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Executive summary 

This document provides specifications for the generation of synthetic boundary conditions. Synthetic boundary 
conditions are required in two instances. First, they can be used to describe virtual patients or datasets to be 
analysed via in-silico modelling. Second, they can be used to replace or impute missing information for in-silico 
assessment of real animal- or patient-specific cases. At first, a generic consideration regarding standardisation, 
relevant quality measures, and file formats is provided. Subsequently, the relevant synthetic boundary 
conditions for both project use cases, i.e., transcatheter aortic valve implantation (TAVI) and pulmonary artery 
pressure sensor (PAPS), are provided. The detailed descriptions of the use cases and data elements are used as 
dedicated examples for the more generic considerations. Here, the focus will lie on the generation of synthetic 
surface geometries, i.e., the anatomical boundary conditions, as the generation of functional boundary 
conditions, such as volume flow rates, was already addressed in D6.4 - Specification and quantification of 
subject-specific data-based boundary conditions (CHA, M24), both for patient-specific and synthetic cases.  
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Introduction 
Virtual cohorts should mimic real animal or patient cohorts as closely as possible so that they 
ultimately can be used in in-silico assessment of medical devices. For the development and validation 
of such virtual cohorts, generation of synthetic boundary conditions is an essential prerequisite. In this 
context, the term ‘boundary condition’ refers to all data elements required for parameterisation of an 
in-silico model for device implantation or device effect simulation, be it surface geometries, inflow 
and outflow information, or material properties. Here, the term boundary conditions includes both 
functional and anatomical data. Depending on the type and complexity of boundary conditions, this 
process can either be trivial or challenging. In theory, cohort characteristics can be measured and 
replicated using different statistical approaches. For example, if the stroke volume (SV) of the left 
ventricle in a real cohort of patients can be well described using a Gaussian distribution, this 
information can be used to generate synthetic stroke volumes ensuring that the distribution 
characteristics of the real and virtual cohorts are identical. Other boundary conditions, such as the 3D 
patient-specific anatomy, might be more complex and cannot easily be described using simple 
distributions. Here, other approaches, such as statistical shape models (SSM) or machine learning (ML) 
based approaches, like geometry-aware generative adversarial networks, can be used to understand, 
learn, and replicate the complex patterns observed in real patient or animal cohorts.  

Furthermore, in an in-silico model, a patient, be it real or synthetic, is usually characterised not by only 
one but by multiple boundary conditions that are not statistically independent, such as the patient-
specific anatomy and functional parameters describing in- and outflow boundary conditions of the 
domain of interest. For example, the SV of a patient is directly described by the end-systolic and end-
diastolic volume of the left ventricle. If these correlations or causalities between boundary conditions 
are known, they can and must be used to generate physiologic combinations of these parameters. If, 
for example, inflow and outflow boundary conditions were sampled randomly, not taking into account 
their obvious correlation, fundamental principles, such as the conservation of mass, would be violated.  

However, even if data elements are not correlated, generating boundary conditions independently of 
each other might result in a non-physiologic combination that is not a valid synthetic representation 
of a real patient. Here, different strategies can be used to identify these patients. Examples of these 
filtering strategies are described in D7.6 - Proof of principle of the complete virtual patient generator 
(TUE, M24). 

In the following document, first, general considerations regarding the generation of synthetic 
boundary conditions are provided. This includes aspects of standardisation, quality assurance 
measures, as well as considerations regarding file formats. Afterwards, the methods that were used 
to generate synthetic boundary conditions for the two SIMCor use cases, TAVI and PAPS, are 
described. Here, the document focuses on the generation of the anatomical boundary conditions, i.e., 
3D surface geometries, as these are vital both for the device implantation and the device effect 
simulation. Additionally, the generation of synthetic hemodynamic boundary conditions was already 
described in D6.4 - Specification and quantification of subject-specific data-based boundary conditions 
(CHA, M24), as the same strategies for generation of those boundary conditions had to be used for 
the real and synthetic data sets. Furthermore, several aspects of the generation of synthetic data and 
synthetic boundary conditions have already been addressed in D5.6 - Completion of synthetic data 
creation process (UCL, M18), and will therefore only be briefly summarised here. 
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General considerations 
One of the key advantages of synthetic data is that this type of data, which is usually generated using 
automated procedures, can be very well standardised. Further relevant advantages of synthetic 
datasets are: 

● They are usually not affected by missing data or data sparsity; 
● They allow to create a well-balanced dataset that covers the full heterogeneity of the real 

population; 
● They allow to generate synthetic data in specific regions of interest, e.g., scaling up the 

number of rare cases or focussing on specific anatomical properties. 

In contrast, real-world data and even clinical trial data is commonly affected by multiple problems 
regarding data quality. Often, not all data elements are available for all patients, encumbering or even 
prohibiting building in-silico models describing these patients. Also, data elements might be acquired 
using devices from different vendors or processed using different software depending on the clinical 
centre or physician performing the procedure. This can result in data being available in different data 
formats, being biased, conflicting with each other or of varying uncertainty.  

With synthetic data, usually a robust standard can be elaborated on how data should be generated, 
not only ensuring that every data element used as synthetic boundary condition for each patient is 
available, but also that it adheres to the same file types and conventions. Therefore, synthetic data, 
and especially synthetic boundary conditions, are perfectly suited for automation of in-silico modelling 
procedures, as less variation in specific aspects of the input data, such as mesh resolutions, method 
for reconstructing or measuring the data elements, or file types, are to be expected. While these 
aspects can and must be standardised with process-specific standard operating procedures, full 
automation is better suited to avoid any deviation. 

Standards and quality measures 
Currently, no explicit standards for generation of synthetic data exist. The wide variety of data 
elements, generation methods and potential use cases of synthetic data does encumber the definition 
of a common standard covering all aspects of this complex topic. However, for standardisation within 
a specific use case, synthetic data and synthetic boundary conditions are perfectly suited. First, if all 
models for synthetic boundary condition generation are established, a standardised modelling 
pipeline using this data can be elaborated, allowing for fully automated data processing. Furthermore, 
as synthetic data sets are usually not affected, they can be shared openly, allowing to generate 
standardised data sets for benchmarking and comparison of in-silico models, further enhancing 
standardisation in this field. 

Such a processing pipeline usually will closely adhere to any modelling procedure performed using 
real patient- or animal data. However, it might also be viable to adjust the modelling pipeline. Data 
and boundary conditions that are only available in a few patients are usually not viable for setting up 
a numeric model, as it might constrain application too strongly. As a simplified example, volume flow 
information might only be available in an averaged manner for all patients, by measurement of the SV 
and heart rate (HR). In other patients, transient measurements of the volume flow rate might be 
available, allowing transient parameterization of the models. In this case, a model might be designed 
using only the more generic information, as it allows wider applicability of the model. However, if the 
rarer transient information can be generated in a synthetic manner, they might be usable. In theory, 
this approach can also be used to enhance real data sets by providing boundary conditions not 
available from clinical measurements. This approach was also described in D6.4, where transient 
volume flow rate information in the pulmonary artery and aorta was calculated using either 
demographic data (body weight of pigs) or clinical routine hemodynamic information 
(echocardiography-based measurements of SV and HR).  
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If the in-silico model is changed to accommodate for more suitable synthetic boundary conditions, 
several aspects must be considered. First, in a hybrid data set containing both real and synthetic 
boundary conditions, transparent description of which data elements have been measured and which 
were generated in a synthetic manner. Second, the effects of changing the in-silico model to use other 
types of boundary conditions must be evaluated thoroughly, as it might compromise comparison and 
validation of the virtual cohorts generated using the synthetic boundary conditions. 

To ensure that the synthetic data is of sufficient quality, several approaches are possible, following 
the tiered, three-level validation scheme envisaged also for the virtual cohort generators in SIMCor. 
Here, distributions of generated synthetic boundary conditions should be compared against the real 
boundary conditions for training. For that, equivalence tests are used to assess whether relevant 
deviations in distribution, means or standard deviations occur. Furthermore, it is important to also 
assess the interaction between boundary conditions, as one patient commonly is represented by a set 
of parameters. As these parameters are not necessarily statistically independent, their correlations 
must also be reflected by the synthetic data. If this is not the case, non-physiologic combinations of 
boundary conditions might be represented in the synthetic data sets. However, it is to be noted that 
even if correlations between different parameters and boundary conditions are maintained in the 
synthetic data sets, non-physiologic virtual patients might be included in the data sets, which can, for 
example, be identified by sufficient filtering strategies, as described in D7.6 - Proof of principle of the 
complete virtual cohort generator (TUE, M24).  

In more complex data types, such as synthetic velocity inlet profiles or synthetic surface geometries, 
these comparisons are not trivial. Here, two approaches can be used to assess the accuracy and 
usability of the synthetic boundary conditions. First, the complex data set can be described using a 
reduced set of quantifiable parameters. For example, anatomical geometries can be described using 
various measurements, such as diameters and volumes, which in turn can be compared between the 
real and synthetic geometries. This description can also be performed using a statistical shape model, 
allowing more abstract description of geometries using shape modes and shape weights (see D7.6). 
Second, real boundary conditions of a patient can be replaced using synthetic boundary conditions 
that were chosen to match closely. For example, a synthetic geometry close to the patient-specific 
one (e.g., by minimising an error norm on the shape weights) can be used in the numerical model the 
boundary conditions are intended for. If all other patient-specific boundary conditions are kept, the 
isolated effect of the synthetic boundary condition can be evaluated. 

As previously explained, synthetic data is ideally suited to generate well-balanced datasets, covering 
the entire variation observed in real clinical data sets. Therefore, they are ideally suited to quantify 
biases resulting from these variations in a systematic manner, which might be more difficult in real 
samples, where specific configurations of input parameters might not be reflected, due to the usually 
small sample sizes. 

Formats 
For the synthetic boundary conditions, the same file formats and data structures as described in D6.2 
- Database for anatomy and function based on preclinical and clinical data (CHA, M12) will be used. 
This allows to directly use the synthetic boundary conditions within the processing pipelines 
elaborated using patient-specific or animal data. As a general note, it is recommended to choose non-
proprietary, open file types for all synthetically generated data sets, to enhance their uptake when 
made available. 
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TAVI use case 
Within the project, three different approaches for generation of synthetic cohorts including surface 
geometries have been employed, resulting from the data processing being performed at two clinical 
centres (CHA, UCL), as well as the integration of synthetic geometries into the virtual cohort generator 
by TUE. These approaches are described in the following sections. Where applicable, references to 
D5.6, D6.4, and D7.6 are made, in which most aspects of the generation of synthetic boundary 
conditions already have been described. In these instances, only a brief overview is provided. 

Synthetic anatomy - CHA 
At CHA, the patient-specific anatomies of >100 TAVI patients were reconstructed from CT data in a 
semi-automatic manner, as described in D5.6 and D6.4. From these geometries, various geometric 
parameters describing the aortic root were measured, including diameters of the left ventricular 
outflow tract and the sinotubular junction, as well as the aortic valve opening area. These patient-
specific measurements were used as input for a Copula-based model, to learn and replicate the 
boundary value distributions of all geometric, demographic and functional parameters, as well as their 
interaction (i.e., correlations). Using this approach, synthetic demographic, functional, and anatomical 
parameters could be created by sampling on these distributions. At this point, these virtual patients 
were only characterised by numerical values, describing the synthetic values for age, height, weight, 
diameters, or the aortic valve area and no complex boundary conditions were generated yet (see 
Figure 1 and 2). However, these parameters mimicked the patient-specific distributions very well, and 
also all correlations found within the patient-specific data set were matched sufficiently well, with the 
largest absolute deviations in correlations observed between parameter pairs being below 0.05.  

 

Figure 1: Overview of distributions and correlations between demographic parameters (age, weight and height) and the 
geometric parameters (diameter of the aortic annulus, diameter of the sinotubular junction and the aortic valve area 

(AVA)). 

For generation of synthetic boundary conditions, we used a parametric model of the aortic root 
including the ascending aorta, which was also the basis for the segmentation. The baseline parameters 
of this model were fully sampled, spanning the entire range observed in the real data sets, resulting 
in more than 1 million possible combinations (see D5.6). Anatomical parameters of interest could 



 

D6.5 – Specification and quantification of synthetic boundary conditions  SIMCor – GA No. 101017578 

    

9 

 

directly be calculated from these baseline parameters. Therefore, generation of all possible surface 
geometries was not necessary. For each synthetic patient, the parametric model with the least 
deviations (L1-norm) was identified and the corresponding surface geometry was selected (see Figure 
3). 

 

Figure 2: Comparison of the distributions of the demographic parameters age, height, weight, between the real data set 
and a synthetic data set, which was generated using a Copula-based approach. 

 

Figure 3: Illustration of the selection of suitable synthetic surface geometries (blue) from a large database of potential 
candidates (red), matching the geometric parameters identified using the Copula-based generation approach. 

While this selection step resulted in minor deviations between the anatomical parameters generated 
by the Copula-based method and those observed in the synthetic surface geometries, both the 
distributions of anatomical parameters and the correlations between parameters still agreed perfectly 
with the real data set (see Figure 4). 
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Figure 4: Comparison of the distributions of the aortic annulus diameter, the diameter of the sinotubular junction, and the 
AVA of the real and synthetic dataset. The values were calculated after selection of best-fitting surface geometries, 

indicating that this procedure did not result in any relevant biases between the real and synthetic data sets. 

Synthetic anatomy - TUE 
TUE used the patient-specific reconstructions of the aortic root provided by CHA to generate an SSM 
of this region of interest. Using this approach, the shape weights of the SSM and their correlations to 
other parameters, such as demographics and functional parameters, can directly be considered during 
generation of the synthetic anatomies. The overall approach for sampling of the synthetic data sets, 
however, is similarly based on learning and reproducing boundary value distributions of the different 
parameters using Copulas, as the CHA approach. The main difference is that the use of shape weights 
directly within this step does not require sampling the entire possible parameter space and can, in 
theory, directly produce only geometries within the physiological envelope. While this approach 
reduces the probability of generation of boundary conditions outside the physiological envelope, 
filtering strategies are nonetheless necessary to identify any remaining erroneous cases. Furthermore, 
filtering strategies can be applied to generate sub-cohorts with specific properties, such as the specific 
demographic characteristics (e.g., age, sex, weight), but also anatomical and functional aspects, such 
as a convergent or divergent anatomies of the left ventricular outflow tract, or specific degrees of 
aortic stenosis severity. While demographic information of course can also be controlled within a real 
clinical trial by specifying inclusion and exclusion criteria, some more complex anatomical traits 
require some initial assessment, which might prohibit using these properties in real clinical trials, due 
to high costs as well as legal and ethical barriers. This filtering approach is detailed in D7.6.  
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PAPS use case - porcine data 

Synthetic porcine anatomy 
The generation of synthetic anatomical boundary conditions, i.e., synthetic surface geometries of the 
pulmonary artery, was already described in detail in D5.6 for the animal cohort. Briefly, a centreline-
based SSM of the pulmonary artery was generated, including the main, left, and right pulmonary 
artery, the branching vessels of the left and right pulmonary arteries, using available retrospective 
data. Here, a simplified approach was used assuming the same amount of branching vessels on the 
left and right pulmonary artery to ensure the same topology, which is a prerequisite for SSM.  

This approach allowed us to generate a large data set of about 4000 synthetic geometries by sampling 
of the shape weights using their respective distributions. To subsequently select suitable cases out of 
this dataset, an interactive tool was created in MATLAB (see Figure 5). The main application of this 
tool is currently to create a synthetic representation of the chronic animal trial performed in SIMCor, 
while simultaneously allowing to explore the real and synthetic datasets and assess their similarities 
with respect to different parameter distributions. Beside the ability to generate a matched virtual 
cohort, the tool also allows to find multiple synthetic cases matching a real case, therefore generating 
larger cohorts with the same parameter distributions.  

The tool was designed in an interactive manner, to allow the user to select different parameters of 
interest and their specific importance. For example, if for device implantation simulations a near 
perfect match in the vessel diameters is considered relevant, the tool will allow to select geometries 
with small deviations for this parameter, while allowing larger deviations for others. Furthermore, the 
tool provides an overview of the best matching surface geometries from the synthetic data set, 
allowing the user to also visually choose a geometry in case multiple well-suited matches are identified 
based on the geometric parameters alone. The tool is meant as proof-of-concept for a selection 
procedure based on user-specific requirements and will subsequently be implemented in the VRE or 
made available as standalone application distributed via the VRE. In the future, the tool will be also 
adapted to be used for human PAs. 

 

Figure 5: Graphical user interface of the software application for generation of a synthetic cohort of porcine pulmonary 
artery geometries based on user-inputs. 
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Synthetic MPA inlet flow rate curves 
For the 10 animals investigated in the chronic animal study, no direct information regarding the 
haemodynamic boundary conditions were available. Flow rate waveforms at the MPA were generated 
synthetically using a hybrid approach described in D6.4. First, CO and HR were estimated based on the 
animals’ weights, according to scaling laws published earlier1. Next, flow rates were synthetically 
generated based on principal component analysis of earlier published MRI-measurements2. Figure 6 
shows exemplary 10 flow rate waveforms for the CFD study investigating the effect of the PAPS on the 
PA hemodynamics. 

 

 

Figure 6: Volume flow waveforms used as inlet boundary condition for all 10 animals of a chronic animal study.  

  

 
1 van Essen, G. J., Te Lintel Hekkert, M., Sorop, O., Heinonen, I., van der Velden, J., Merkus, D., et al. (2018). Cardiovascular Function of 

Modern Pigs Does not Comply with Allometric Scaling Laws. Sci Rep 8, 792 
2 Faragli, A., Alogna, A., Lee, C., Zhu, M., Ghorbani, N., Lo Muzio, F., et al. (2021). Non-invasive cmr-based quantification of myocardial power 
and efficiency under stress and ischemic conditions in landrace pigs. Front Cardiovasc Med. 8, 689255. 

 



 

D6.5 – Specification and quantification of synthetic boundary conditions  SIMCor – GA No. 101017578 

    

13 

 

PAPS use case - patient data 
The main approach for generation of the synthetic data sets for the human pulmonary artery is similar 
to the porcine pulmonary artery. The procedure can be summarised as follows. First, the real 
geometries of the pulmonary artery are characterised using a centreline-based representation. Based 
on this centreline, all relevant anatomical parameters are calculated. A centreline-based SSM is 
generated to describe the overall shape variance of the anatomies. This SSM and the information with 
respect to its shape weights and their distributions is used to generate a large data set of synthetic 
geometries. Finally, for generation of a synthetic cohort, the most suitable synthetic surface 
geometries are selected from this large data set. However, the centreline-based SSM had to be 
significantly altered to allow this approach to also be used for the human pulmonary artery. The 
reason for this requirement was that the number of smaller vessels branching from the left and right 
pulmonary artery was more heterogeneous in humans than in animals. Assuming a constant number 
of branching vessels for the left and right pulmonary artery was therefore not justified. 

Consequently, the SSM was adjusted to first only include the main, left and right pulmonary artery. 
The branching vessels were not directly included in the SSM. Thus, using the SSM, only synthetic 
geometries of the main vessels can be created using information of the shape weights and their 
distributions observed in the real human data sets. To also account for the branching vessels, a 
heuristic model was generated that aims to replicate the variation in the number, diameter, and 
orientation of the branching vessels. This heuristic model considered correlations found in the real 
data sets but is to be considered as an addition to the SSM. 

This model has a relevant advantage for the device implantation and device effect simulations to be 
performed for the PAPS use case in SIMCor: the effect of the branching vessel can be analysed 
individually. To facilitate this, different configurations of branching vessels are generated for the same 
synthetic main vasculature (i.e., the same shape of the main, left, and right pulmonary artery). In real 
datasets, this isolated evaluation is not possible, as another configuration of branching vessels will 
always be associated with differences in the diameters, lengths, and curvatures of the main vessels. 
As the branching vessels have been identified as a relevant aspect, especially for the fixation of the 
PAPS devices, this isolated approach might allow us to assess the importance of the branching vessels 
and how to account for them in the design of the sensor fixation. An example of a geometry with four 
different configurations of branching vessels is shown in Figure 7. 
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Figure 7: Example of a synthetic main geometry of the human pulmonary artery (main, left, and right pulmonary artery) with 
four different synthetic configurations of side branches.  

Overall, more than 2000 synthetic geometries or 500 different main bifurcation shapes with at least 4 
different combinations of branching vessels will be generated. No relevant differences in shape 
weights and geometric parameters between men and women have been identified. Furthermore, 
correlations between shape weights, demographic and anatomical parameters were weak in all cases 
(<0.3). Therefore, we decided against generation of the synthetic parameter distributions using the 
Copula-based method used for the TAVI use case, as no meaningful correlations were existing that 
should already be considered during the generation step. Thus, generation of synthetic geometries 
was achieved by sampling on the shape weight distributions observed in the real data sets. 
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