

HPC & BIG DATA TECHNOLOGIES FOR GLOBAL CHALLENGES

GOALS

Tackling Global challenges by means of High-Performance Computing, Big Data Analytics, Artificial Intelligence and Immersive Visualization

- Advancing application scalability towards Exascale systems and novelty technology
- Enriching model capabilities models by amplifying processing patterns and results accuracy
- o Provisioning of platform for processing advanced environmental- and societal-oriented simulations
- Enabling collaboration with communities focused on similar scientific domains
- Developing functionalities and good practice guidelines for decision-makers enabling limiting the negative impact of environmental and social phenomena

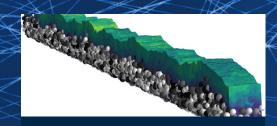
USE CASES

URBAN AIR PROJECT

Evolution of the air in the urban areas considering pollution, wind, comfort, and planning taking into account the source terms from the Urban Buildings use case.

URBAN BUILDINGS

Advanced energy and indoor air quality building models (using algorithms and highperformance computing) to simulate the contribution of urban buildings in terms of heat CO2, and NOx emissions.


RENEWABLE ENERGY SOURCES

Prediction of energy production from renewable sources like wind and solar panels. Solution accustomed to urban and rural areas.

WILDFIRES

Simulation of wildfire atmosphere interactions and smoke dispersion in forest and urban areas.

MATERIAL TRANSPORT IN WATER

Advanced numerical simulations for a better understanding of the complex process of pollution transport in rivers, offering a means to enhance control and prevention strategies.

MILESTONES

- Deployment of use case codes on EuroHPC JU supercomputers and execution of first benchmark tests.
- Setting up of software stack for HiDALGO2 environment composed of workflow orchestration, Big Data
 Management, data analytics and AI frameworks, authentication, monitoring and prototyping server.

Co-funded by the European Union. This work has received funding from the European High Performance Computing Joint Undertaking (JU) and Poland, Germany, Spain, Hungary, France, Greece under grant agreement number: 101093457.

