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Abstract

Combinatorial Game Theory has also been called ‘additive game theory’,
whenever the analysis involves sums of independent game components. Such
disjunctive sums invoke comparison between games, which allows abstract values
to be assigned to them. However, there are rulesets with entailing moves that
break the alternating play axiom and/or restrict the other player’s options within
the disjunctive sum components. These situations are exemplified in the literature
by a ruleset such as nimstring, a normal play variation of the classical children’s
game dots&boxes, and top entails, an elegant ruleset introduced in the
classical work Winning Ways, by Berlekamp Conway and Guy. Such rulesets fall
outside the scope of the established normal play theory. Here, we axiomatize
normal play via two new terminating games, 8 (Left wins) and 8 (Right wins),
and a more general theory is achieved. We define affine impartial, which extends
classical impartial games, and we analyze their algebra by extending the
established Sprague-Grundy theory, with an accompanying minimum excluded
rule. Solutions of nimstring and top entails are given to illustrate the theory.

1. Introduction

Combinatorial Game Theory (CGT), as described in [1, 3, 4, 7], considers disjunctive

sums of normal play games. In order to evaluate the outcome of a sum of such games,

1Partially Supported by FCT – Fundação para a Ciência e Tecnologia, under the project
UIDB/04721/2020.
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it suffices to analyze the components individually, and then add the individual

values.

However, some classical impartial rulesets, such as nimstring and top entails,

fall slightly outside the usual CGT axioms. In nimstring, certain moves require

a player to play again, or carry-on, which is a violation of the alternating play

axiom. And in top entails, certain moves enforce the next player to play in

the same component, which violates the standard definition of a disjunctive sum.

Thus, values of individual components are no longer a relevant measure, given the

standard CGT axioms. The type of moves mentioned in this paragraph will be

gathered under the term entailing moves.2

The purpose of this paper is to extend impartial normal play games sufficiently

to include games with entailing moves. While accomplishing this, we expand the

classical Sprague-Grundy theory to fit this extension.

We will rebuild the normal play axioms by using so-called terminating games,

or infinities, 8 and 8. Here we focus on the impartial setting, and the general

comprehensive theory for partizan games will appear in [5].3 These theories are

called affine impartial and affine normal play respectively.

Although we consider only impartial games in this paper, we will keep the players

distinguished as Left and Right. In particular, Left wins if either player plays to 8,

in any component, and Right wins in case of play to 8. Note that the normal play

zero is restored by defining 0 “ t8|8u, a first player losing position.

It is well-known that, in classical Combinatorial Game Theory, the impartial

values are nimbers. We will prove that there is exactly one more value modulo

affine impartial, a game K, called the moon. This value was anticipated in the

classical work Winning Ways, by Berlekamp, Conway and Guy. In [3], volume 2,

page 398, one can read “A loony move is one that loses for a player, no matter

what other components are.”. Before developing the theory, we illustrate how the

infinities are used in the motivating rulesets, nimstring ([2, 3]) and top entails

([3], volume 2).

Let us first briefly mention the organization of the paper. To facilitate the

development of the new impartial theory, Section 2 considers the basic properties

of unrestricted affine normal play, aiming for a game comparison result,

Theorem 7. The affine impartial theory is developed in Section 3. The main result

is Theorem 17, which shows that values in this extension are the nimbers plus one

more value. Theorem 20 gives an algorithm to find the value of a given position,

and notably, if there are no infinities in the options, then the nimbers are obtained

by the usual mex-rule. We finish off with two case studies. In Section 4, we

compute the value of an interesting nimstring position, anticipated in

2Entailing means “involve something as a necessary or inevitable part or consequence”.
3There are partizan rulesets, in the literature and in recreational play, with similar entailing

and terminating moves. Probably the most prominent ones are the game of chess, and a version
of go called atari go.
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Section 1.1. In Section 5, we compute the values for top entail heaps of sizes 1

through 12, and Theorem 21 provides theoretical justification for computing top

entails values.

1.1. The Ruleset nimstring

In nimstring, a player draws a line between two horizontally or vertically adjacent

points, in a finite grid, not already joined by a line. If a player completes a 1 ˆ 1

square, then they must draw another line, and if they cannot do so, they lose.

Figure 1 shows an example position, where no square can be completed in the

next move. Later, through the new theory, we will see that the position H equals

˚2 modulo affine impartial.

Figure 1: A nimstring position, H.

In Figure 2, we show a position, G, with two options, one of which is an

entailing move. Namely, if the the top bar is drawn, the next player continues, but

if the middle bar is drawn, then the current player has to carry-on.

Carry-on.

Figure 2: A nimstring position, G, with its two options, a ‘double-box’ and an
entailing carry-on position.

When we develop the theory, we will see that the position G, to the left in

Figure 2, is the abstract game

tt8|0u, 0 | t0 |8u, 0u . (1)
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The option 0 is obtained by drawing the top bar. The intuition for this is as follows:

if a player can win X, than he can also win ‘double box’+X because the player who

moves inside the ‘double box’ has to play again. Due to that, ‘double box’ is neutral

in all disjunctive sums, including the case X “ t | u.

If a player draws the middle bar in G, then they have to carry-on, and this

is represented by the abstract option t8|0u, if Left moved. There is an infinite

urgency in this game: Right has to play here, or lose. And so, the effect is the

desired: Left plays again, and alternating play is restored. Hence disjunctive sum

play is also restored, within the affine impartial convention. Moreover, the Right

option in this threat should be 0, because Left loses by playing this option if G is

played alone. If the sum is G`H, with H as in Figure 1, then the next player wins,

by playing this entailing middle bar in G.

1.2. The Ruleset top entails

Top entails is played on heaps of tokens. A player may either remove the top

token from exactly one heap, or split a heap into two non-empty heaps. If the top

token is removed from a heap, then the next move (in alternating play) must be

played on the same heap.

A heap with one token, say H, is a first player win, in any situation. Namely, a

move in H forces the opponent to play in the same heap, where no move remains.

Note that the abstract game H “ t8|8u settles this behaviour. The player who

moves first in H wins independently of existence of other components. The point

we wish to make here is that this abstract representation settles the problem of

independency of a heap of size one with other disjunctive sum components.

Consider G, in Figure 3, a pile of size 3. There are two options, as depicted in

Figures 4 and 5.

Figure 3: A pile G of top entails, of size 3.

The option in Figure 4 splits G into two piles and the next player’s options

are unrestricted. By the terminating effect of playing in a heap of size one, this

composite game should be equal to the game H “ t8|8u.

The option in Figure 5 is an entailing move, and the next player must continue

in this component, even if other moves are available. Therefore, the game form of

the entailing option in Figure 5 is

t8|1` 1,1entailu ,
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Figure 4: The game G is split into two components.

if Left just moved, and where 1 denotes a heap of size one. The terminating threat

forces Right to play here, instead of possibly using other options.

Continue here.

Figure 5: An entailing option.

Intuitively, either way of responding reduces to a game of the form H “ t8|8u.

In conclusion, the heap of size three should be equal to the game H, and disjunctive

sum play has been restored. All this intuition will be rigorously justified in the

coming complete theory for affine impartial play.

It turns out that affine impartial games require only a small extension to the

Sprague-Grundy theory. Namely, the game in (1), obtained from the nimstring

position in Figure 2, equals the game H “ t8|8u in the previous paragraph,

modulo affine impartial, and later we will devote the value ‘K’ to the equivalence

class of such games.

2. Affine Literal Forms and Order

This section aims at Theorem 6, a comparison theorem for affine normal play that

suffices for the purpose of this paper. We begin by defining the fundamental

concepts for affine normal play, and we wait with the restriction to affine impartial

until the next section.

In classical Combinatorial Game Theory, the normal play forms, Np, are

recursively constructed from the empty set. The form t∅ |∅u “ 0 is the only form

of day zero and the only form without options. The forms t0 |∅u “ 1 ,

t∅ | 0u “ ´1, t0 | 0u “ ˚, are born on day 1, and so on.

The forms of affine normal play, denoted Np8, are recursively constructed from

the games 8 (infinity) and 8 (minus infinity) [5]. The forms 8 and 8 are the only

forms without options. The forms t8|8u “ 0, t8|8u “ ˘8, t8|8u and t8|8u

are born on day zero. And so on.

The order of Np8 is defined in the standard way. Consider the four perfect play

outcome classes L (Left wins), N (Next player wins), P (Previous player wins),
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and R (Right wins). From Left’s perspective, the first outcome is the best (she wins,

regardless of playing first or second) and the fourth is the worst (she loses, regardless

of whether playing first or second). On the other hand, regarding N and P, the

victory depends on playing first or second, so these outcomes are not comparable.

These considerations explain the partial order in an ‘outcome diamond’.

L

P N

R

We write G P L , or equivalently opGq “ L , if the outcome of G P Np8 is

Left wins, and so on. The evaluation of games in Np8 is based on the following

axiomatic list:

Axiom 1 (Absorbing Nature of Infinities). The infinities satisfy

1. 8 P L ;

2. 8 P R;

3. For all X P Np8zt8u, 8`X “ 8;

4. For all X P Np8zt8u, 8`X “ 8;

5. ‘8`8’ is not defined.

Addition of games is defined as usual, apart from items 3 and 4. The fifth item

is natural in terms of perfect play, since if 8 appears, then 8 cannot appear and

vice versa.

The definitions of equality and partial order of games are based on the outcome

diamond.

Definition 1 (Order and Equality of Games). Let G,H P Np8. Then, G ě H

if, for every form X P Np8zt8,8u, opG ` Xq ě opH ` Xq. Moreover G “ H if

G ě H and H ě G.

Note that the exclusion of the infinities does not diminish the generality of the

definition, but is necessary due to Axiom 1.5. As usual, we have the following

observations. If G “ H then replacing H by G or G by H do not hurt the players

under any circumstances. Similarly, if G ě H then replacing H by G does not hurt

Left, and replacing G by H does not hurt Right.
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Theorem 2. Let G P Np8. Then 8 ě G and G ě 8.

Proof. If X P Np8zt8,8u then, by Axiom 1.3, 8`X “ 8. Hence, by Axiom 1.1,

op8`Xq “ op8q “ L . Therefore, for every X P Np8zt8,8u, we have op8`Xq ě

opG`Xq, and so 8 ě G; proving that G ě 8 is analogous.

The concept of a check is fundamental to Np8. Indeed, this is an alternative,

and perhaps more explicit, at least for those Chess playing readers, term for an

entailing move, as seen in the Introduction.

Definition 2 (Check Games). Consider G P Np8. If 8 P GL (8 P GR) then G is

a Left-check (Right-check). If G is a Left-check or a Right-check then G is a check.

Denote by G
Ñ
L (G

Ð
R ) a Left (Right) option of G that is a Left-check (Right-check).

Of course, all checks are asymmetric, apart from the ‘trivial check’, t8|8u. A

player would not use this check, because the opponent ‘check mates’ by defending.

Definition 3 (Quiet Games). Let G P Np8. If G ‰ 8 (G ‰ 8) and G is not a

Left-check (Right-check) then G is Left-quiet (Right-quiet). If G is Left-quiet and

Right-quiet then G is quiet.

Definition 4 (Conway Forms and Games). A game G P Np8 is a Conway form

if G R t8,8u, and G has no checks as followers. Let NpC
Ď Np8 denote the

substructure of Conway forms. A game G P Np8 is a Conway game if it equals a

Conway form.

Example 3. The game G “ tt8|8u|t8|8uu “ t0 |0u “ ˚ is a Conway form (no

checks as followers). The game G1 “ tt8|˚u|t˚ |8uu is not a Conway form because

there are checks as followers. However, later, we will see that G1 “ G. Therefore,

G1 is a Conway game.

In general, when we say form, we mean the literal form, and when we say game,

we usually mean (any member in) the full equivalence class of games. When we

write G P Np8, we usually refer to the literal form, but the context may decide.

Some classical theorems are still available in Np8.

Theorem 4 (Fundamental Theorem of Affine Normal Play). If G P Np8 then

G ě 0 if and only if G P L YP.

Proof. Assume that G ě 0. We have 0 P P, and so, by order of outcomes, G P

L YP.

Suppose now that G P L YP. If G “ 8, by Theorem 2, G ě 0; hence, assume

G ‰ 8. Let X P Np8zt8,8u.

If, playing first, Left wins X with the option XL, then she also wins G`X with

the option G ` XL. Essentially, she mimics the strategy used when X is played
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alone, answering locally when Right plays in G. Due to the assumption G P L YP,

this is a winning strategy for Left in G`X.

If Left, playing second, wins X. Then, on G ` X, she can respond to each

of Right’s moves locally, with a winning move on the same component, because

G P L YP. Thus Left can win G`X playing second.

Therefore, opG`Xq ě opXq and so, G ě 0.

Corollary 1 (Order-Outcome Bijection). If G P Np8 then

• G ą 0 if and only if G P L ;

• G “ 0 if and only if G P P;

• G } 0 if and only if G P N ;

• G ă 0 if and only if G P R.

Proof. The statement of Theorem 4 can equivalently be “G ď 0 if and only if

G P R YP”, so we can use that fact too.

Suppose that G ą 0. By Theorem 4, G P L YP. But, we cannot have G P P,

for otherwise G P R YP and G ď 0. Therefore, G P L . Conversely, suppose that

G P L . By Theorem 4, we have G ě 0. But, we cannot have G “ 0, for otherwise

G ď 0, and G P R YP. Hence, G ą 0. Thus, the first equivalence holds.

The proof of the fourth equivalence is analogous.

For the second equivalence, if G “ 0, then G ě 0 ^ G ď 0. So, G P pL YPq X

pR YPq “P.

The third equivalence is a consequence of eliminating all other possibilities.

It is known that Np is a group. By Corollary 1 we may deduce that Np8 is only

a monoid. Namely, if G “ t8 | 0u then, for any X P Np8zt8,8u, G`X P L YN

(playing first, Left wins). Hence, for all X, G ` X ‰ 0 and G is non-invertible.

Thus, in general, the comparison of G with H cannot be done by playing the game

‘G´H’, because, sometimes, ‘´H’ does not exist.

However, the following theorem shows that not everything is lost.

The conjugate of a given game switches roles of the players.

Definition 5 (Conjugate). The conjugate of G P Np8 is

ò

G“

$

’

’

&

’

’

%

8, if G “ 8

8, if G “ 8
! ò

GR|
ò

GL
)

, otherwise,

where
ò

GL denotes the set of literal forms
ò

GL, for GL P GL, and similarly for GR.
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Theorem 5. If G P Np8 is a Conway game, then G is invertible and ´G “
ò

G.

Proof. Suppose first that G is a Conway form. If G “ 0 then
ò

G“ 0, and the

theorem holds. Otherwise, let us verify that G`
ò

G is a P-position. If Left, playing

first, chooses GL`
ò

G, because this game is not 8 (G is not a check), Right can

answer with GL`
ò

GL and, by induction, because GL is a Conway form with no

checks as followers, that option is equal to zero. Since, by Corollary 1, that option

is a P-position, Right wins. Analogous arguments work for the other options of

the first player, and so, G`
ò

G is a P-position. Again, by Corollary 1, G`
ò

G“ 0.

Suppose now that G is not a Conway form. Because it is a Conway game, by

definition, it is equal to some G1 P NpC. The first paragraph proved that G1`
ò

G1“ 0.

Also, by symmetry,
ò

G is equal to
ò

G1. Therefore, G1`
ò

G1“ 0 implies G`
ò

G“ 0.

Lemma 1. Let G,H P Np8, and let J be an invertible form of Np8. Then

G ě H if and only if G` J ě H ` J.

Proof. (ñ) Consider any X P Np8zt8,8u and let X 1 “ J ` X. Since J is

invertible, J is neither 8 nor 8, and so, X 1 is neither 8 nor 8. The definition of

order implies opG ` X 1q ě opH ` X 1q, that is, opG ` J ` Xqq ě opH ` J ` Xq.

Thus, the arbitrariness of X P Np8zt8,8u implies G` J ě H ` J .

(ð) Consider any X P Np8zt8,8u and let X 1 “ ´J `X (J is invertible, i.e., ´J

exists and J ´ J “ 0). Since ´J is invertible, ´J is neither 8 nor 8, and so, X 1

is neither 8 nor 8. By definition of order, opG` J `X 1q ě oppH ` J `X 1q, that

is, opG` J ´ J `Xq ě opH ` J ´ J `Xq. Hence, opG`Xq ě opH `Xq, and so,

given the arbitrariness of X P Np8zt8,8u, G ě H.

Theorem 6. Let G be any form of Np8 and suppose that H is an invertible form

of Np8. Then,

G ě H if and only if G´H P L YP and G “ H if and only if G´H P P.

Proof. By Lemma 1, G ě H if and only if G ´ H ě H ´ H. Therefore, we have

G ě H if and only if G ´ H ě 0. By Theorem 4, this is the same as

G ě H if and only if G´H P L YP.

Finally, G “ H if and only if G´H P P, by G ě H ^H ě G.

Theorem 7. Let G be any form of Np8 and let H P Np8 be a Conway game.

Then

• G ě H if and only if G`
ò

H P L YP

• G “ H if and only if G`
ò

H P P.
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Proof. These are direct consequences of Theorems 5 and 6.

In a follow up paper [5], where we study the full game space Np8, we provide a

solution of the general case of G ě H.

3. Affine Impartial Theory

In order to propose an extension of the Sprague-Grundy theory, we first define the

concept of an affine impartial game.4 Of course, rulesets like nimstring should be

impartial.

Definition 6 (Symmetric Game). Consider a form G P Np8. Then G is symmetric

if G R t8,8u and GR “
ò

GL.

Definition 7 (Affine Impartial). A form G P Np8 is affine impartial if it is

symmetric and all quiet followers of G are symmetric. The subset of affine

impartial games is Im8 Ă Np8.

Of course, a non-quiet game either has no option, or is a check, and so (unless a

trivial check) is by definition asymmetric. But this is the only exception of symmetry

in the world of affine impartial impartial games. It is easy to check that Im8

satisfies the standard closure properties of combinatorial games, i.e., closure of

taking options, addition, and conjugates.

The following result must hold for any class of games that claims to be

“impartial”.

Theorem 8 (Affine Impartial Outcomes). If G is a symmetric form, then G P

N YP.

Proof. This proof uses a strategy-stealing argument. Suppose that G P L . Then

Left wins G playing first with some option GL. Hence, by symmetry, Right wins G

playing first with
ò

GL. That contradicts G P L . A similar argument holds against

G P R.

We want to restrict our analysis to Im8. Therefore, we define equality modulo

Im8.

Definition 8 (Impartial Equality). Consider forms G,H P Im8. Then, G “Im8 H

if, for every form X P Im8, opG`Xq “ opH `Xq.

4In terms of ruleset: here ‘affine impartial’ is an abbreviation of affine normal play impartial,
in the sense that if the player to move cannot complete their move they lose.
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Observation 9. Of course, G “ H in Np8 implies G “Im8 H. The opposite

direction is not true. We can have G “Im8 H and G ‰ H in Np8, if there is

no distinguishing game in Im8. A simple example is G “ tt8|0u, 0 | t0 |8u, 0u

and H “ tt8|˚u , ˚|t˚ |8u , ˚u. As we will see, these games are indistinguishable

modulo Im8. However, the game X “ t0 |´1u distinguishes them in Np8; playing

first, Left wins G`X, but loses H `X.

It is easy to verify if a form in Im8 equals a nimber.

Theorem 10 (Nimbers). Let G P Im8. Then, G “Im8 ˚n if and only if G`˚n P P.

Proof. Suppose that G ` ˚n P P. By Theorem 7, G “ ˚n modulo Np8, and so

G “Im8 ˚n.

Suppose now that G “Im8 ˚n. By Theorem 8, G`˚n P N YP, since impartiality

is closed under addition. If G ` ˚n P N , since ˚n ` ˚n P P, we have G ‰Im8 ˚n,

and that is a contradiction. Hence, G` ˚n P P.

Notation 11. Let nim Ď Im8 denote the subset of affine impartial games that

equal nimbers.

It is well-known that, in classical Combinatorial Game Theory, the impartial

values are nimbers. We will prove that there is exactly one more value modulo

Im8, a game K, called moon. In [3], volume 2, page 398, one can read “A loony

move is one that loses for a player, no matter what other components are.” The

following general definition is motivated by that idea.

Definition 9 (Loony Game). A game G P Np8 is loony if, for all quiet X P

Np8 X pN YPq, G`X P N .

Thus, in our interpretation, a ‘loony move’ exposes a loony game.

There are no loony games in Np. Suppose that G P NpXpPYL YRq is a loony

game. Of course, G ` 0 P P YL YR and that is a contradiction. Suppose that

G P Np XN is a loony game. In that case, if n is large enough, G ` tn |0u P L ,

and that is a contradiction, since tn |0u P N is quiet.

There are loony games in Np8 . The obvious one is ˘8 “ t8|8u, but we can

also have impartial quiet loony moves. Consider G “ tt8|0u, 0 | t0 |8u, 0u and a

quiet X P Np8 such that X P P YN . If X P P, the first player wins moving to

X. If X P N , the first player wins moving to t8 | 0u `X (Left) or to t0 |8u `X

(Right).

Notation 12. The moon is the game form K “ t8|8u.

When a player moves to K ` X, for any X P N YP, he “goes to the moon”

and loses.

Theorem 13 (Loony Uniqueness). All loony games are equal modulo Im8.
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Proof. Consider G and G1, two loony games. We know that all quiet X P Im8

belong to N Y P. By definition of a loony game, we have G ` X P N and

G1 ` X P N . On the other hand, if X P Im8 is not quiet then 8 P XL and,

since X is impartial, 8 P XR. Hence G `X P N and G1 `X P N . In all cases,

opG`Xq “ opG1 `Xq “ N and the theorem holds.

Observation 14. Two loony games may be different modulo Np8, but equal

modulo Im8. The games tt8|0u, 0 | t0 |8u, 0u and tt8|2u , 0 | t´2 |8u , 0u are

loony. These games are different modulo Np8. Left, playing first, loses

tt8|0u, 0 | t0 |8u, 0u ´ 1 and wins tt8|2u , 0 | t´2 |8u , 0u ´ 1. However, as will

follow by theory developed here, one cannot distinguish these two games modulo

Im8.

In order to prove an affine impartial minimum excluded rule, we separate the

options into two classes.

Definition 10 (Immediate Nimbers). Let G P Im8. The set of G-immediate

nimbers, denoted SG is the set SG “ GL X nim.

Note that, by symmetry, SG “ GR X nim, and note that SK “ ∅.

Definition 11 (Protected Nimbers). Consider a game form G P Im8. The set of

G-protected nimbers PG is

1. PG “ nim, if 8 P GL;

2. PG “ t˚n : G
Ñ
L ` ˚n P L , G

Ñ
L P GLu, otherwise.

The second item says: if 8 R GL then ˚n P PG if there is a check G
Ñ
L “

t8 |GLRu P GL such that Right, playing first, loses G
Ñ
L `˚n. That is, playing first,

Left is protected against those nimbers in a disjunctive sum.

Similar to Definition 10, we could have defined PG with respect to Right options,

to obtain the same set.

Note that PK “ nim. This statement holds for the literal form K “ ˘8. However,

one can show that by using instead the form K “ tt8|0u, 0 | t0 |8u, 0u, as in (1),

then PK “ nimzt0u. The output of “protected” is sensitive to which form we choose.

When the underlying game form is understood, we simply refer to the immediate

and protected nimbers, respectively.

Example 15. Let G P Im8 be such that the Left options are 0, ˚2, and

t8 | t˚ |8u, 0u. Of course, SG “ t0, ˚2u. On the other hand, playing first, Left can

use the check to win G` ˚. Because of that, PG “ t˚u. An important observation

is that, although Left is protected against the nimber ˚, Left cannot force a Left

move to ˚ in G. But if Right moves to 0, Left wins G` ˚ anyway
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Sometimes, Right can manoeuvre Left’s eventual play to a nimber, or worse, via

a sequence of ‘check upon check’.

Definition 12 (Maneuverable Form). A quiet form G P Im8 is maneuverable if

after each Left move that is neither a nimber nor 8, Right can force, with checks,

a Left move to a nimber or a move by either player to 8. A symmetrical effect

happens after each Right move that is neither a nimber nor 8.

Example 16. The form G “ t˚2, t8 | t0, ˚4 |8u, 0u | ˚ 2, t0, t8 | 0, ˚4u|8uu is

maneuverable. If Left avoids the immediate nimber ˚2, by checking, then Right

can still force Left to move to one of the nimbers 0 or ˚4.

Lemma 2. If G P Im8 is maneuverable, then PG is finite.

Proof. After a Left first move in G, if needed, Right can force with checks a Left

move to a nimber or a move by either player to 8. Let C be the set of nimbers

that can arise through this forcing strategy by Right. Then C is finite, because we

study short games. Let ˚n be a nimber such that, for all ˚m P C, we have n ą m.

In G` ˚n, after a first check, say, to GL ` ˚n, Right forces with checks a move by

either player to 8 or a Left move to ˚m ` ˚n (n ą m). In the second case, after

the sequence, Right wins with a TweedleDee-TweedleDum move. Thus, Left can

protect against at most a finite number of nimbers. That explains why PG is finite

in case of maneuverable games.

Let mexpXq denote the smallest nonnegative integer not in X. Let G denote

the set of Sprague-Grundy values of a set of nimbers, i.e., if S “ t˚niu, then

GpSq “ tniu.

Lemma 3. If G P Im8 is maneuverable then G equals the nimber ˚n, where n “

mexpGpSG Y PGqq.

Proof. By Lemma 2, we know that SG Y PG is finite. Let n “ mexpGpSG Y PGqq.

Let us argue that the game G`˚n P P. If the first player moves in G to a nimber

˚m P SG, because n is excluded from GpSGq, he loses. If the first player moves in G

to a quiet not nimber G1, because G1 is not a nimber, G1 ` ˚n P N (Theorem 10),

and the first player also loses. If the first player moves in G, giving a check, because

n is excluded from GpPGq, he also loses. Finally, if the first player moves to G`˚n1

(n1 ă n), because n is the minimum excluded from GpSG Y PGq, he loses because

the opponent has a direct TweedleDee-TweedleDum move or wins with a check.

Hence, by Theorem 10, G “ ˚n.

Lemma 4. If G,H P Im8 are not nimbers, then G`H P N .

Proof. Consider G,H P Im8znim. For a contradiction, assume that the sum of the

birthdays, b “ bpGq ` bpHq, is the smallest possible such that G ` H P P. Note
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that, by the assumptions on G and H, b ą 0. Without loss of generality, we will

analyze the move from G`H to G`HL. First, we prove two claims that concern

local play in G and H respectively.

Claim 1. Playing second in G, Left can avoid Left moves to nimbers and moves

by either player to 8 until the first Right-quiet move.

Proof of Claim 1. Suppose that Right, playing first in G, could force a Left move

to a nimber or a move by either player to 8. If so, in G `H, by giving checks in

G, Right could force some G
Ð
RL¨¨¨

Ð
RL ` H “ ˚n ` H (Right’s turn) or a move by

either player to 8 ` H. Of course, the second situation would be a victory for

Right. Regarding the first case, at that moment, the position would be ˚n ` H.

And, because H is not a nimber, by Theorem 10, we would have ˚n ` H P N ,

which is a winning move for Right. In either case, Right, as first player, would

win. That would contradict G`H P P.

Claim 2. There is an HL such that Left can avoid Left moves to nimbers and

moves by either player to 8, until the first Right-quiet move.

Proof of Claim 2. This is exactly the same as saying that H is non-maneuverable.

If it was maneuverable, by Lemma 3, it would be a nimber, and we would have a

contradiction again.

Let us return to the move from G`H to G`HL. Because G`H P P, Right

has a winning move from G ` HL. But, by Claims 1 and 2, Left can play such

that, at any stage before a Right-quiet move, Right is moving on g ` h, where g is

a follower of G and h is a follower of HL, such that neither g nor h is a nimber.

Either way, by assumption, there is a winning quiet Right-move gR`h or g`hR.

Since these are impartial games, we must have gR ` h P P or g ` hR P P. But,

because h and g are not nimbers, it follows by Theorem 10 that gR and hR are not

nimbers.

Therefore, we have gR`h P P or g`hR P P with both components not nimbers.

But this contradicts the smallest birthday assumption. The result follows.

Theorem 17 (Affine Impartial Values). Every affine impartial form equals a nimber

or the game K pmod Im8q.

Proof. Let G P Im8. If there is some ˚n such that G ` ˚n P P, then G “Im8 ˚n,

by Theorem 10.

Suppose next that G ` ˚n P N , for all n, so that G does not equal a nimber

modulo Im8. By Lemma 4, for all X P Im8znim, we also have G`X P N . Hence,

for all X P Im8, we have G `X P N , and therefore G is a loony game. Because,
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by Theorem 13, all loony games are equal modulo Im8, and K is a loony game, we

have G “Im8 K.

Observation 18. A form can be loony modulo Im8 and not loony modulo Np8.

An example is the form G “ t˚, t8|˚u|˚, t˚|8uu. This game is not loony modulo

Np8 because, if X “ t0 |´1u P N , playing first, Left loses G ` X. However,

G “Im8 K. This follows, by Theorem 17, since G does not equal any nimber; if

Right starts G` ˚n, he wins, by an appropriate parity consideration.

Theorem 19. The game K is absorbing modulo Im8, that is, K ` Y “Im8 K, for

all Y P Im8.

Proof. Since K “ ˘8, regardless of what X P Im8 is, the first player wins both

K` Y `X and K`X. Therefore, by definition of equality of games, K` Y “Im8

K.

Corollary 2. The game K is an idempotent modulo Im8, that is, K` K “Im8 K.

Proof. This is a trivial consequence of Theorem 19.

Definition 13. The Sprague-Grundy value of the moon is GpKq “ 8.

The following theorem explains how the Sparague-Grundy value of G P Im8 is

determined by the set SG Y PG.

Theorem 20 (Affine Impartial Minimum Excluded Rule). Let G P Im8. We have

the following possibilities:

• If SG Y PG “ nim, then G “ K and mexpGpSG Y PGqq “ 8;

• If SG Y PG ‰ nim, then G “ ˚ pmexpGpSG Y PGqqq.

Proof. If SGYPG “ nim, we have G`˚n P N for all n. Because of that, G is not a

nimber and, by Theorem 17, G “ K. If SG Y PG ‰ nim, we use the same argument

of the proof of Lemma 3.

Corollary 3. If all the options of a game G P Im8 are quiet then G is a nimber.

Proof. If all the options of a game G P Im8 are quiet, then PG “ ∅. Therefore,

SG Y PG “ SG ‰ nim and, by Theorem 20, G “ ˚ pmexpGpSGqqq.
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4. Case Study: nimstring

In the introduction, we promised to show that the following component equals ˚2.

Study the positions:

(a) (b) (c) (d) (e)

All (a), (b), (c), (d), and (e) are P-positions. The game value of (f) is K “

tt8|0u, 0 | t0 |8u, 0u.

(f)

Other positions that equal K are the following.

(g) (h) (i) (j) (k)
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In the position (l), the central horizontal move is the option (d), that is equal

to 0. The other options are (f) and (g), that are equal to K. Therefore, the literal

form is

l “ t0,K,K |0,K,Ku

with Sl “ t0u, and Pl “ ∅. Applying the affine impartial minimum excluded rule,

we conclude that the position is ˚.

(l)

The position (m) is also equal to ˚, i.e., 0` ˚.

(m)

Now, we are ready for (n), a more complex situation. The literal form is

n “ th, i, k, t8 | lu |h, i, k, tl |8uu,

that is,

n “ tK,K,K, t8 | ˚u |K,K,K, t˚ |8uu.

Hence, Sn “ ∅, and Pn “ nimzt˚u. Applying the affine impartial minimum

excluded rule, we conclude that the position is ˚.

(n)



INTEGERS: 21C (2021) 18

Going back to the original question, we have the following.

The form is tn,m, c |n,m, cu, that is, t˚, ˚, 0 | ˚, ˚, 0u “ ˚2. Here n represents a

play of the top or bottom bar, m represents a play of some middle bar, and c

represents play of the left line.

5. Case Study: top entails

We denote by n the literal form of a stack of size n. The literal form of the Left

removal of the top coin from a stack of size n is t8 | pn ´ 1qRu (and the symmetric

from Right’s point of view). With that in mind, let us compute the first few values.

First, we do it the tedious way, and then later after Theorem 21, we propose the

slick recursive way for a few more values, in a table format.

Of course, 0 “ t8 |8u. The first player loses. Moreover,

1 “ tt8 |0Ru | t0L |8uu “ tt8 |8u | t8 |8uu. Therefore, S1 “ ∅ and P1 “

nim. Using the affine impartial minimum excluded rule, 1 “ K. In the next

step, for ease, we will use the form K “ ˘8.

2 “ t1 ` 1, t8 |1Ru |1 ` 1, t1L |8uu “ tK, t8 |8u |K, t8 |8uu. Therefore,

S2 “ ∅ and P2 “ ∅. Using the affine impartial minimum excluded rule,

2 “ 0.

3 “ t1 ` 2, t8 |2Ru |1 ` 2, t2L |8uu. This game is equal to

tK, t8 |K, t8 |8uu |K, tK, t8 |8u |8uu. Therefore, S3 “ ∅ and P3 “ nim.

Using the affine impartial minimum excluded rule, 3 “ K. In the next step,

for ease, we will use the form K “ ˘8.

4 “ t1 ` 3,2 ` 2, t8 |3Ru |1 ` 3,2 ` 2, t3L |8uu. This game is equal to

tK, 0, t8 |8u |K, 0, t8 |8uu. Therefore, S4 “ t0u and P4 “ ∅. Using the

affine impartial minimum excluded rule, 4 “ ˚.

5 “ t1 ` 4,2 ` 3, t8 |4Ru |1 ` 4,2 ` 3, t4L |8uu. This game is equal to

tK,K, t8 | 0u |K,K, t0 |8uu. Therefore, S5 “ ∅ and P5 “ nimzt0u. Using the

affine impartial minimum excluded rule, 5 “ 0.
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6 “ t1` 5,2` 4,3` 3, t8 |5Ru |1` 5,2` 4,3` 3, t5L |8uu. This game is

equal to tK, ˚,K, t8 | t0 |8uu |K, ˚,K, tt8 | 0u |8uu. Therefore, S6 “ t˚u and

P6 “ t0u. Using the affine impartial minimum excluded rule, 6 “ ˚2.

7 “ t1`6,2`5,3`4, t8 |6Ru |1`6,2`5,3`4, t6L |8uu. This game is equal

to tK, 0,K, t8 | ˚, tt8 | 0u |8uu |K, 0,K, t˚, t8 | t0 |8uu |8uu. So, S7 “ t0u,

P6 “ nimzt0, ˚u, and with the affine impartial minimum excluded rule, 7 “ ˚.

Consider a stack of size n. We claim that an entailing move by Left does not

protect her against an element in Sn´1. To see this, let ˚m P Sn´1. Moving in

n ` ˚m, if Left chooses t8 | pn ´ 1qRu ` ˚m, Right answers ˚m ` ˚m and wins.

On the other hand, we observe that an entailing move by Left does not protect her

against the elements of Pn´1. To see this, let ˚m be an element of Pn´1. Moving in

n` ˚m, if Left chooses t8 | pn ´ 1qRu ` ˚m, because in n ´ 1, Right is protected

against ˚m, he has an entailing winning move in the first component. Therefore,

we have the general recursion

Pn “ nimzpSn´1 Y Pn´1q.

The set Sn is composed of the values of the positions of the form ``m, ``m “ n,

`,m ą 0, and disregarding any sum where K appears. Hence, the recurrence of

top entails is as follows.

Theorem 21. The sets P0 “ S0 “ ∅, and for all n ą 0 Pn “ nimzpSn´1YPn´1q,

Sn “ tGp``mq, `,m ‰ Ku.

Proof. This is explained in the above paragraph.

Now, we can fill a table in an easy way.

n Sn Pn Sn Y Pn G-value (mex rule)
0 ∅ ∅ ∅ 0
1 ∅ nim nim 8

2 ∅ ∅ ∅ 0
3 ∅ nim nim 8

4 t0u ∅ t0u 1
5 ∅ nimzt0u nimzt0u 0
6 t˚u t0u t0, ˚u 2
7 t0u nimzt0, ˚u nimzt˚u 1
8 t0, ˚2u t˚u t0, ˚, ˚2u 3
9 t˚u nimzt0, ˚, ˚2u nimzt0, ˚2u 0
10 t0, ˚3u t0, ˚2u t0, ˚2, ˚3u 1
11 t0, ˚2u nimzt0, ˚2, ˚3u nimzt˚3u 3
12 t0, ˚, ˚2u t˚3u t0, ˚, ˚2, ˚3u 4
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With the recursion, we know that n “ K if and only if Sn´1 Y Pn´1 Ď Sn.

That happens for n “ 2403, n “ 2505, and n “ 33243, as mentioned in [8]. One of

three possibilities must happen: a) a finite number of finite nimbers; b) a finite

number of loony values; c) an infinite number of finite nimbers and an infinite

number of loony values. However, it is an open problem to know what case

happens.

At the first Combinatorial Games Workshop at MSRI, John Conway proposed

that an effort should be made to devise some game with entailing moves that is non-

trivial, but (unlike top entails) susceptible to a complete analysis. All attempts

which have been tried turn out to be not very interesting. As a sequel to this

work, we are finalizing a paper [6] with a proposal of a ruleset to meet Conway’s

suggestion.
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