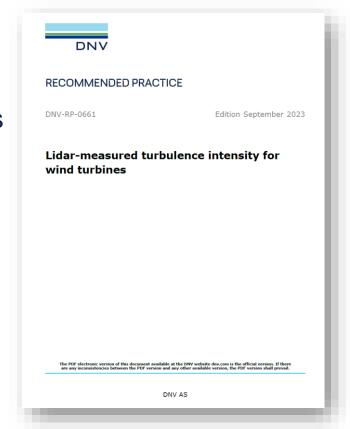


New approaches to increase the acceptance of lidar measured TI in standardization

New recommended practice DNV-RP-0661

Nikolai Hille 27 February 2024

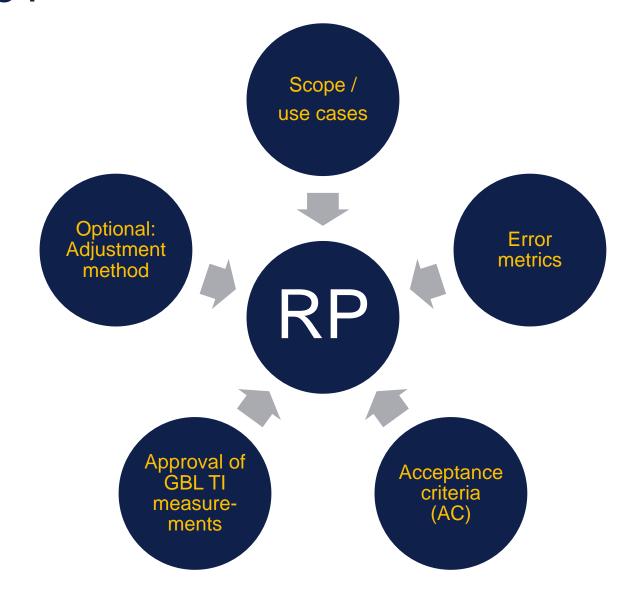

NEW Recommended Practice (RP) Lidar measured turbulence intensity (TI)

The complication:

• Existing standards like IEC 61400-13 still require use of cups or sonics

Approach by DNV Joint Industry Project "Lidar Measured TI"

- ➤ Provide entry to the use of ground based lidar (GBL) TI data in certification by comparison to met mast data
- > Issue RP



JIP partners:

EDFre, EnBW, Equinor, Goldwind, IFPEN, Leosphere, RWE, Shell, Southern Company Services, Vattenfall, ZX Lidars, DNV

DNV-RP-0661

Scope

Use cases for Ground Based Lidar (GBL)

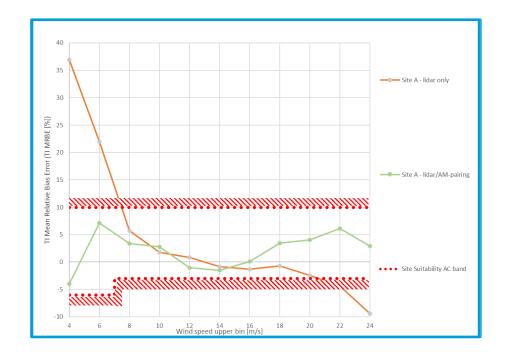
- Loads:
 - site suitability
 - load validation type testing
- Energy assessment

Site complexity

- Onshore sites, flat terrain
- Offshore sites

Error metrics

- Mean Relative Bias Error (MRBE) to indicate the mean deviation and Relative Root Mean Square Error (RRMSE) to describe the scatter between the observations
- Application in use cases requires bin wise processing of error metrics


$$TI\ MRBE_i\ [\%] = \frac{1}{N_i} \sum_{n=1}^{N_i} (TI_{lidar,n,i} - TI_{cup,n,i}) / TI_{cup,n,i}$$

$$TI\ RRMSE_i\ [\%]\ = \sqrt{\frac{1}{N_i}\sum_{n=1}^{N_i} \left((TI_{lidar,n,i} - TI_{cup,n,i}) / TI_{cup,n,i} \right)^2}$$

AC – use cases "loads"

• Stipulation of Acceptance Criteria for site suitability, load validation type testing

Use case	MRBE requirement	RRMSE requirement	Condition
Site suitability	-6% ≤ MRBE ≤ 10%	≤ 30%	for wind speeds below 7 m/s
	-3% ≤ MRBE ≤ 10%	≤ 15%	for wind speeds above 7 m/s
Load validation	+/- 5%	≤ 15%	.J.

AC – use case "energy assessment"

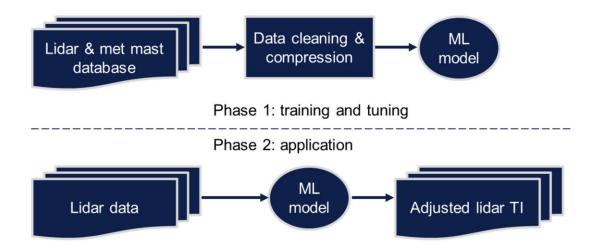
 Guidance for sensitivity of energy production based on TI

Use case	MRBE requirement	RRMSE requirement	Condition / comment
Energy assessment	<±2%	_	Leads to modelled energy production changes by less than ±0.10 % for approximately 95% of projects
	<±5%	-	Leads to modelled energy production changes by less than ±0.25 % for approximately 95% of projects
	<±10%	-	Leads to modelled energy production changes by less than ±0.50 % for approximately 95% of projects

• Stipulation of Acceptance Criteria

TI MRBE $\leq \pm 10\%$

(impact on modelled energy production is reasonable in comparison to other typical uncertainties in energy production assessments)


Approval of GBL TI measurements

- By comparison to co-located met mast TI measurements
- GBL TI can replace cup TI when AC are fulfilled; further requirements regarding wind speed range, min. number of data points
- Third party approval
- Measurement at site may continue without met mast.
- Relocation of lidar in vicinity of the verification site with the same wind flow exposure and characteristics

Add-on: turbulence intensity adjustment

- Adjustment method (AM): application able to reduce the error and scatter between GBL and cup TI
- Obtain GBL TIs that resemble cup TI to the best possible extent.
- Increase chances to comply with AC
- ➤ RP specifies a process that allows application of AM

Example flowchart for training and application of a machine learning based AM

Let's talk!

Nikolai Hille

nikolai.hille@dnv.com

www.dnv.com

