Austria Didier Verna

0

1

2

3

4

5

6

7

8

Structures Classes Conditions

Sl
ot
s

M
et
ho

ds
Pa

re
nt
s

Ch
ild

re
n

Sl
ot
s

M
et
ho

ds
Pa

re
nt
s

Ch
ild

re
n

Sl
ot
s

M
et
ho

ds
Pa

re
nt
s

Ch
ild

re
n

Av
er
ag

e
nu

m
be

ro
fd

ire
ct

…

Figure 6: Aggregative Data Structure Averages

4 PERSPECTIVES
The Quickref cohort is currently a proof of concept, but we hope
that the existence of a free database of more that half a million
programmatic (and ASDF) entities will trigger some interest. Sec-
tion 3 provided a glimpse at what can be done with it in terms of
statistical analysis, but we’re eager to hear about other potential
use cases.

The cohort is essentially a collection of Declt reports, presented
one way or another. Because of that, it makes sense to equip Declt
itself with some cohort manipulation ability. For example, it could
be interesting for a Lisp programmer to analyze their own (and
only their own) library / libraries in a way similar to what was
described in Section 3. We definitely are interested in doing so. We
plan on extending Declt along these lines in a near future. In such
a case, Declt could even manipulate actual reports (Lisp objects)
rather than their dumped form.

In order to make the whole Quickref cohort truly usable, the
next step is to stabilize the format used for dumping Declt reports.
Contrary to the current format illustrated in section 2.2, Declt
reports should be preserved as much as possible in order to not
impose any limit on potential applications. In particular, no pre-
computation should be performed prior to dumping and cross-
references between definitions should be preserved.

On the other hand, some parts of the reports need not (in fact,
should not) be preserved in the dump. We want the ability to ma-
nipulate reports without the corresponding libraries being loaded
in memory. This means that the actual Lisp objects correspond-
ing to each definition (whether programmatic or ASDF) should be
excluded from the dump.

All in all, it seems that what we are talking about here is some
kind of serialization, a topic on which we currently have no ex-
perience. Consequently, we’re eager to get some advice on that
matter.

REFERENCES
[1] Antoine Hacquard and Didier Verna. A corpus processing and analysis pipeline

for Quickref. In 14th European Lisp Symposium, pages 27–35, Online, May 2021.
ISBN 9782955747452. doi: 10.5281/zenodo.4714443.

[2] Didier Verna. Declt 1.0 is out. https://www.didierverna.net/blog/index.php?post/
2013/08/24/Declt-1.0-is-out, August 2013. Blog entry.

[3] Didier Verna. Declt 2.3 ”Robert April” is out. https://www.didierverna.net/blog/
index.php?post/2017/10/16/Declt-2.2-Christopher-Pike-is-out, October 2017. Blog
entry.

[4] Didier Verna. Announcing Quickref: a global documentation project for Common
Lisp. https://www.didierverna.net/blog/index.php?post/2017/12/13/Announcing-
Quickref%3A-a-global-documentation-project-for-Common-Lisp, December 2017.
Blog entry.

[5] Didier Verna. Parallelizing Quickref. In 12th European Lisp Symposium, pages
89–96, Genova, Italy, April 2019. ISBN 9782955747438. doi: 10.5281/zenodo.
2632534.

[6] Didier Verna. Quickref: Common Lisp reference documentation as a stress test for
Texinfo. In Barbara Beeton and Karl Berry, editors, TUGboat, volume 40, pages
119–125. TEX Users Group, TEX Users Group, September 2019.

[7] Didier Verna. Declt 4.0 beta 1 ”William Riker” is released. https://www.didierverna.
net/blog/index.php?post/2022/05/10/Declt-4.0-beta-1-William-Riker-is-released,
May 2022. Blog entry.

https://www.didierverna.net/blog/index.php?post/2013/08/24/Declt-1.0-is-out
https://www.didierverna.net/blog/index.php?post/2013/08/24/Declt-1.0-is-out
https://www.didierverna.net/blog/index.php?post/2017/10/16/Declt-2.2-Christopher-Pike-is-out
https://www.didierverna.net/blog/index.php?post/2017/10/16/Declt-2.2-Christopher-Pike-is-out
https://www.didierverna.net/blog/index.php?post/2017/12/13/Announcing-Quickref%3A-a-global-documentation-project-for-Common-Lisp
https://www.didierverna.net/blog/index.php?post/2017/12/13/Announcing-Quickref%3A-a-global-documentation-project-for-Common-Lisp
http://www.tug.org/TUGboat/
http://www.tug.org/
http://www.tug.org/
https://www.didierverna.net/blog/index.php?post/2022/05/10/Declt-4.0-beta-1-William-Riker-is-released
https://www.didierverna.net/blog/index.php?post/2022/05/10/Declt-4.0-beta-1-William-Riker-is-released

	Abstract
	1 Introduction
	1.1 Context
	1.2 The Declt Pipeline

	2 Declt Reports
	2.1 Definitions
	2.2 Dumping

	3 Quickref Cohort Analysis
	3.1 Symbols Morphology
	3.2 Documentation Shape
	3.3 Classoid Profiles

	4 Perspectives
	References

