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Abstract

We present estimates of length-weight relationships (LWRs) of 55 mesopelagic fish
species of 13 taxonomic families based on data collected in the eastern tropical
North Atlantic (ETNA) in March/April 2015. Our data include novel records for
19 species, while for 25 species LWRs are based on the most robust sample sizes,
and for 21 species they are based on the most representative size ranges available up
to now. In 31 species, body lengths were within the maximum range of body lengths
recorded in the area, with new records of maximum lengths for 13 species. Most
values for b fell between 2.5 and 3.5 with a mean exponent b of 3.08 (median 3.12)
and a mean a of 0.0172 (median 0.0113). Body shape as covariate (‘elongated’, ‘fusi-
form’ and ‘short-deep’) strongly determined the variation in log a as a function of
parameter b. For the mesopelagic fish species investigated, the form factor as o indi-
cated a significant increase of median as from ‘elongated’ to ‘fusiform’ to ‘short-
deep’ body shapes. Large variability existed in parameter b between species of the
same taxonomic family. Isometric growth was indicated in only nine species, whereas
a positive allometry was suggested in 22 species. Using segmented regression analy-
sis, we investigated ontogenetic variation in LWRs in 30 species. Of these, 20 species
showed a breakpoint in LWR, whereby nearly equal numbers exhibited an increase or
a decrease in slope following the breakpoint. Seven out of nine species showed sig-
nificant regional variation in the slope of the relationship of the relative condition fac-
tor K. vs. body length between two or more regions of the ETNA [eastern and
western part of the oxygen minimum zone (LO-E, LO-W), northern and central
equatorial region (EQ-N, EQ-C)]. A conspicuous pattern was an increase in K¢ with
body size in the LO-E (in six out of eight species), whereas in the LO-W and the
equatorial regions the majority of species showed a related decrease. These findings
support the idea that growth patterns in mesopelagic fishes in tropical regions show
species-specific ecological niche and life-history adaptations that are finely tuned to
small-scale regional environmental conditions. Comparison of our data with those of
other studies emphasises that, regarding the small adult sizes of many mesopelagic
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distributions.
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1 | INTRODUCTION

Harvesting of the large, hitherto mostly untapped, mesopelagic fish
biomass resource is increasingly considered a realistic option
(Hidalgo & Browman, 2019; Olsen et al., 2020; Prellezo &
Maravelias, 2019; Standal & Grimaldo, 2020). At present, mesopelagic
fish species are all unregulated species subject to no fisheries regula-
tions (Standal & Grimaldo, 2020). Besides questions regarding regula-
tory mechanisms and economic viability, management of mesopelagic
fish species is hampered by the lack of a sound biological knowledge
base. Biomass estimates of mesopelagic fishes are currently con-
nected to different sources of uncertainty associated with fish
swimbladder volume, length distribution, species morphology, com-
munity composition and spatio-temporal variability related to these
factors (see Hidalgo & Browman, 2019 and references therein). In
addition, basic biological parameters related to growth, maturation
and regional and seasonal variability in condition are currently missing
for most mesopelagic fish species (Sarmiento-Lezcano et al., 2018,
2020). Collecting regionally extensive biological data is more easily
conducted in temperate and boreal ecosystems where few mesope-
lagic fish species dominate (Grimaldo et al., 2020). On the contrary, in
the equatorial regions that host a large diversity in mesopelagic fish
species, capturing the full suite of the species community and its
respective biological parameters constitutes a challenge. Because the
mesopelagic fish community is an important component of global tro-
phic and carbon cycles (e.g., Klevjer et al., 2016), with individual spe-
cies likely constituting key components (e.g., Eduardo et al., 2020b),
improving our knowledge on biological characteristics of individual
species is an essential prerequisite prior to any exploitation (Hidalgo &
Browman, 2019).

Length-weight relationships (LWRs) are used to estimate biomass
based on more easily obtained length distributions, to determine spe-
cies' growth patterns and to identify spatio-temporal variation in pop-
ulation condition and fitness (Froese, 2006). Across-species variation
exists regarding body shape, life-history patterns and habitat. Within-
species variation in LWRs can be due to sex, maturity stage and
recent feeding history. Depending on the season, the geographic pop-
ulation and annual differences in environmental conditions, LWRs in
individual species can vary substantially (Froese, 2006), but sampling
gear and methodology also impact the size ranges sampled and, con-
sequently, their size-based parameters (Gartner et al, 1989;
Harrisson, 1967; Heino et al., 2011; Jamieson et al., 2006; Kaartvedt
et al., 2012; Kashkin & Parin, 1983; Pearcy, 1983). LWRs in mesope-
lagic fish species have been reported in comparatively few studies
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fish species, estimates of LWR parameters are strongly influenced by sampled size

body shape, condition, eastern tropical Atlantic, length-weight relationships, mesopelagic
zone, ontogeny, oxygen minimum layer

(Battaglia et al., 2010; Eduardo et al., 2019, 2020a; Grimaldo
et al., 2020; Jiang et al., 2017; Lépez-Pérez et al., 2020; Olivar et al.,
2013; Sarmiento-Lezcano et al., 2018; Slayden, 2020; Wang
et al., 2018). Studies are not always comparable due to differences in
preservation strategies employed that further affect LWR estimates.
Relative body condition is an important indicator of individual or pop-
ulation physiological and nutritional status, which can be interpreted
in terms of energy reserves, but also with respect to life-history
parameters, for example reproduction and growth (Gubiani
et al., 2020; Jakob et al., 1996). Due to generally limited sample sizes
in mesopelagic fish studies, spatio-temporal variation in LWRs and rel-
ative condition has only rarely been explored (Lopez-Pérez
et al., 2020). Differences in LWRs related to development phases or
growth stanzas, which have been demonstrated in other pelagic fish
species, remain, as yet, unexplored (Froese, 2006).

Based on a comparatively extensive dataset, the present study
reports LWRs of 55 mesopelagic fish species from the eastern tropical
North Atlantic, covering both vertically migrant and nonmigrating spe-
cies of 13 different taxonomic families. We investigated (a) across-
species variation in LWRs related to taxonomic level and body shape,
and (b) within-species variation in LWRs by considering different
growth stanza and regional variation in condition factors between
subregions in the two ecoregions #26 ‘Mauritania/Cape Verde’ and
#27 ‘Tropical and West Equatorial Atlantic’ (Sutton et al., 2017).

2 | MATERIALS AND METHODS

2.1 | Biological sample collection and processing

Fish samples were collected between 23 March and 2 April 2015 dur-
ing cruise WH383 on the FRV Walther Herwig Il at 10 stations in the
eastern tropical North Atlantic between 0-12°N and 20-26°W
(Figure 1). A pelagic midwater trawl (‘Aalnet’, Engel Netze, Bremerha-
ven, Germany, 16 x 30 m mouth opening, length 150 m including
multiple opening-closing devices, 260 meshes by 180 cm stretched
mesh size at front, cod end 20 mm stretched mesh-opening, 1.8 mm
inlet sewn into last 1 m of cod end, see British Columbia midwater
trawl modification; Harrisson, 1967) was used that sampled three dis-
crete depth strata between 45 and 680 m (for details see Czudaj
et al., 2021). Depending on the size of the total catch, we preserved
either subsamples or the total catch in 4% formaldehyde-seawater
solution (buffered with sodium-tetraborate), and identified and mea-

sured them onboard and in the laboratory in Steedman sorting fluid
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FIGURE 1 Stations in the eastern low-oxygen (LO-E), western
low-oxygen (LO-W), northern equatorial (EQ-N) and central
equatorial (EQ-C) regions of the eastern tropical North Atlantic
sampled in this study

(Steedman, 1976). A minor portion of samples was preserved frozen
at —30°C. Fish specimens were identified by consulting regional iden-
tification keys (Bigelow et al., 1964; Carpenter & De Angelis, 2016a,b;
Nafpaktitis et al., 1977; Whitehead et al., 1986) and FishBase
(Froese & Pauly, 2022). We measured and weighed fishes to the
nearest 0.01 mm and 0.01 g (0.1 g in a few cases).

2.2 | Data analysis

All analyses were conducted in the statistical computing package R
(version 1.4.1106; R Core Team, 2020) using the packages ‘tidyverse’
(Wickham, 2019), ‘reshape’ (Wickham, 2007), ‘ggpubr’ (Kassambara,
2019) and those specified with the analyses. We estimated LWRs
according to the equation TW = a x SL,, where TW is the body weight
in grams, SL is the standard length in centimetres, a is the intercept and
b is the allometric coefficient (Keys, 1928). Using the logarithmic form of
this LWR, we fitted mean regional LWRs for each species with sample
sizes 225 specimens per region, based on all data available. We excluded
individual outliers and singular extreme values at the minimum/maximum
end of the size range. We also included data for four species with sample
availability <25, but a fairly representative size range covered and with no
reference data available in the literature so far. We investigated across-
species variation in LWRs by first looking at the frequency distribution of
mean log a and mean exponent b for the 55 species included in our study.
We evaluated the growth pattern in the species examined and whether it
was isometric (b = 3) or allometric (b < 3, b > 3) in our study region during
the respective time of our sampling. For this purpose we used the
‘hoCoef’ test of the R package ‘FSA’, which performs a hypothesis test

that a linear model parameter is equal to a specific value (Ogle
et al, 2019). We looked at the relationship to taxonomic level and
explored the influence of body shape on the parameters of the LWR. For
this purpose, we predetermined three groups of body shapes, i.e., ‘short-
deep’, “fusiform’ and ‘elongated’ (categories according to Froese, 2006),
which we assigned to each species based on information available in
FishBase (Froese & Pauly, 2022). In cases with no information available in
FishBase, we assigned a similar morphology as in other family members
(marked with brackets in Table 1). We reassigned the gonostomatid
Diplophos taenia Gunther 1873 from ‘eel-like’ to ‘elongated’ because of
the lack of further ‘eel-like’-shaped species in our analysis. In the particu-
lar case of the myctophid Electrona risso (Cocco 1829), which is described
as ‘elongated’ in FishBase based on a reference that refers to young
stages only (Moser, 1996), we reassigned it as ‘fusiform’ considering its
rather deep adult body shape compared to other myctophids. We esti-
mated linear regressions for each of the groups and analysed significant
differences in the intercept and slope between them using an ANCOVA
with log a as response variable, b as continuous covariate and ‘body
shape’ as categorical covariate. We further looked at the form factor azo
and its applicability as an indicator of body shape in mesopelagic fishes.

08 @ — Sb = 3 js the value that coefficient

The form factor azg = 1
a would have if exponent b was 3.0 (Froese, 2006), where S is the slope
of the regression of log a vs. b. Here, we used the across-species slope of
S = 1.358 based on a dataset of 1223 fish species presented in
Equation 17 by Froese (2006). This was chosen for better comparability
between studies and because of its greater generality compared to our
comparatively more limited dataset. We used Akaike information criterion
(AIC) model selection to distinguish among two models that differed in
the respective body shape assignments of three questionable species as
identified by the form factor. We further investigated within-species vari-
ation in LWRs by first examining growth stanza in LWRs of 30 mesope-
lagic fish species with sufficiently available size ranges and size
distributions sampled using segmented regression analysis (R package
‘segmented’; Muggeo, 2003, 2008, 2016, 2017). In addition, we explored
regional variation in a species’ condition in nine species with sufficient
data to compare at least two regions among the eastern low-oxygen
(LO-E), western low-oxygen (LO-W), northern equatorial (EQ-N) and
central equatorial (EQ-C) regions. In this analysis, we excluded regions
(@) with sample sizes <30 and (b) with sample sizes >30, but unre-
presentative size distributions. We explored regional variation in a species'
condition via a double-logarithmic plot of the relative condition factor K¢
vs. standard length (cm) and an ANCOVA with ‘region’ as covariate com-
paring K. correcting for body size (SL). We checked the underlying
assumptions of normality using a Shapiro-Wilk test and of homoscedas-
ticity using a Bartlett and a Levene test (Zuur & leno, 2015). Significant
deviation from homogeneity of variance was indicated in many pairwise
comparisons, but in all cases the ratio between the smallest and largest
variance of the residuals was <4, which according to the rule of thumb
given in Zuur and leno (2015) suggests sufficient homogeneity. Ko = W/
a x SL? (Le Cren, 1951) compares the weight of an individual with the
average weight predicted from the corresponding parameters a and b of
a LWR, which we calculated for each species in different regions. Le
Cren's (1951) relative condition factor K, allows us to compare the
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FIGURE 2 Frequency distribution
of (a) mean log a (binwidth 0.2) and
(b) mean exponent b (binwidth 0.1)

=
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condition of different specimens from the same sample, independent of
length, but dependent on the same underlying LWR. Although the investi-
gated species showed in many cases significant variation in LWRs
between different regions, no subpopulation structure on the scales of
our study regions is known in the investigated species. Therefore, and to
facilitate comparison with existing studies, we present results using K in
the present study in favour of relative weight (W,,,) in relation to mean
weight, which was recommended by Froese (2006) for across-population
studies with differing underlying LWRs.

3 | RESULTS

Based on a total of 12,597 individual length and weight measurements
(Supporting Information Figure S1), we estimated LWRs of 55 species
of mesopelagic fishes belonging to 13 families (Table 1). Species of the
family Myctophidae were most numerous in our study (27 species),
followed by the families Sternoptychidae (five species), Stomiidae (four
species) and Gonostomatidae (four species). Functionally, diel migrators
and nondiel migrators (asynchronous, limited, partial and nonmigrators)
were covered in equal parts. The number of analysed individuals ranged
from 10 to 1076 specimens, with 50% of the species having 98 or more
individuals analysed each. In 31 species, body lengths were within the
maximum range of body lengths recorded in the area, with new records
for maximum lengths for 13 species: Argyropelecus sladeni Regan 1908,
Astronesthes richardsoni (Poey 1852), Bathylagoides argyrogaster
(Norman 1930), Bolinichthys indicus (Nafpaktitis & Nafpaktitis 1969),
Zaphotias pedaliotus (Goode & Bean 1896), E. risso, Gonostoma
denudatum Rafinesque 1810, Ichthyococcus ovatus (Cocco 1838),
Melamphaes polylepis Ebeling 1962, Lampanyctus ater Taning 1928, Lam-
panyctus isaacsi Wisner 1974, Platyberyx opalescens Zugmayer 1911 and
Vinciguerria nimbaria (Jordan & Williams 1895).

3.1 | Across-species variation in LWRs

The frequency distribution of mean log a for the 55 species analysed
in this study showed a slightly left-skewed distribution and a mean

20 15 10 250 275 300 325 350

a of 0.0172 (median 0.0113; Shapiro-Wilk test P < 0.001; Figure 2a).
The frequency distribution of mean b showed a roughly normal distri-
bution (Shapiro-Wilk test P > 0.5). Most values for b fell between 2.5
and 3.5, and the mean exponent b was 3.08 (median 3.12; Figure 2b).

3.1.1 | Body shape and form factor as

Body shape as covariate [‘elongated’ (n: 25), ‘fusiform’ (n: 23) and ‘short-
deep’ (n: 8)] strongly determined the variation in log a as a function of
parameter b (Figure 3; residual std. error: 0.27 on 50 d.f, multiple
R? =0.78, adj. R? = 0.76, Fi550 = 35.7, P < 0.001, AIC (k=2) = 18.12).
Neither slopes nor intercepts differed significantly between the different
body shape groups (difference between ‘elongated’ and ‘fusiform’, inter-
cept P = 0.141, slope P = 0.066). For the mesopelagic fish species inves-
tigated, the form factor as indicated a significant increase of median aso
from ‘elongated’ to ‘fusiform’ to ‘short-deep’ body shapes [median
0.0066 (elongated), 0.0174 (fusiform), 0.0314 (short-deep)], whereby
roughly upper and/or lower quartiles overlapped between the different
body shape groups (Figure 4a). Also related to sampled species numbers,
most taxonomic families showed a similar form factor as o, with the nota-
ble exception of species of the family Myctophidae and, less so, the family
Sternoptychidae, which occupied a comparatively wide range (Figure 4b).
In the elongated body shape group, species with an exceptionally large
form factor azo were the myctophids Dasyscopelus asper (Richardson
1845), Bolinichthys supralateralis (Parr 1928) and Ceratoscopelus warmingii
(Lutken 1892, Figure 4c). Overlap in the form factor between the ‘fusi-
form’ and ‘short-deep’ body shapes was due to comparatively high form
factors asg in the myctophid Benthosema suborbitale (Gilbert 1913), the
melamphaids Melamphaes typhlops (Lowe 1843) and Scopelogadus
mizolepis (Gunther 1878), as well as the opisthotroctid Opisthoproctus
soleatus (Vaillant 1888), all characterized as fusiform, as well as a compara-
tively low form factor a5 in the short-deep-shaped sternoptychid Poly-
ipnus polli Schultz 1961. When reassigning the most questionable
overlapping species based on their form factor aso (D. asper,
B. supralateralis, C. warmingii as ‘fusiform’ instead of ‘elongated’), the fit
of the previous model improved considerably (Supporting Information
Figure S2; residual std. error 0.22 on 50 d.f., multiple R?> = 0.85, adi.
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FIGURE 3  Scatter plot of mean log a (SL) over mean b for 55 mesopelagic species with information on body shape. Body shape: #, elongated;

4, fusiform; =, short-deep

R? =084, Fis50) = 58.5, P < 0.001, AIC = —4.56) and the difference in
the intercept and slope between ‘elongated’ and ‘fusiform’ became sig-
nificant (intercept P = 0.012, slope P = 0.003).

3.1.2 | Parameterb

At the taxonomic level, large variability existed in parameter b between
species of the same taxonomic family (Table 1 and Figure 3). In only nine
out of the 55 species analysed, isometric growth was very likely in our

study region [P > 0.05, excluding five species: three species with limited
samples sizes (<25) and two species with a limited size range analysed].
These included four species of the genus Diaphus, two species of the
genus Bolinichthys, the myctophid Hygophum taaningi Becker 1965, the
melamphaid M. polylepis and the stomiid Chauliodus spp. In 13 species,
the lower (Cl 2.5%) and upper confidence interval (Cl 97.5%) of parame-
ter b were lower than 3.0, suggesting negative allometric growth. The
species with lowest values for mean b (2.6-2.8) were the nonmigrators
P. polli (Sternoptychidae), I. ovatus (Phosichthyidae), Sternoptyx diaphana
Hermann 1781 (Sternoptychidae), Diretmus argenteus Johnson 1864
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FIGURE 4 Distribution of form factor as o for 55 mesopelagic species related to (a) body shape, (b) taxonomic family and (c) species. Form
factor calculated from Equation 2 using across-species slope of S = —1.358 based on 1223 fish species presented in equation 17 in Froese (2006)

(Diretmidae), Diretmoides pauciradiatus (Woods 1973) (Diretmidae),
O. soleatus (Opisthotroctidae) and Z. pedaliotus (Gonostomatidae), but
also the migratory myctophids Lobianchia dofleini (Zugmayer 1911),
Diaphus vanhoeffeni (Brauer 1906) and Diaphus dumerilii (Bleeker 1856).
On the contrary, 22 species (excluding seven species, six species with
biased size ranges and one with limited sample availability) had a value
of b with an upper and lower confidence interval limit larger than 3.0,
suggesting positive allometric growth. Excluding species with poten-
tially limited size ranges analysed [i.e., the paralepidids Lestidiops affinis
(Ege 1930) and Lestidiops jayakari (Boulenger 1889), the myctophid
B. suborbitale and the stomiid Chauliodus sloani Bloch & Schneider
1801], highest values for mean parameter b (3.25-3.45) were encoun-
tered in the nonmigrators Searsia koefoedi Parr 1937 (Platytroctidae),
S. mizolepis (Melamphaidae), Cubiceps gracilis (Lowe 1843) (Nomeidae),
Argyropelecus gigas Norman 1930 (Sternoptychidae), G. denudatum
(Gonostomatidae), D. taenia (Gonostomatidae), but also the diel migra-
tors D. asper (Myctophidae) and V. nimbaria (Phosichthyidae), Lam-
panyctus lineatus Taning 1928 (asynchronous migrator at larger sizes)

and L. isaacsi (asynchronous migrator at larger sizes, both Myctophidae).

3.2 | Within-species variation in LWRs

3.2.1 | Growth stanza

Using segmented regression analysis we investigated breakpoints in the
LWRs of 30 mesopelagic fish species with sufficiently available size

ranges and size distributions sampled (Table 2). No breakpoint was esti-
mated in 10 species; in nine species parameter b was larger before the
breakpoint, whereas in 11 species it was smaller. Of 12 species with
available estimates for size at first maturity (Froese & Pauly, 2022;
Sarmiento-Lezcano et al., 2018), six species had estimated breakpoints
at smaller body sizes compared to size at first maturity, whereas in

three species each this was at larger or at equal sizes.

3.2.2 | Condition
In seven of the nine species in which we investigated regional varia-
tion in relative condition K., we observed significant regional differ-
ences in the relationship of K. with increasing body sizes (Figure 5
and Table 3). In six out of eight species sampled in the eastern low-
oxygen region (LO-E), we observed an increase in relative condition
from small to large specimens. At a station level, in five out of eight
species (including the myctophid L. isaacsi not shown in Figure 5), the
north-eastern-most stations 306 and/or 309 had a steeper slope in
the increase in relative condition compared to other stations. On the
contrary, in all other regions, relative condition decreased from small
to large specimens in the majority of species (LO-W, 3 decreasing vs.
1 increasing/1 stagnant; EQ-N, 5 decr. vs. 1 incr./1 stagn.; EQ-C,
4 decr. vs. 3 incr./1 stagn.).

The sternoptychid Argyropelecus affinis Garman 1899 differed sig-
nificantly in the slope of the relationship of K¢ vs. standard length
(SL) between all stations, most pronounced in comparison to LO-E,
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except for the difference northern equatorial region (EQ-N) vs. west-
ern low-oxygen region (LO-W; Figure 5a and Table 3). At small body
sizes, A. dffinis showed highest relative condition in the LO-W and
EQ-N, and lowest in the LO-E. At large body sizes, relative condition
was highest in the LO-E and LO-W, and lowest in the EQ-N. The
sternoptychid A. sladeni had significantly better relative condition in
the LO-E compared to the EQ-C at all body sizes (Figure 5b), increas-
ing from small to large specimens in both regions, with a similar slope.
The myctophid C. warmingii differed significantly in the slope of the
relationship of K¢ vs. SL between the LO-E compared to the EQ-C
and EQ-N regions, which were comparable. Relative condition in
C. warmingii showed a slight increase in the EQ-N and EQ-C regions
with increasing body sizes, whereas it decreased considerably in the
LO-E (Figure 5c). The slope of the relationship of K¢ vs. SL increased
in the myctophid D. dumerilii at EQ-C stations, whereas it decreased
at EQ-N stations. Considering a comparable size range and removing
individual outliers did not change this result (Figure 5d). The
myctophid E. risso differed significantly in slope of K¢ vs. SL between
the LO-E and EQ-C regions, and whereas relative condition increased
from small to large specimens in the LO-E, it remained stagnant at an
overall lower level at the EQ-C stations (Figure 5e). The myctophid
Lampanyctus nobilis Taning 1928 significantly differed in its slope of
the relationship of K, vs. SL only between the LO-E and EQ-N
regions. Relative condition was lower in small specimens in the LO-E
compared to the EQ-N, and comparable at larger sizes (Figure 5f).
The myctophid Lepidophanes guentheri (Goode & Bean 1896) differed
significantly in its slope of the relationship of K. vs. SL between the
LO-E and both the EQ-C and the EQ-N. In the EQ-C only, the slope
of the relationship of K, vs. SL increased from small to large speci-
mens, whereas it decreased in the other regions, most pronounced in
the LO-E (Figure 5g). The myctophid Notoscopelus resplendens
(Richardson 1845) differed significantly in the slope of the relationship
of K¢ vs. SL only between the LO-E and the LO-W. Relative condi-
tion in this species increased slightly with increasing body sizes in the
LO-E, remained stagnant in the EQ-N, whereas a decrease was
suggested in the LO-W, based on predominantly larger specimens
sampled (Figure 5h). The melamphaid S. mizolepis did not differ signifi-
cantly in the slope of the relationship of K¢ vs. SL among regions. Rel-
ative condition increased in the LO-E and LO-W regions from small

to large specimens, whereas a decrease was indicated in the EQ-C

4 | DISCUSSION

Across-species variation in LWRs of
mesopelagic fishes from the eastern tropical North

The present study presents estimates of LWRs of 55 mesopelagic fish
species with novel records for 19 species. To the best of the authors'

knowledge, for 25 species these LWRs are based on the most robust
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the species (a) Argyropelecus dffinis, (b) Argyropelecus sladeni, (c) Ceratoscopelus warmingii, (d) Diaphus dumerilii, (€) Electrona risso, (f) Lampanyctus
nobilis, (g) Lepidophanes guentheri, (h) Notoscopelus resplendens and (i) Scopelogadus mizolepis (Table 3). Geographic regions are indicated by
linetype, symbol and colour (EQ-C, dotted line, dark-blue square; EQ-N, two-dashed line, turquoise triangle; LO-E, solid line, red circle; LO-W,
dashed line, violet diamond). If present, vertical dashed grey line indicates breakpoint in the LWR estimated by segmented regression analysis

(cf. Table 2)

representative size ranges reported up to now (Battaglia et al., 2010;
Eduardo et al, 2019, 2020a; Jiang et al., 2017; Lopez-Pérez
et al., 2020; Olivar et al, 2013; Sarmiento-Lezcano et al., 2018;
Slayden, 2020; Wang et al., 2018). In 31 species, body lengths were
within the maximum range of body lengths recorded in the area, with
new records of maximum lengths for 13 species. Of these, due to the
large discrepancy to known maximum size, Lampanyctus ater possibly

is a misidentified L. lineatus.

Our study confirms the earlier observed influence of body shape
on the parameters of LWRs in fishes in general and mesopelagic fishes
in particular (Froese, 2006; Lépez-Pérez et al., 2020). Compared to
findings by Lopez-Pérez et al. (2020), who used a different approach
and assigned the same body shape on a family level, results from the
present study equally show the steepest slope in ‘elongated’ species,
but also a comparatively steeper slope in as ‘short-deep’ assigned

species. The respective assignment of body shape to each species is
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TABLE 3

Regional comparison of length-weight relationship parameters and pairwise statistical significance tests (ANCOVA, P value) of

regional differences in the slope of the relationship of K¢ with increasing body size (SL) in nine species between four different regions (EQ-C,

EQ-N, LO-E, LO-W; Fig. 1) in the eastern tropical NorthAtlantic

ANCOVA P value
Species Region N SL range loga(cm, g) b Adj. R? EQ-N LO-E LO-W
Argyropelecus dffinis EQ-C 165 3.2-7.8 0.0166 3.1324 0.9482 0.04 0.001 0.02
Argyropelecus affinis EQ-N 369 2.6-6.9 0.0199 2.9939 0.9474 <0.0001 0.17
Argyropelecus affinis LO-E 406 1.5-7.2 0.0130 3.2697 0.9803 <0.0001
Argyropelecus dffinis LO-W 137 2.5-7.3 0.0194 3.0568 0.9818
Argyropelecus sladeni EQ-C 142 2.8-7.8 0.0279 2.9800 0.9875 0.06
Argyropelecus sladeni LO-E 283 2.3-7.3 0.0307 2.9793 0.9681
Ceratoscopelus warmingii EQ-C 122 1.7-7.1 0.0092 3.2188 0.9897 0.43 0.04
Ceratoscopelus warmingii EQ-N 155 1.8-7.4 0.0088 3.2570 0.9884 0.0004
Ceratoscopelus warmingii LO-E 128 2.1-6.9 0.0121 3.0107 0.9693
Diaphus dumerilii EQ-C 152 22-6.2 0.0165 2.9061 0.9579 0.0007
Diaphus dumerilii EQ-N 360 2.9.6.5 0.0209 2.7376 0.9348
Electrona risso EQ-C 525 3.6-8.4 0.0333 2.8716 0.9756 <0.0001
Electrona risso LO-E 323 3.1-8.0 0.0308 2.9601 0.9854
Lampanyctus nobilis EQ-C 55 4.7-11.4 0.0080 3.0545 0.9798 0.22 0.07
Lampanyctus nobilis EQ-N 143 2.8-12.0 0.0087 2.9975 0.9874 <0.0001
Lampanyctus nobilis LO-E 135 3.1-9.2 0.0059 3.1857 0.9834
Lepidophanes guentheri EQ-C 98 2.5-6.2 0.0063 3.2782 0.9598 0.0001 <0.0001 0.09
Lepidophanes guentheri EQ-N 426 27-71 0.0089 3.0283 0.9478 0.02 0.51
Lepidophanes guentheri LO-E 151 3.2-7.7 0.0102 2.9760 0.9735 0.07
Lepidophanes guentheri LO-W 112 24-7.2 0.0082 3.0917 0.9757
Notoscopelus resplendens EQ-N 63 2.0-8.7 0.0115 3.0356 0.9937 0.30 0.42
Notoscopelus resplendens LO-E 208 1.8-9.3 0.0112 3.0636 0.9963 0.007
Notoscopelus resplendens LO-W 331 2.9-9.2 0.0129 2.9712 0.9816
Scopelogadus mizolepis EQ-C 31 4.5-9.3 0.0075 3.3758 0.9718 0.39 0.27
Scopelogadus mizolepis LO-E 154 3.9-8.9 0.0070 3.4708 0.9815 0.72
Scopelogadus mizolepis LO-W 72 3.8-8.6 0.0061 3.5348 0.9679

Note: Significant differences highlighted in bold.

crucial to the obtained parameters in this analysis. Since FishBase is a
broadly accepted reference base for fish data, we used the morpho-
logical information given there for all but one species to have an
accepted base of morphological characterization not affected by sub-
jective interpretations, even though some morphological assignments
in FishBase seemed questionable to us [e.g., the species D. asper,
B. supralateralis, C. warmingii, Diaphus fragilis Taning 1928, Diaphus
lucidus (Goode & Bean 1896) are all assigned elongated in FishBase,
although there are no obvious differences in body shape compared to
the majority of other Bolinichthys spp. and Diaphus spp., which are
assigned as fusiform in FishBase]. The form factor aso proved to be
reasonably suitable as an indicator of body shape in our analysis and
supported reassignment of the myctophid species D. asper,
B. supralateralis, and C. warmingii from ‘elongated’ to ‘fusiform’, which
resulted in a pronounced improvement in model fit. However, as illus-
trated, for example, by a high form factor in the obviously not short-

deep-shaped myctophid B. suborbitale, due to general overlap in the

form factor as o between the different body shape groups, it may not
be used as a sole indicator of body shape, as was pointed out earlier
(Froese, 2006).

Considering only robust estimates based on the most representa-
tive sample sizes and size ranges from our data, in only nine out of
55 species was isometric growth indicated, whereas in the majority of
species positive allometric growth was most likely. Highest values for
mean parameter b (3.25-3.45) and increased likelihood of significant
positive allometry (b > 3.0) were encountered in the nonmigrators
S. koefoedi (Platytroctidae), S. mizolepis (Melamphaidae), C. gracilis
(Nomeidae) and A. gigas (Sternoptychidae), but also in myctophids
with known nonmigratory behaviour at larger sizes (L. lineatus,
L. isaacsi), as well as in diel migratory species of the genus
Gonostomatidae (G. denudatum, D. taenia). On the one hand, this
could be related to the fact that larger specimens are simply thicker
(Froese, 2006). On the other hand, heavier large-sized specimens

could also indicate the onset of spawning in some species. Although
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not examined systematically, we observed mature individuals
with ripe eggs in the species L. isaacsi and S. koefoedi during random
sampling. Values for b were significantly lower than 3.0 (indication
of negative allometry) for the nonmigratory species I ovatus
(Phosichthyidae), S. diaphana (Sternoptychidae), D. argenteus
(Diretmidae), D. pauciradiatus (Diretmidae), Z. pedaliotus (Stomiidae)
and E. risso (Myctophidae), but also for the migratory myctophids
D. dumerilii and Diaphus perspicillatus (Ogilby 1898). Whereas in some
species with b < 3.0, sampling effects may be responsible [limited
sample size in O. soleatus (Opisthotroctidae) and P. polli
(Sternoptychidae); bias towards larger size ranges in L. dofleini and
D. vanhoeffeni (Myctophidae)], in other species this indication of nega-
tive allometry could equally be related to life-history patterns. In our
sample area, the large-sized specimens of these species might have
had already spawned, and were therefore thinner and more slender.
In D. dumerilii, available data indicate a lifespan of only 1-2 years and
post-spawning body regression would be expected in this case
(Gartner, 1991). This idea is further supported by a decrease in condi-
tion at mean length for D. dumerilii in larger body sizes at stations
321 and 324.

4.2 | Within-species variation in LWRs
The analysis of breakpoints in LWRs using segmented regression analy-
sis indicated variable patterns in the 30 species observed, unrelated to
taxonomy or migration behaviour. This suggests species-specific onto-
genetic variation in growth patterns at young and mature life stages,
which is likely related to each species' strategy for niche separation and
increasing competitive advantage at particular life stages. In the species
E. risso, L. lineatus, L. nobilis, L. tenuiformis, Chauliodus schmidti Ege 1948
and D. asper, for which estimates for size at first maturity or Lsq (length
at which 50% of the fish are mature) were available (FishBase and
unpublished data), the breakpoint estimate was smaller compared to
size at first maturity. While the available data for size at first maturity
may not be representative for our study region, this observation sug-
gests important changes in these species' body shapes, and likely ecol-
ogy, already prior to maturity. This could be related to ontogenetic
changes in the vertical ecological habitat of these fishes, with accompa-
nying changes in feeding ecology and physiology that affect body pro-
portions. The species N. resplendens, D. dumerilii and L. isaacsi matched
in breakpoint to size at first maturity. The former two decreased there-
after, which is in line with the hypothesis that D. dumerilii possibly had
already spawned in the area. In N. resplendens, off the Canary Islands,
spawning activity was observed from January to April, which would fit
the same idea (Sarmiento-Lezcano et al., 2018). An increase in slope fol-
lowing the breakpoint in L. isaacsi is in line with the random observation
that the species was just prior to the spawning event during our sam-
pling period.

We observed significant differences in relative condition K
between two or more regions in most species analysed. This indi-
cates a tight connection between individual species population's fit-

ness and/or its life-history strategy, and regional environmental

conditions (Figure 5 and Table 3). We observed the strongest
increase in relative condition with increasing body sizes in the east-
ern low-oxygen region (LO-E) in the majority of species analysed,
particularly at the north-eastern-most stations 306 and 309. An
exceptional influence of increased productivity from the
Mauritanian upwelling region and special conditions due to the oxy-
gen minimum zone have already been suggested to influence tro-
phic, community and size structure of mesopelagic communities in
this area (Czudaj et al., 2020, 2021; Fock et al., 2019). On the con-
trary, the observed decrease in relative condition in the majority of
species of the EQ-N indicates profound variation in overall life-
history patterns and/or food supply between the two regions. The
EQ-N region is influenced by the eastward flowing Northern Inter-
mediate Countercurrent (NICC) at about 2°N and the North Equato-
rial Countercurrent (NECC) between c. 3 and 10°N (Stramma
et al., 2003, 2005, 2008), offering more oligotrophic conditions
fuelled intermittently by equatorial upwelling. The most pronounced
regional variations in overall relative condition were obvious in the
limited migratory species A. dffinis, A. sladeni, E. risso and
S. mizolepis. The latter three species showed overall better condition
in the LO-E, where large abundances of these species were caught
at depths coinciding with the core depth of the OMZ (c. 400 m). At
these depths, trophic and community analyses suggested pro-
nounced vertical structuring, thereby possibly providing increased
feeding opportunities on enhanced zooplankton biomass at biogeo-
chemical boundary layers (Czudaj et al., 2020, 2021). A. dffinis
exhibited comparatively lower relative condition compared to the
other three species in the LO-E, suggesting lower competitive
advantage under more productive conditions. The species shows
the rare adaptation of having yellow lenses, which enables increased
visual acuity and contrast, but likely also has further particular func-
tional importance for this species, possibly offering competitive
advantage under more oligotrophic tropical conditions
(Somiya, 1976), where we caught the species in larger abundances.
Overall, these regional variations in relative condition support the
notion of complex mesopelagic fish communities in tropical regions
that are finely tuned to small-scale regional environmental condi-
tions and show a high degree of ecological niche and life-history
adaptation on temporal and spatial scales (Hopkins &
Gartner, 1992).

43 | Sampling effects

Compared to LWR estimates presented by Lépez-Pérez et al. (2020),
who sampled in the same region at the same time predominantly
smaller size ranges compared to our study (comparisons based on
wet-weight estimates given in their supplementary information), in
12 out of 18 species, which did not correspond in their underlying size
range between the two studies, the resulting parameter b and the
corresponding conclusion of growth pattern differed between the
two studies, whereas in two species with a comparable size range

sampled, the results were similar. These comparisons match similar
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findings by Lopez-Pérez et al. (2020) in comparing their own LWR
estimates with those presented by Fock and Ehrich (2010) (The latter
were, however, estimated by various modi and in their majority not
empirically measured, but derived from already-published LWRs.). In
the present study, in nine out of 10 species comparisons, in which
Lopez-Pérez et al. (2020) reported smaller size ranges compared to
our study, the resulting parameter b and corresponding growth pat-
tern were more positive based on the smaller size ranges. Our results
for parameter b were comparable to those presented by Eduardo
et al. (2019) from oceanic islands of the Southwestern Tropical Atlan-
tic in the six species sampled in both studies, for which sampled size
ranges were overall comparable. These comparisons demonstrate that
regarding the small adult sizes of many mesopelagic fish species, esti-
mates of LWR parameters and corresponding conclusions on growth
patterns are strongly influenced by sampled size distributions and size
ranges. On the other hand, compared to the study by Eduardo et al.
(2020) from the western tropical Atlantic, in three out of five species
with comparable size ranges [D. argenteus (Diretmidae), Hygophum
taaningi (Myctophidae) and D. taenia (Gonostomatidae)], larger differ-
ences in the parameter b existed. In that regard, it is impossible to dis-
entangle possible variation caused by geographic differences in
population structure and different preservation strategies employed
between the two studies [4% formaldehyde in the present study vs.
4% formaldehyde/70% alcohol solution in the studies by Eduardo
et al. (2019, 2020)]. Although all specimens have been measured pre-
served in 4% formaldehyde in the present study, the metric analyses
were conducted by different people, which could be another possible
source of variation in our data. Individual sampling routines, e.g.,
regarding blotting and the batch size of fishes processed at one time,
leaving individual fishes for varying times drying in air, could be influ-
ential in small-sized fish species. Additionally, the time span of preser-
vation varied between a couple of days to several months, which
possibly accounted for some additional variation observed in our data.
In the present study, comparatively large standard errors in the spe-
cies B. suborbitale, L. ater, P. polli and C. sloani indicate that the size
ranges were not sufficient for a robust LWR estimate, despite a rea-
sonable sample size (N > 25). In the myctophid L. guentheri, the strong
deviation in LWR at station 318 from all other stations, despite the
large sample size (N = 322), was possibly influenced by an unre-
presentative size distribution. Overall, we acknowledge that the sam-
pled size ranges in our study lack the smaller post-larval and
transformation stages that would allow them to be fully representa-
tive for a given species. To achieve this, the combined use of two gear
types is imperative, which is an operationally and logistically challeng-
ing, but valuable, approach to increase our understanding of the biol-

ogy of mesopelagic fishes.
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