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Abstract—Autotuning and system parameters monitoring are
crucial aspects of modern motion control algorithms. At-the-
edge controllers need to detect system changes and perform
autotuning autonomously without requiring excessive computa-
tional burdens. Two algorithms to estimate the main dynamics of
mechanical systems using integral figures of merit are proposed.
The algorithms implementations are analyzed in offline and
online modes. They have been tested in simulation, using an
elastic model as a testbed, and in a hardware-in-the-loop PLC-
controlled system. The results show the effectiveness of the
methods compared to a recursive least square method.

I. INTRODUCTION

There has been a growing demand for industrial devices
to enhance their intelligence and connectivity in recent years
[1]–[4]. This requirement stems from improving overall per-
formance and efficiency in various industrial applications. In
the field of motion control, controllers must be able to monitor
and adapt to the performance and respond to changes in the
system dynamics [5].

Extensive research has been conducted to develop com-
putationally simple yet highly effective algorithms [6]–[8].
These algorithms serve the purpose of estimating the primary
dynamics of the system. The obtained data plays a crucial role
in diagnostics and controller autotuning. This ensures that the
controller remains finely tuned over time and serves as a source
of information related to plant variations. Developing compu-
tationally simple algorithms for estimating system dynamics
brings several advantages to the industrial sector. Firstly, the
simplicity of these algorithms allows for efficient implemen-
tation, reducing computational overhead and minimizing the
required hardware resources. This makes them suitable for
various industrial devices controlled by PLC-based controllers.
Moreover, the effectiveness of these algorithms ensures an
accurate estimation of the system dynamics, leading to reliable
diagnostics and autotuning processes. The ability to identify
and address issues promptly not only enhances operational
efficiency but also improves the overall lifespan and reliability
of the motion control system.

Mechanical systems employing brushless or asynchronous
motors commonly rely on torque or current as the control
variable, encoders measure angular position and velocity, and
a Proportional-Integral-Derivative (PID) controller is used.
However, these measured signals are inevitably influenced
by noise, which can significantly affect the performance of

estimation algorithms. To mitigate the impact of noise the
use of integral figures of merit has been proposed in [9].
These figures of merit reduce the noise effect and enhance the
estimation accuracy. This paper presents two novel algorithms
that employ this approach in a mechanical system. The algo-
rithms aim to estimate the primary dynamics of the system,
represented by inertia and friction coefficients. By integrating
the dynamic law during a ramp transient, a more robust and
accurate estimation of system dynamics is provided.

The paper is organized as follows: Section II presents the
system dynamics for rigid and elastic mechanical systems and
the proposed estimation algorithms. Section III discusses the
implementation issues in offline and online modes. Section IV
shows the simulation and experimental results. Conclusions
are in Section V

II. PROBLEM FORMULATION

The control architecture for speed control used in this work
is defined by a feedback control scheme, in which two main
elements are distinguished: the mechatronic system, which is
the process to be controlled, and the control system, more in
detail characterized by a PI regulator and a feedforward action.

A. Mathematical Models

A simple model of the system considers the motor rigidly
connected to the load through a transmission with unitary
efficiency and transmission ratio n. The purpose is to find
a relationship between the input torque τm and the output
speed of the motor shaft ωm. Two effects are considered for
modeling: inertia torque and friction. Inertia torque is linked
to motor acceleration through the following expression:

τin = Jtot ·
dω

dt
(1)

where Jtot = Jm + n2Jl [kgm2] is the total inertia of
the system, and Jl and Jm are the load and motor inertia,
respectively. The classical friction models consist of different
components taking care of many aspects of friction forces [10].
In this work, friction torque τfric is characterized by the two
main components: τstat (Coloumb or static term) and τdyn
(viscous or dynamic term).
The following expression describes static friction:

τstat = Tstat · sgn(ωm) (2)
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Fig. 1: Two-mass elastic servomechanism.

where Tstat [Nm] is the static friction coefficient. This friction
model does not specify a unique friction force for zero veloc-
ity, as it can take on any value in the interval between −Tstat

and Tstat. Viscous friction is a force component caused by the
viscosity of lubricants. Its behavior is typically approximated
as linearly dependent on the speed:

τdyn = Tdyn · ωm, (3)

where Tdyn = Tdynm
+ n2Tdynl

[Nms/rad] is the total
damping of the system (Tdynm

: motor damping coefficient,
Tdynl

: load damping coefficient). A nonlinear dependence on
velocity can obtain a better fit for experimental data, but a
linear model is generally sufficient for controller tuning.
The overall dynamic model which describes a rigid system is
obtained as:

τm = Jtot ·
dωm

dt
+ Tdyn · ωm + Tstat · sgn(ωm). (4)

Dynamic model (4) can be integrated over time as:∫ t

0

τmdt = Jtot · (ωm(t)− ω0(0))+

Tdyn · (y(t)− y(0)) + Tstat ·
∫ t

0

sgn(ωm)dt

(5)

where y(t) = y(0) +
∫ t

0
ωmdt is the angular position. It

is worth noticing that (5) is less noise-sensitive due to the
integration operation. A linear model can be obtained by
neglecting the nonlinear part of friction:

τm = Jtot ·
dωm

dt
+ Tdyn · ωm (6)

which results in the following transfer function between motor
torque and motor speed:

Ωm(s)

Tm(s)
=

1

Jtots+ Tdyn
=

1
Tdyn

Jtot

Tdyn
s+ 1

=
K

T1s+ 1
(7)

where K = 1
Tdyn

and T1 = Jtot

Tdyn
.

From (4), (5), and the definition of K and T1 it is possible
to write:

K

∫ t

0

(τm − Tstatsgn(ωm)) dt

= T1 (ωm(t)− ω0(0)) + (y(t)− y(0))

K (τm(t)− Tstatsgn(ωm(t)) = T1
dωm

dt + ωm(t)

(8)

A more complex model is used as a simulated testbed,
considering also the transmission elasticity (see Figure 1). In
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Fig. 2: PI controlled system with friction compensation.

this case, the system can be modeled as a couple of masses
(the motor and the load) linked together by a visco-elastic
element described by the transmission stiffness k and damping
coefficients h. The following equations describe the behavior
of the system:

Jm · ω̇m + Tdyn · ωm + τt + Tstat · sgn(ωm) = τm

Jl · ω̇l = τt

τt = k · (αm − αl) + h · (ωm − ωl)
(9)

where αl and αm are the link and motor angular positions,
respectively; Tdyn is the viscous friction coefficient; τt is
the torque delivered by the flexible element. Notice that
αl and Jl are referred to the motor shaft, Jl = Jll/n

2,
αl = n · αll, where n is the transmission ratio, and Jll, αll

are the corresponding quantities defined at the load side.

B. Controller Architecture

The structure of the controller can be represented by the
block diagram shown in Figure 2. It includes a Proportional-
Integral (PI) controller, which is described by the following
transfer function:

C(s) = Kp
1 + Tis

Tis
(10)

where Kp is the proportional gain and Ti is the integral
time constant. An additional feedforward action is added to
compensate for the estimated static friction value, ideally
canceling this nonlinear contribution. It is worth noting that
only an accurate estimation of static friction allows for mini-
mizing the system’s nonlinearity. In an autotuning procedure,
the estimation of the process model is fundamental for the
recalibration of the controller in the face of significant changes
in the process dynamics. The choice of the specific automatic
tuning method depends on various factors, including the dy-
namics and characteristics of the system, the available data and
information, the desired performance criteria, and the available
computational resources. This work considers the mechatronic
system presented in Section II-A, ignoring the transmission’s
elasticity and damping for simplicity. The aim of the tuning is
to obtain a phase margin ϕm = 75◦ for robustness, and a gain
crossover frequency, which is an user-defined, chosen equal to
ωc = 80 [rad/sec]. Therefore, the controller parameters result
in:

Ti =
tan

(
−90◦ + ϕm + arctan

(
Jtot·ωc

Tdyn

))
ωc

(11)



and

Kp =
Ti · ωc ·

√
(Jtot · ωc)2 + T 2

dyn√
1 + (Ti · ωc)2

(12)

The goal is to estimate Jtot and Tdyn, to obtain the transfer
function (7), used for controller tuning, while the value of
Tstat is necessary for the estimate of the feedforward action.
Two online identification methods are proposed and compared
with a recursive least square (RLS) algorithm. The proposed
algorithms consider the integral of (4) during a ramp response.
The usage of the integral is motivated by the reduction of the
measurement noise [9].

C. Identification Method I

The first strategy allows the user to estimate the static
friction initially, then the gain K and the time constant T1

of the first order model (7) and, consequently, the total inertia
and dynamic friction values. Parameter estimation takes place
following the application of a speed set-point ysp, which is
characterized by initial and final sections at a constant speed,
respectively ω0 [rad/s] and ωf [rad/s] and a central section
that grows linearly with constant acceleration a [rad/s2]. The
amplitude of the ramp is defined as A = ωf − ω0. The
presence of static friction introduces a nonlinearity and affects
the transfer functions and dynamic behavior. To accurately
estimate the real system, a feedforward action with an estimate
of static friction has been implemented, compensating for
friction torque and making the system behave like a first-
order linear system. The methodology can be summarized as
follows:

1) Guess an initial value for the static friction estimate
variable (T est

stat) or assume it zero.
2) Considering positive velocities for simplicity, it is pos-

sible to estimate the gain K from (8) computed at the
beginning and the end of the ramp.

Kest =
A

uss − T est
stat

(13)

and time constant (T1) using (8):

T est
1 =

∫
Kest · (u(t)− T est

stat)− y(t)

A
(14)

where uss is the steady-state value of the torque.
3) Build a first-order system (Pfo) using the estimated

values of K and T1.

Pfo(s) =
Kest

T est
1 s+ 1

(15)

4) Perform an offline simulation on the estimated system
Pfo using the real torque input u(t) minus the current
estimate of static friction T est

stat as input.
5) Calculate the integral of the difference between the

measured speed y(t) and the simulated output as a
performance index for the simulation.

6) Increment or decrement the value of T est
stat by a fixed

amount δ (chosen to be a small quantity w.r.t. the
maximum torque) and repeat steps 2, 3, 4, and 5.

7) Compare the performance index associated with the
current operating conditions (from step 6) and the one
associated with the aforementioned operating conditions
(from step 5).

8) If the current performance index is lower than the pre-
vious one, continue to increase (or decrease, depending
on the initial choice of T est

stat) the static friction estimate
until the current index is greater than the previous one.
If the current index exceeds the previous one, implement
the previous friction value as the feedforward action.

D. Identification Method II

The second identification strategy involves estimating the
system’s gain (K) and time constant (T1), as well as the total
inertia, viscous friction coefficient, and static friction. This
strategy applies when the motor is already in motion (ω0 ̸= 0),
and it compares the measured case and the case where data
is translated to the origin of the Cartesian plane. The key
concept behind this strategy is that the system has a non-
zero initial torque when it is already in motion. The estimated
static friction (T est

stat) can be interpreted as a step disturbance
that is added to the control variable. Without feedforward
action, a PI controller deals with a first-order process, with the
step disturbance compensated by the controller integrator. The
output of the PI controller can be seen as the output that would
occur without feedforward action but with a contribution added
to compensate for the presence of static friction. To achieve
this, the speed and torque trends are detrended to the Cartesian
plane’s origin, removing the effect of static friction, which
is constant since there are no speed changes. Therefore the
terms K, T1, Jtot, and Tdyn can be determined neglecting
static friction. Static friction can be obtained by considering
the steady-state conditions before and after applying the ramp.
The algorithm involves the following steps:

1) The recorded torque and speed values u(t) and y(t) are
translated to the origin, obtaining u0(t) = u(t) − u(0)
and y0(t) = y(t)− y(0).

2) The values of the gain K and time constant T1 are
estimated using (8) computed at the beginning and the
end of the ramp:

Kest =
A

u0,ss
; T est

1 =

∫ tss
0

Kest · u0(t)− y0(t)

A

(16)

where u0,ss, A = y0,ss, and tss are the steady-state
values of u0(t), y0(t) and t, respectively.

3) The static friction value is estimated using the non-
detrended data:

T est
stat = uss −

yss
Kest

(17)

where uss and yss are the steady-state values of non-
translated torque and velocity, respectively.



E. Baseline: RLS identification

The proposed methods are compared to the RLS method,
a common technique for online model parameter estimation
[11]. The model is represented as a linear combination of
known (possibly nonlinear) functions, called regressor (φ1),
multiplied by a vector of unknown parameters θ, thus the
observed variable x = φθ. The least-square (LS) methods
determine the values of θ that minimize the least squares
loss function. The LS problem can be solved analytically in
batch (offline) form, where the observations are collected in
matrices and vectors. This algorithm requires storing data and
performing a matrix inversion, which is too complex for the
limited computation capabilities of many motor controllers.
RLS algorithms process data in a recursive fashion with
limited storing and computation needs.

In this paper, we consider the Householder RLS algorithm
[12]

θ̂(t) = θ̂(t− 1) + S(t)−1φ(t)
[
y(t)− ϕ(t)T θ̂(t− 1)

]
(18)

where

S(t) = S(t− 1) + φ(t)φ(t)T

Defining the terms γ(t) and ε(t) as follows:

γ(t) = S(t)−1φ(t)

ε(t) = y(t)− ϕ(t)T θ̂(t− 1)

the recursive expression (18) becomes:

θ̂(t) = θ̂(t− 1) + γ(t)ε(t) (19)

To avoid the matrix inversion, it is possible to use the matrix
inversion lemma (or Householder’s lemma). This implies that
once S(t−1)−1 is given, calculating S(t)−1 is only a matter of
inverting a scalar and performing a few matrix multiplications.
Finally, defining Q(t) = S(t)−1, the form of recursive least
squares can be summarized as follows:

θ̂(t) = θ̂(t− 1) + γ(t)ε(t) basic recursion

γ(t) = Q(t− 1)φ(t)
(
1 + φ(t)TQ(t− 1)φ(t)

)−1
definition

ε(t) = y(t)− φ(t)T θ̂(t− 1) definition

Q(t) =
(
I − γ(t)φ(t)T

)
Q(t− 1) auxiliary recursion

ε(t) is the difference between the measured output y(t) and
the one-step-ahead prediction x̂

(
t|t − 1; θ̂(t − 1)

)
made at

time t− 1.

Values of x(t), φ(t)T and θ can be constructed from (5):

y(t) = ωm(t)− ωm(0) (20)

φ(t)T =
[∫

τm(t)
∫
ωm(t)

∫
sgn(ωm(t))

]
(21)

θ =

[
1

Jtot

Tdyn

Jtot

Tstat

Jtot

]
(22)

Quantity Value Unit of measurement

Total inertia, Jtot 0.008 [kgm2]
Viscous friction, Tdyn 0.0025 [Nms/rad]
Static friction, Tstat 0.15 [Nm]

TABLE I: Values of inertia, static friction coefficient and
viscous friction coefficient.

Quantity Value 1 Value 2 Unit of measurement

Stiffness, k 62.8812 2.5152 [Nm/rad]
Damping, h 0.08 0.02 [Nms/rad]
Inertia load, Jl 0.00267 0.00267 [kgm2]

TABLE II: Additional parameters for the elastic model.

III. IMPLEMENTATIONS

The proposed identification algorithms have been initially
tested in simulation to verify their functioning. MATLAB
2021b and Simulink software have been used. Subsequently,
each algorithm has been revised and implemented in a new
form to be suitable for use in an industrial context (following
the IEC61131 standard). The simulation tests are performed
by adopting two different systems to represent the physical
mechatronic system: one with rigid transmission (4) and one
with elastic transmission (9). The values of total inertia Jtot,
viscous friction Tdyn, and static friction Tstat coefficients
are the same for both the rigid and the elastic systems. In
particular, a mechatronic system with the values reported in
Table I is considered for the simulation test. The identification
algorithms aim to obtain estimates that ideally are equal to
these fixed values that are unknown in reality.

The simulations of the system with elastic transmission are
characterized by two pairs of elasticity and damping values,
with the aim to simulate an “almost rigid” system and a “very
elastic” system. Their values are shown in Table II. It is also
chosen that Jl = 0.5 · Jm (Jtot = Jm + Jl).

Figure 3 reports a flow chart that summarizes the imple-
mentation of identification method 1. For simulation tests, the
value of δ is set equal to 0.01 [Nm] and the first estimation
of static friction T est

stat is set equal to 0 [Nm]. The set-point
goes from speed ω0 = 0 [rad/s] to ωf = 30 [rad/s], so
Asp = 30 [rad/s]. Figure 4 reports the flow chart of the
function which implements identification method 2. The set-
point ranges ω0 = 30 [rad/s] to ωf = 60 [rad/s], so Asp = 30
[rad/s]. The main steps of the function that implements the
identification algorithm based on the recursive least squares
method are shown in the flow chart in figure 5. The algorithm
is tested both with a set-point starting from speed ω0 = 0
[rad/s] and reaching ωf = 30 [rad/s], and with a set-point
which ranges ω0 = 30 [rad/s] to ωf = 60 [rad/s].
As can be seen from the flow chart, θ and Q must be
initialized. For θ an arbitrary parameter estimate is used, while
for Q, the identity matrix multiplied by a number in the range
between 100 and 10000 is chosen. The forgetting factor λ is
set equal to 0.995, which has been added to the least square
criterion to discount the importance of long-past data so that
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Fig. 3: Identification Algorithm 1 flow chart.
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Fig. 4: Identification Algorithm 2 flow chart.

recent data mostly influence the estimation.
Three factors influence the estimation: static friction, mea-

surement noise, and acceleration time. In the case of a variable
acceleration time (i.e., ramp slope), different simulations are
performed for each system, changing the characteristics of the
reference signal each time; otherwise, a constant acceleration
is maintained.

After testing the identification algorithms in simulation, (see
Section IV) they were adapted to accommodate the specific
features of industrial controllers. When working with industrial
drives or PLCs, implementation aspects are often disregarded
when using simulation and calculation software such as
MATLAB. These include limited computational and memory
capabilities, the use of Single Precision format (32 bits) instead
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Fig. 5: Recursive least squares identification algorithm flow
chart.

of Double Precision format (64 bits) to represent floating-point
numbers, the presence of a real-time operating system that
manages real-time and non-real-time tasks executed cyclically
every few milliseconds, and high-frequency noise affecting all
measured data. The proposed algorithms must be written in
Structured Text language, one of the languages supported by
the IEC 61131-3 standard. Before proceeding, the algorithms
are modified and tested in simulation using Simulink software
on a standard PC. This step has two main benefits: it facilitates
the debugging process in a more user-friendly environment,
allows obtaining information about the algorithms’ operation,
and selects the most promising ones to proceed with on the
experimental system. Identification Algorithm 1 undergoes
significant changes due to two main issues. Firstly, the of-
fline simulation of the first-order system performed using the
MATLAB command lsim must be replaced since there is no
equivalent in Structured Text language. Secondly, only a few
samples of the previous steps can be stored, which limits the
processing of data in batch form. The ZOH method solves the
first problem by discretizing the first-order system response
and calculating it progressively at each step. However, the
second problem is more challenging to handle while allowing
the estimation of model parameters through the response to a
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Fig. 6: State diagram of modified identification Algorithm 1.

single-speed set-point ramp. The modified algorithm includes
the following steps: (1) initial estimates of total inertia and
dynamic friction are given, (2) for the ascending section of the
ramp, the discretized response and unit step response of the
first order system are calculated at each step using the ZOH
method, and integrals are computed through the trapezoidal
rule, (3) static friction estimation is calculated, and new gain
and time constant values are computed to obtain the estimates
of total inertia and dynamic friction, and (4) steps 2 and 3
are repeated for a new ramp using the previously calculated
gain and time constant values. This modification implies a
recursive parameters estimation over multiple ramp responses.
Figure 6 shows the diagram of the state machine implemented
for modified identification Algorithm 1.
Identification Algorithm 2 requires less changes. The system

receives a reference signal consisting of two ramps: the first,
to make the motor rotate from zero speed to ω1; the second,
to bring the motor from speed ω1 to speed ω2. The algorithm
is applied in the section starting from ω1 and ending at ω2.
Figure 7 shows the diagram of the state machine implemented
for modified identification Algorithm 2.
The Recursive Least Squares algorithm is suitable for PLC

implementation as it processes data without batching. The
algorithm only requires element-by-element calculations of
matrices and vectors. However, the algorithm has three main
problems: 1) symmetry and positive definiteness of Q(t)
can be lost for numerical reasons, which can be overcome
by factorizing Q(t) using Cholesky decomposition, but this
may complicate the PLC code; 2) the Q matrix is poorly-
conditioned, which is a general property of any least squares
matrix; 3) if the elements of Q or γ are too large, overflow can
occur due to the 32-bit representation of floating point num-
bers. Thus, a threshold for the number of points considered
must be established. Figure 8 shows the state diagram of the
modified recursive least squares identification algorithm.
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IV. RESULTS

A. Simulation Results

The simulation tests yielded important results, which are
presented to highlight the key features, benefits, and draw-
backs of each identification algorithm. The key features of
identification Algorithm 1, as obtained from the simulations,
are summarized as follows:

• Despite the presence of measurement noise, the algorithm
performs well and improves the control system’s per-
formance, even when the parameters are not estimated
accurately.

• The algorithm yields good parameter estimates for dif-
ferent accelerations, stimulating the system at various
frequencies.

• The algorithm is effective across a wide range of speeds,
with optimal performance at medium and high speeds.
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• The algorithm requires reference signals starting from
zero speed and demands careful attention when removing
signals during steady-state conditions in the presence of
noise.

• Due to its iterative simulation-based approach, the algo-
rithm is computationally intensive and can only function
offline.

Based on the simulation results, the main characteristics of
Algorithm 2 can be summarized as follows:

• The algorithm performs well in the presence of measure-
ment noise.

• It is advisable to use data for estimation only until shortly
after the system reaches steady-state conditions.

• The algorithm performs well across the motor speed
range (except very low speeds) and for any acceleration
time.

• Compared to Algorithm 1, Algorithm 2 is less computa-
tionally intensive.

Regarding the recursive least squares algorithm, it exhibits the
following characteristics:

• The algorithm is effective for reference signals starting at
zero speed or with the system already in motion, making
it more versatile than the other two algorithms.

• The algorithm produces reliable results across various
speeds and accelerations.

• The algorithm already has a recursive form, simplifying
its implementation on a PLC or industrial drive. However,
a significant issue is the poor conditioning of the Q
matrix, which tends to be very high in multiple iterations,
resulting in unacceptable parameter estimates in the pres-
ence of noise. This aspect must be carefully monitored
and could present problems implementing the algorithm
on an industrial controller.

B. Implementation Results

Important factors are revealed by simulation experiments
on identification algorithms modified for PLC implementation.
Algorithm 1 cannot complete the estimation operation using
a single set-point speed ramp. For this reason, it is necessary
to use a recursive approach which could lead to instability,
as shown in Figure 9. The recursive least squares algorithm is
complex and sensible to inadequate conditioning. On the other
hand, Algorithm 2 uses a single application of a double ramp
set-point to get accurate estimations of model parameters. It
works well with single-precision encoding of floating point
numbers and noise. Table III shows the results of some tests
with different final velocities wf and accelerations a, where
Jtot, Tdyn, and Tstat are the actual values of inertia, static
friction coefficient, and viscous friction coefficient used for
the simulations (see Table I), while Jest

tot , T
est
dyn, T

est
stat are the

estimated ones. Given the promising results of Algorithm 2 in
simulations, it was selected for testing in a physical testbed.

C. Experimental Results

The experimental setup comprises several components: A
brushless servomotor, an absolute encoder (Heidenhaim EQN

Fig. 9: Estimation of static friction for different initial values
of T 0

stat, modified identification algorithm 1.

ωf [rad/s] a[rad/s2] Jest
tot [kgm2] T est

dyn[Nms/rad] T est
stat[Nm]

20
1 0.0064 0.0039 0.1352

10 0.0057 0.0032 0.1385
100 0.0052 0.0023 0.1564

40
3 0.0054 0.0033 0.1473

30 0.0071 0.0027 0.1461
300 0.0070 0.0018 0.182

80
7 0.0052 0.0032 0.1617

70 0.0076 0.0025 0.1517
700 0.0075 0.0016 0.2236

TABLE III: Rigid model parameters estimated by modified
identification algorithm 2 with single precision.

1325) for position and speed measurement, an ADV200S drive
by Gefran S.p.A. for motor control, a real-time controller,
a standard host PC for software development, and a control
panel to initiate servomotor start-up. EtherCAT communica-
tion transmits speed, torque data, and process-related signals
with a 1 [ms] sampling time. The host PC utilizes MDPlc
software to manage signal processing, model estimation, and
parameter control. Two types of tests are performed: the first
one to verify if the algorithm is consistent and robust, and
the second one in which the identified parameters are used
for the retuning of the control system. For the first tests, a
reference signal consisting of five repetitions of a double ramp
was used to evaluate how the estimates obtained from the first
ramp differed from those obtained from subsequent ramps.
The results indicate that the estimation of the parameters
is consistent, and one ramp is enough to estimate them,
particularly at medium and high speeds. The second set of
tests assesses if the identified parameters improve the control
system performance. The controller is initially detuned and
tested without feedforward action. The identified parameters
are then used to tune the PI controller according to a specific
tuning rule, and the feedforward action is set equal to the static
friction estimate. The tests were conducted under different
conditions. However, for brevity, only those with a ramp from
ω1 = 10 [rad/s] to ω2 = 40 [rad/s], and an acceleration time



Parameter Value
Jest
tot [kgm2] 0.00077175

T est
dyn[Nms/rad] 0.00104824

T est
stat[Nm] 0.10488

Kold
p [N/rpm] 0.0005

T old
i [ms] 2000

FF old[Nm] 0
Knew

p [N/rpm] 0.0012
Tnew
i [ms] 34

FFnew[Nm] 0.10488

TABLE IV: Old and new identified rigid model parameters, old
and new controller parameters, a = 30 [rad/s2], experimental
tests of identification algorithm 2.

(a) Before retuning

(b) After retuning

Fig. 10: Reference signal and measured motor speed before
and after retuning, a = 30 [rad/s2], experimental tests of
identification algorithm 2. The reference signal is marked in
yellow, the measured motor speed is marked in blue.

of 1s are presented. The numerical results are shown in table
IV. Figure 10 shows the comparison between the response with
the detuned controller (on the top) and with retuned controller
(at the bottom).
It is worth noticing the performance improvements and the
effectiveness of the proposed method to estimate the primary
system dynamics starting from a poor-tuned situation.

V. CONCLUSION

In this study, two algorithms were developed and tested
to estimate the dynamics of a mechatronic system by using
the integral figures of merit. Their goal is to automatically
tune the parameters of a PI controller and set the feedforward
action for a speed control system. Most efforts were focused
on estimating the parameters of an approximate model of a

mechatronic system with rigid transmission. After simulation
tests, the identification algorithms were modified considering
the computational limit of an industrial controller and tested in
Simulink using an elastic system as a testbed. The algorithm
with the most robust and effective results, algorithm 2, was
further tested on a Hardware-In-the-Loop system using PLC
Structured Text language. Algorithm 1 was found to give
accurate estimates of the model parameters in an offline
form but can be computationally heavy. Its modified online
form has convergence problems. It is worth noticing that
the continuous increment of the computational capability of
industrial controllers will attenuate this drawback in the future.
Algorithm 2 shows the most robust and effective performance
in identifying model parameters. A recursive least squares
algorithm is used for comparison, and it shows potential
issues with the conditioning. The results of this study have
demonstrated the feasibility and effectiveness of using these
algorithms for mechatronic system dynamics estimation and
automatic tuning of controllers.
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