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Summary 

Fine-scale population census data are often lacking due to the challenge of sharing such 

sensitive data at granular scales. In this study, we compare the Random Forest (RF) model 

and the Bayesian Additive Regression Tree (BART) model for population disaggregation 

using both census data from Ghana and simulated data. The BART model outperforms the 

RF model in out-of-sample predictions for metrics like bias, mean squared error, and root 

mean squared error. It also provides uncertainty estimates around the predicted population, 

which is often lacking with the RF model. This study highlights the BART model's 

superiority in disaggregating population data. 
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Introduction 

Population figures at small area scales are crucial for policymakers as they offer insights on 

the magnitude, structure, spatial distribution, and temporal changes of a nation's population. 

Accurate population data is essential for emergency response and disaster relief efforts, 

especially during natural disasters (Tenerelli et al., 2015; UN-SPIDER, 2023; UNFPA, 2020). 

National population and housing censuses are the most accurate, spatially detailed, and reliable 

sources of population information. However, census data or projected population data are 

produced at a higher administrative level, such as the country or regional level, and are lacking 

at small area levels because of the challenge of sharing population data at sensitive small-area 

scales (Skinner, 2018). Integration of data collected at higher administrative levels with other 

forms of data, such as health facilities or catchment areas data, for small-scale estimations, then 

becomes a challenge. Lack of population data at a granular level, such as enumeration areas, 

towns, and sub-districts, means that we are unable to make accurate and reliable population 

decisions at these levels. 

Several global and continental gridded population datasets have been produced to fill in these 

gaps at the small-area level (Leyk et al., 2019) These include the LandScan Global Population 

Datasets (Sims et al., 2023), the Gridded Population of the World version 4 (CIESIN, 2018), 

the WorldPop population datasets (Tatem, 2017), and the Global Human Settlement Layer-

Population (Florczyk et al., 2019). One of the methods for producing such data is dasymetric 

population mapping, where population numbers at higher administrative units are 

disaggregated at small area levels using ancillary geospatial covariates, which inform the 

model. 



Two major limitations are associated with this method: (1) our inability to quantify the 

uncertainties around the predictions; and (2) our inability to validate the gridded population 

numbers with actual observed ground data at the grid cell due to the absence of such data. 

These two issues have been unexplored in top-down gridded population modeling. The 

objectives of this work were therefore to: 

1. apply a Bayesian Additive Regression Tree (BART) approach to disaggregate 

population totals from a higher administrative unit to the grid cell level and to estimate 

the uncertainties associated with the predictions. This objective involved a comparative 

assessment of the BART approach and the RandomForest (RF) algorithm for 

dasymetric population mapping. The RF is one of the most popular algorithms for 

population mapping. 

2. To validate the gridded population estimates with "true" simulated population numbers 

at the gridcell level in a simulation study. The predicted gridcell population was 

compared with the simulated "true" population to assess the comparative performance 

of both the RF model and the BART model. 

Method 

The study used the 2021 National Population Census of Ghana at the district level, which 

corresponds to administrative level 2 for the population disaggregation. We combined the 

observed population numbers with a wide range of geospatial covariates related to population 

distribution across the country for the modelling. The study used dasymetric population 

disaggregation modelling, which involves fitting a model to estimate predicted population 

density, which is used as a weighting layer to redistribute observed population data from a 

larger administrative unit to target gridcells or small areas (Stevens et al., 2020). The model 

was fitted using both the BART (Kapelner and Bleich, 2013) and the RF models. Model metrics 

were calculated to compare the performance of the two models, including bias, imprecision, 

mean square error (MSE), root mean square error (RMSE), Pearson correlation, pseudo-R-

squared, and 95% coverage. 

We also simulated gridcell population counts and aggregated them to a higher administrative 

level. We then used both the RF and BART models to disaggregate the total simulated 

population from the higher administrative level to obtain pixel-level population estimates. We 

compared the true simulated pixel population count and the disaggregated pixel population 

estimates on a pixel-by-pixel level. We also calculated model metrics to see how well both 

models worked with simulated data. 

Results  

Simulation Study 

The BART model showed superior performance across all model metrics, including in-sample 

and out-of-sample predictions (Table 1). The BART model achieved a nearly perfect 

percentage of variance explained by geospatial covariates, reaching 100%, while the RF model 

achieved 96% in in-sample prediction. The RF model exhibited a slight tendency to overfit the 

data, while the BART model demonstrated optimal performance. There was an 81% correlation 

between the BART predicted estimates and the true simulated pixel-level estimates for the 

disaggregated population numbers at the grid cell level. This was in contrast to a 66% 



correlation between the RF model estimates and the simulated true estimates. The BART model 

also had lower values for imprecision, MSE, and RMSE compared to the RF model, indicating 

that the BART model provides a better approach to disaggregating population totals at small 

area levels compared to the RF model. 

Table 1. Goodness of fit metrics of simulated data 

Models Predictions Bias Imprecision MSE RMSE 

Pearson 

r R2 % Coverage 

Random-

Forest 

In-sample 

(district) -0.04 0.17 0.03 0.17 0.93 0.96   

 

 

Out-of-

sample 

(district) -0.06 0.28 0.08 0.28 0.86   

 

Pixel-

Predictions 0.00 28.7 826 28.7 0.66   

BART 

 

In-sample 

(district) -0.003 0.05 0.003 0.05 0.99 0.99 99.45 

 

 

Out-of 

sample 

(district) 0.002 0.02 0 0.02 0.99  93.59 

  

 

Pixel 

Predictions 0.00  22.44  503.42  22.44  0.81     

Note: Model metrics were computed using residuals (predicted – observed values). A 

lower value for bias, imprecision, mean squared error (MSE), and root mean square 

error (RMSE) signifies a superior fit of the model. Conversely, a higher value for 

correlation and the percentage of variance explained by the geospatial covariates 

indicates a more accurate and robust model fit. 

 

2021 National Population Census Disaggregation 

The superiority of the BART model in disaggregating census data compared to the RF model 

was also observed when both models were used to disaggregate the 2021 National Population 

Census for Ghana. Notably, the BART model outperformed the RF model in both in-sample 

and out-sample predictions (Table 2). The BART model exhibited a substantially higher 

percentage of variance explained, nearing 100%, as opposed to the RF model's 96%. Out-of-

sample metrics showed BART's strength in population disaggregation, which added to the case 

for its better performance. For instance, the out-of-sample RMSE for the RF model stood at 

0.15, while the BART model demonstrated a significantly lower RMSE of 0.05. Overall, the 

model evaluation metrics from the out-of-sample prediction show that the BART model 

performs better than the RF model, which is similar to what we found in the simulation study. 

 

 



 

Table 2. Goodness of fit metrics of 2021 Population Census Disaggregation 

Models Predictions Bias Imprecision MSE RMSE 

Pearson 

r R2 

% in 

Credible 

Interval 

Random-

Forest 

In-sample 

(district) -0.04 0.23 0.05 0.23 0.85 0.96  

 

 

Out-of-sample 

(district) -0.03 0.15 0.02 0.15 0.92   

BART 

 

In-sample 

(district) -0.01 0.07 0.04 0.07 0.99 0.998 98.91 

  

 

Out-of-

sample(district) -0.01 0.05 0.002 0.05 0.96   92.31 

 

The BART model also addresses the limitation of the RF model, which is its inability to 

quantify the uncertainty around the predictions. With the BART model, we did posterior 

simulations from the parameter estimates, calculated credible intervals around the the 

predictions and used these credible intervals to quantify the uncertainty around the predictions. 

From the BART model in Fig 1, values for the upper credible interval ranges between 0.24 to 

568.25 and the lower credible interval ranges between 0.08 to 287.85 people per pixel. The 

uncertainty around the predictions ranges from 0.50 to 2.42, and the coefficient of variation for 

most of the gridcells are less than 0.2, indicating less variability around the mean predicted 

population count. 



 

Fig. 1 shows the uncertainty surrounding the predictions. The uncertainty was calculated 

using the formula (upper credible interval – lower credible interval)/mean population. 

The coefficient of variation was calculated by dividing the mean population by the 

standard deviation. A low coefficient of variation indicates that the predicted population 

is tightly clustered around the mean, while a high coefficient of variation indicates a wider 

variability around the predicted population. 

 

Discussion 

The study compares a Bayesian approach to population disaggregation using a BART model 

and a Random Forest (RF) model for predicting population figures based on pixel-level 

covariates. The study found that the BART model was able to recover the "true" simulated 

population much better than the RF model across all model metrics (bias, imprecision, MSE, 

RMSE, and correlation). This suggests that the RF model may systematically underestimate or 

overestimate the number of people within a grid cell compared to the BART model. This 

underestimation or overestimation may have national policy implications, particularly for 

healthcare campaigns and disaster relief efforts in LMICs where regular population data at 

granular scales is lacking. The study highlights the need for more accurate and reliable 

population mapping methods for top-down population disaggregation. The BART approach 

also quantifies uncertainty around the predictions, which is good for policy decisions. 

Our study stands as a significant milestone in the field of top-down dasymetric population 

modelling, being the first to apply a Bayesian approach to the modelling. While the RF model 

has been the de facto choice in previous research, its inability to provide uncertainty estimates 



around predictions has been a notable limitation. The BART model, as a pioneering Bayesian 

approach in this context, not only outperforms the RF model but also provides a means to 

quantify prediction uncertainties. This innovation has the potential to transform top-down 

population disaggregation, offering a powerful tool for researchers and policymakers alike. By 

adopting this Bayesian top-down model, future researchers can harness its capabilities to 

improve the accuracy and precision of population distribution estimates, ultimately advancing 

our understanding of human demographics at local scales and informing critical decision-

making processes. 
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