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1. INTRODUCTION4

The BRICS Astronomy Working Group (BAWG) Hackathon took place in Cape Town, South Africa, on October 18-5

19, 2023, subsequent to two days of BAWG science conference meetings. This two-day hackathon offered participants6

the opportunity to apply machine learning techniques to tackle a data-intensive astronomical challenge.7

The primary task was to develop an optimal unsupervised learning pipeline for binary clustering between Active8

Galactic Nuclei (AGN) and Star-Forming Galaxies (SFGs). Participants, mainly postgraduate astronomy students9

from BRICS countries with varying levels of machine learning experience, engaged in this challenge.10

Pre-hackathon preparation included Jupyter notebooks provided a week in advance, showcasing an unsupervised11

learning approach. This preparatory material aimed to equip participants with the necessary insights to undertake12

the challenge effectively.13

The hackathon’s goal was to equip postgrad students with the necessary data science skills to derive new insights14

from a provided dataset within the two-day event timeframe, fostering a hands-on experience in applying data science15

to real-world astronomical data.16

2. DATA SET17

In this hackathon, we use the early science radio continuum data from the MeerKAT International GHz Tiered18

Extragalactic Exploration (MIGHTEE, Jarvis et al. (2016)) survey. MIGHTEE is an extragalactic project undertaken19

by a South African-led international collaboration of researchers to explore star forming galaxies (SFG) and active20

galactic nuclei (AGN) evolution over cosmic time with the MeerKAT telescope. The survey focuses on four well-studied21

extragalactic deep fields; COSMOS, XMM-LSS, ELAIS-S1 and E-CDFS. Upon completion, the survey will cover up to22

20 deg2 at µJy sensitivity at Giga-Hertz frequencies. MIGHTEE combines excellent multiwavelegth data from other23

deep surveys to provide our understanding of galaxy evolution.24

The MIGHTEE-COSMOS multiwavelength catalogue comprised radio and matched measurements from optical, near-,25

mid- and far-infrared, and Xray information for the radio sources in the central part of the MIGHTEE Early Science26

Data in the COSMOS field and is assembled as follows Whittam et al. (2024). MIGHTEE-COSMOS radio catalogue27

was produced by Heywood et al. (2022). The radio catalogue was cross-matched with the optical and near-infrared28

counterparts adopted from Bowler et al. (2020) catalogue by Whittam et al. (2024). The optical and near-infrared29

catalogue comprised the near-infrared imaging in the YJHKs band; the optical measurements in the grizy bands from30

Hyper Suprime-Cam Subaru Strategic Program (HSC SSP); and deep optical imaging from CFHTLS’s u∗griz bands.31

The host galaxy of 5,224 radio sources were identified and thus a sample of 5,224 radio sources had an optical and32

near-infrared counterpart. This sample was further cross-matched with measurements from other surveys by Whittam33

et al. (2022) as follows. Whittam et al. (2022) used the positions of the optical host galaxies to find X-ray counterparts34

to the MIGHTEE-COSMOS radio sources using the optical and infrared counterpart of the Chandra COSMOS-Legacy35

survey catalogue presented in Marchesi et al. (2016). Of 5,224 radio sources, 572 (∼ 10%) were detected in X-ray36

observations.37

The Mid-Infrared (MIR) counterparts were also added, taken from the COSMOS2015 catalogue Laigle et al. (2016).38

This catalogue provides the 3.6 µm, 4.5 µm, 5.8 µm, 8.0 µm fluxes respectively.39

The Herschel Extra-galactic Legacy Project (HELP; Vaccari (2015)) provided the far-infrared data. The observations40

come from the Multiband Imaging Photometer (MIPS) instrument on the Spitzer Space Telescope, the Photodetector41
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Array Camera and Spectrometer (PACS) on Herschel, and the Spectral and Photometric Imaging Receiver (SPIRE)42

on Herschel. The MIPS provide 24 µm data, PACS produce 100 µm and 160 µm data, and SPIRE provides the 25043

µm, 350 µm, and 500 µm data. Four thousand five hundred forty-one radio sources are identified in the MIPS and44

PACS data, and 4,958 in the SPIRE data.45

The sources in this catalogue were also classified as SFGs or AGN by Whittam et al. (2022) using conventional46

astronomy techniques and catalogue article is summarised in Appendix A of their study.47

3. BINARY CLUSTERING USING UNSUPERVISED LEARNING48

The hackathon featured six groups, each comprising approximately four members. A diverse range of methods was49

employed for the clustering task. In the subsequent sections, we will offer brief descriptions of the pipelines utilized50

by each group, with their respective accuracies detailed.51

3.1. Group 152

Group one commenced with data preprocessing, which included outlier replacement with the mean, normalization53

of the data, and feature removal based on a correlation analysis with a threshold of 0.95, thus reducing the features54

from 144 to 72. They concluded the preprocessing with brute-force feature selection, settling on the features {qir,55

PEAKFLUX, L14}. They employed Gaussian Mixture Models (GMMs) for clustering, achieving an accuracy of 87%56

on the testing set.57

3.2. Group 258

Group two initiated their process with a log transformation on large-scale data, followed by normalization using59

Min-max scaling. They selected features associated with galaxy properties, such as luminosity, star formation rates,60

and mass: {Lbbdered(0.1-1), Lga(0.1-1), Ltor(1-30), SFR IR, L14, qir, Mstar}. K-means clustering was utilized,61

resulting in a 79% accuracy on the testing set.62

3.3. Group 363

Group 3’s approach included a correlation analysis on the 144 features, applying a 0.95% threshold and reducing64

the feature count to 69. This was followed by Min-max scaling normalization. They used K-means for clustering and65

reported a 75% accuracy on the testing set.66

3.4. Group 467

Group 4 addressed missing values by removing the affected features, then standardized the data and applied PCA,68

reducing it to 13 components representing 84% of the variance. They opted for GMMs for clustering, attaining a 70%69

accuracy on the testing set.70

3.5. Group 571

Group 4 initiated their analysis by conducting a correlation assessment on the 144 features, setting a threshold72

at 0.80% which reduced the features to 43. After further optimization, they identified 9 key features: {E S INT,73

IM MAJ, IM MIN, COS best z v5, BB, EBVbbb, EBVgal, Mstar, qir}. Without any additional preprocessing, they74

utilized GMMs and achieved an accuracy of 78% on the testing set.75

3.6. Group 676

Group 6 standardized the data using a standard scaler and then engaged in a multi-step feature selection process.77

This process involved eliminating features with a correlation greater than 80%. They utilized ChatGPT and academic78

papers to discern the significance of the features, consequently removing those related to position, orientation, and79

interstellar dust and gas. The focus was then shifted to features associated with Luminosity, Mass, and Infrared80

Luminosities. The final selection included ten features {fSF, fAGN, qir, Mstar, Lbb(0.1-1), NU EFF, SB, Lga(0.1-1),81

BB, Nh, age}, chosen after evaluating various combinations on the validation set.82

Employing these ten features, the group explored several clustering approaches, including k-means, PCA, and83

Bayesian Gaussian Mixture Model (BGMM). However they manged to achieve their highest accuracy of 83% on84

the testing set with GMMs.85



3

4. DISCUSSIONS86

We detail the methodologies employed by six groups during the hackathon, where the objective was binary clustering87

through unsupervised learning. Each group utilized unique strategies, with notable commonalities and differences in88

their approaches. We also discuss and compare groups that achieved accuracy. The discussion concludes with a89

comparison to other supervised learning approaches.90

4.1. Common Methods91

A prevalent theme across the groups was the emphasis on data preprocessing, a crucial step in unsupervised learning.92

Most groups opted for normalization (Min-max scaling or standardization) and feature selection, which was pivotal in93

enhancing the clustering performance. Specifically, Groups 1, 3, 4, and 6 conducted a form of feature reduction, either94

through correlation analysis or principal component analysis (PCA), demonstrating the importance of eliminating95

redundant features to improve model efficiency and accuracy.96

Another common strategy was the use of GMMs, favored by Groups 1, 4, 5, and 6. This preference underscores97

GMMs’ flexibility and effectiveness in identifying latent structures within the data, especially when the clusters are98

not distinctly separable.99

4.2. Differences100

The main differences lay in the specific preprocessing techniques and the features selected for the clustering task. For101

instance, Group 1 used brute-force feature selection to identify their final features, whereas Group 6 combined insights102

from ChatGPT, academic literature, and a rigorous feature evaluation process. The diversity in feature selection103

approaches, from correlation thresholds to leveraging external knowledge, illustrates the varied strategies that can be104

employed in unsupervised learning tasks.105

Groups also differed in their clustering algorithms, with Group 2 utilizing K-means, a contrast to the GMMs preferred106

by the majority. This variance in algorithm choice highlights the experimentation with different methodologies to107

determine the most suitable for the given data and task.108

4.3. Analysis of Accuracies109

The groups’ accuracies in the hackathon showed a range from 70% to 87%, with Group 1 achieving the highest at110

87%. This variation highlights the impact of different data preprocessing and clustering strategies on performance. The111

success of Group 1, using Gaussian Mixture Models (GMMs), underscores the effectiveness of thorough preprocessing112

combined with a sophisticated clustering algorithm. The results emphasize the significance of careful method selection113

and data handling in optimizing unsupervised learning outcomes.114

5. CONCLUSION115

the BAWG2023 Hackathon offered a unique platform for postgraduate astronomy students from BRICS countries to116

apply machine learning techniques to the challenge of binary clustering Active Galactic Nuclei (AGN) and Star-Forming117

Galaxies (SFGs) using data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE)118

survey.119

The hackathon featured diverse methodologies employed by six groups, emphasizing the importance of data prepro-120

cessing, feature selection, and the use of Gaussian Mixture Models (GMMs) for some groups, highlighting the flexibility121

and effectiveness of these models in clustering tasks. The range of accuracies achieved (70% to 87%) underscored the122

impact of different preprocessing and clustering strategies on performance, with Group 1 achieving the highest accuracy123

through comprehensive preprocessing and sophisticated clustering algorithms.124

This achievement highlights the valuable role hackathons can play in discovering usable pipelines for labelling astro-125

nomical data, thereby broadening our comprehension of the cosmos.126
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