
Abstract—In this paper, we introduce a method for improving
the embedded Runge-Kutta-Fehlberg4(5) method. At each integration
step, the proposed method is comprised of two equations for the
solution and the error, respectively. These solution and error are
obtained by solving an initial value problem whose solution has the
information of the error at each integration step. The constructed algo-
rithm controls both the error and the time step size simultaneously and
possesses a good performance in the computational cost compared to
the original method. For the assessment of the effectiveness, EULR
problem is numerically solved.

I. INTRODUCTION

THE embedded Runge-Kutta (ERK) method is a popular
strategy for solving the initial value problem described

by

dφ

dt
= f(t, φ(t)), t ∈ [t0, tf ]; φ(t0) = φ0, (1)

where f has continuously bounded partial derivatives up to
required order for the developed numerical method. Most
ERKs use two Runge-Kutta methods with different orders p
and q, simply denoted by RKp(q). In most cases, q > p and
the low order RKp method and the high order RKq method
are applied to calculate the approximate solution φm+1 and the
local truncation error Em+1 := φ(tm+1)−φm+1, respectively,
at time tm+1 together with the information of φm at time
tm. Hence, the existing mechanism of ERK algorithm at each
integration step may be described by{

φm+1 = F (φm),

em+1 = G(φm, φm+1),
(2)

where F and G are functions derived from the numerical
methods. Another important factor of ERK is to control the
size of each integration step, for which an accurate and
efficient scheme for calculating em+1 is quite important,
and RKq uses the same function values of RKp to
reduce the computational cost. There are many research
literatures concerning the technique selecting the time step
size appropriately (for example, see [1], [2], [3], [5], [6], [7],
[8]).
The aim of this paper is to introduce an improved algorithm

of (2). In particular, we develop a method embedding the error

in the algorithm (2). Practically, we consider the Butcher array
for the Runge-Kutta Fehlbeg 4(5) pair given by
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(4)
Let us assume that an approximate solution φm and an

estimated error em for the actual error Em := φ(tm)− φm at
time tm are already calculated. More precisely, we assume
that φm is calculated by the RK4 and em is obtained by
the difference between the solutions calculated by RKF4 and
RKF5, which is the basic process of ERK. Now, we are
ready to introduce a strategy to calculate the next step values
φm+1 and em+1 at time tm+1. Let h = tm+1 − tm, then
Em = O(h5) > O(h6) = Em − em. Thus, from the relation

φ(tm) = φm + Em = φm + em + Em − em,

we give a guess that φm + em is a more accurate
approximation of φ(tm) than φm. Therefore, at the integration
step [tm, tm+1], it is reasonable to solve the initial value
problem {

ψ′(t) = f(t, ψ(t)), t ∈ [tm, tm+1],

ψ(tm) = φm + em
(5)

instead of{
ψ′(t) = f(t, ψ(t)), t ∈ [tm, tm+1],

ψ(tm) = φm

(6)

to find the approximation φm+1. Hence, as the embedded
RKF4(5) with the Butcher array given by (3), we first solve
the problem (5) with RKF4 to get the approximate solution
φm+1 and also solve (5) again with RKF5 to get the estimated
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error em+1. Summarizing the procedures, we get the following
error embedded Runge-Kutta (EERK) method⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
φm+1 = φm + em + h

6∑
i=1

biki,

em+1 = h

6∑
i=1

(
b̂i − bi

)
ki

(7)

where

ki = f
(
tm + cih, φm + em + h

i−1∑
j=1

αi,jkj

)
, i = 1, · · · , 6.

(8)
So far, the existing method solves the perturbed IVP (6) at
each integration step. That is, after the first step, the estimated
error em is accumulated as the time step is going on. So, we
reduce this accumulation of the estimated errors by embedding
them at each integration step. Thus, we can get more smaller
global error. In other words, by giving the usage of estimated
error, we can improve the capability of the existing method,
while existing method uses the estimated error only for the
step-size selection.

II. NUMERICAL RESULT
To assess the improvement and effectiveness of the proposed

scheme, we consider the well known EULR problem ([4]),
Euler’s equation of rotation of a rigid body, given by⎧⎪⎨

⎪⎩
I1y

′

1 = (I2 − I3)y2y3,

I2y
′

2 = (I3 − I1)y3y1,

I3y
′

3 = (I1 − I2)y1y2 + f(t),

(9)

where y1, y2, y3 are the coordinates of −→ω , the rotation vector,
and I1, I2, I3 are the principal moments of inertia. The third
coordinates has an additional exterior force

f(x) =

{
0.25 sin2 t, t ∈ [3π, 4π]

0 otherwise
(10)

which is discontinuous in its second derivative. We choose
the constants and initial values as I1 = 0.5, I2 = 2, I3 =
3, y1(0) = 1, y2(0) = 0, y3(0) = 0.9. We solve the problem
on the time interval [0, 10] and use the numerical solutions
as the sum of the approximate solution φm and the estimated
error em to give more accurate results in each method. As
a measure of the effectiveness, we calculate the required
number of function evaluations (nfeval) and the computational
time (cputime) to solve the problem. For given relative and
absolute tolerances, we calculate the L2 norm for the absolute
error in log-scale at the final time for each problem and
also the required nfeval and cputime. We solve the problem
with the improved RKF4(5) (eeRKF45) and the embedded
RKF4(5) (RKF45) by varying the relative tolerance from 1.0e-
9 to 1.0e-13 and absolute tolerance from 1.0e-11 to 1.0e-
15. The reference solution is calculated by DOP853 with the
tolerances Atol = Rtol = eps, where eps is the double
precision of floating numbers in MATLAB. The numerical
results are displayed on Fig.1 (a) and (b), where y and x

axes represent the absolute errors and either nfeval or cputime,

respectively. Also, all the marked points from left to right
are corresponding to the given tolerances from large to small,
respectively. One can see that the proposed scheme is more
efficient than the original scheme. For example, let us consider
the point in the right corner. In Fig.1 (a), the point for RKF4(5)
evaluate 1.05e+004 number of function with the error 6.204e-
11. However, eeRKF4(5) needs 1.049e+004 nfeval only with
the error 5.919e-013. Also, to get the error about 1.0e-10,
RKF4(5) needs 1.05+004 nfeval, while eeRKF4(5) only needs
4286 nfeval. This is surprising improvement without any
complex derivation.
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Fig. 1: Comparison of errors versus number of function-
evaluations (a) and spent cputime (b)

III. CONCLUSION
In summary, an error embedding strategy for improving

the embedded RK4(5) method is newly introduced. Unlike
the traditional way to approximate solutions in an explicit
RKF4(5), we suggest a methodology that contains itself the
estimated error at each integration step.
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