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In the following, (C) refers to the conference version
(Kriegel, 2024) and (E) refers to the extended version
(Kriegel, 2023).

1. On Page 14 in (E), the phrase “all stated results and
proofs but Lemma XV are revised versions” must be ex-
tended to “all stated results and proofs but Lemmas XV
and XVII are revised versions”.

2. Theorem 13 in (C) and (E) states that, for each finite in-
terpretation I, a complete TBox of EL CIs, RRs, and RIs
satisfied in I can be computed in exponential time. First
of all, there is no issue with this result, but a discussion
with Carsten Lutz and Franz Baader revealed that some
details on the representation of the CIs in this TBox are
not properly explained. Please find them below in Sec-
tion 1.

1 Further Details on Theorem 13
Recall that the TBox mentioned in Theorem 13 consists of a
rewriting of the canonical CI base in Theorem 10 and of the
RRs and RIs above Theorem 13. Regarding the CIs, we first
compute the CI base Can(I, T ) in Theorem 10, which con-
sists of CIs of the form

d
C⊑

d
D with C,D ⊆ M. Next,

we replace in every premise
d
C each existential restriction

∃r.XI by ∃r.(XI↾n), where possible values for the unfold-
ing depth n are explained on Page 5 in (C) and on Page 14
in (E). Last, the conclusions

d
D, which are possibly cyclic

EL⊥
si CDs, are rewritten into EL by means of concept vari-

ables as per Proposition XXII in (E), see also Page 5 in (C)
for a summary.

Now there is a lack of clarity with respect to the modi-
fied premises, which are obtained by replacing existential re-
strictions ∃r.XI with unfoldings ∃r.(XI↾n). If we would
naı̈vely transform these into EL CDs by means of the recur-
sion on Page 5 in (E), then we could in the worst case obtain
EL CDs of double exponential size since XI is computed
from the powering, which has single exponential size, and
the unfolding depth n could be at most single exponential as
well.

Instead, it would be more efficient to represent the un-
folded filler XI↾n as the pair of the MMSCD XI and the
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unfolding depth n, i.e. without actually unfolding into a po-
tentially huge EL CD. This is a single exponential encoding,
but it is not immediately clear how it could be treated by
a reasoner. More suitable is the representation by layered
copies of the powering as explained on Page 24 in (E). With
that, each unfolded filler XI↾n is equivalent to an acylic
ELsi CD of single exponential size, and reasoning can be
done by means of the rule-based calculus in the preliminar-
ies. However, this is still not in EL. To end up with an EL
TBox, we would finally need to rewrite these acylic ELsi
CDs by means of concept variables, similar as for the con-
clusions.

To this end, we use concept variables that stand for ob-
jects on a layer between 0 and n, and write up the layered
copies as CIs from the leaves to the root. For example, the
CD ∃sim(C, c)↾3 with ·C := {(c, c) :r, (c, c) :s, c :A} is rep-
resented by the concept variable Xc,3 and the CIs A⊑Xc,0,
A⊓∃r.Xc,0⊓∃s.Xc,0⊑Xc,1, A⊓∃r.Xc,1⊓∃s.Xc,1⊑Xc,2,
A ⊓ ∃r.Xc,2 ⊓ ∃s.Xc,2 ⊑Xc,3.

More formally, we provide the following extension of
Proposition XXII in (E) which additionally deals with
rewriting of the premises as sketched above. Applying it
to the canonical CI base in Theorem 10 yields an equivalent
EL TBox (with variables) that has single exponential size.
Theorem 13 should now be sufficiently underpinned.

Lemma. Every TBox consisting of CIs of the form
∃sim(C, c)↾n⊑∃sim(D, d) or ∃sim(C, c)↾n⊑⊥ can be rewrit-
ten into an equivalent vTBox in polynomial time.

Proof. Given a TBox T as above, we construct a vTBox
∃X.T ′ as follows. Without loss of generality, we assume
that all CDs in the premises share the same interpretation C
and that all CDs in the conclusions share the same interpre-
tation D. To obtain a small vTBox these two interpretations
C and D could be weakly reduced, but this is not necessary
for our goal.

Initially, we do the following.

(a) For each CI ∃sim(C, c)↾n ⊑ ∃sim(D, d) in T , we add the
CI Xc,n⊑Yd to T ′ and the concept variables Xc,n, Yd to
X.

(b) For each CI ∃sim(C, c)↾n⊑⊥ in T , we add the CI Xc,n⊑
⊥ to T ′ and the concept variable Xc,n to X.



To encode the meaning of the premise variables Xc,n, we
additionally need to do the following.

(c) Whenever a new concept variable Xc,n with n > 0 has
been added to X, then we add the CI

d
{A | c ∈ AC } ⊓d

{ ∃r.Xc′,n−1 | (c, c′) ∈ rC } ⊑ Xc,n to T ′ and all
occurring concept variables Xc′,n−1 to X.

(d) Whenever a new concept variable Xc,0 has been added
to X, then we add the CI

d
{A | c ∈ AC } ⊑Xc,0 to T ′.

In a similar way, we encode the meaning of the conclusion
variables Yd.

(e) Whenever a new concept variable Yd has been added
to X, then we add the CI Yd ⊑

d
{ A | d ∈ AD } ⊓d

{ ∃r.Yd′ | (d, d′) ∈ rD } to T ′ and all occurring con-
cept variables Yd′ to X.

Compared to Proposition XXII in (E), Rules (c) and (d) are
new and take care of rewriting the unfolded premises.

We show that T and ∃X.T ′ have the same models and
are thus equivalent. Let I be a model of T . We define the
variable assignment Z by Z(Xc,n) := (∃sim(C, c)↾n)I and
Z(Yd) := (∃sim(D, d))I , and show that I[Z] is a model of
T ′.

1. Assume that the CI Xc,n ⊑ ⊥ is in T ′, i.e. T contains
the CI ∃sim(C, c)↾n ⊑ ⊥. We obtain that (Xc,n)

I[Z] =
Z(Xc,n) = (∃sim(C, c)↾n)I = ∅, where the second
equality holds by definition of Z and the third equal-
ity holds since I is a model of T . Thus I[Z] satisfies
Xc,n ⊑⊥.

2. Consider a CI Xc,n⊑Yd in T ′, i.e. the CI ∃sim(C, c)↾n⊑
∃sim(D, d) is in T . We obtain that (Xc,n)

I[Z] =
Z(Xc,n) = (∃sim(C, c)↾n)I ⊆ (∃sim(D, d))I =

Z(Yd) = (Yd)
I[Z], where the second and fourth equality

holds by definition of Z and the third inclusion holds
since I is a model of T . Thus I[Z] satisfies Xc,n ⊑ Yd.

3. Let
d
{ A | c ∈ AC } ⊑ Xc,0 be a CI in T ′. Recall

that (Xc,0)
I[Z] = Z(Xc,0) = (∃sim(C, c)↾0)I and that

∃sim(C, c)↾0 =
d
{A | c ∈ AC } (see Page 5 in (E)). With

that, we obtain (
d
{A | c ∈ AC })I[Z] = (

d
{A | c ∈

AC })I = (Xc,0)
I[Z], i.e. I[Z] satisfies the considered

CI.
4. Next, consider a CI

d
{A | c ∈ AC } ⊓

d
{ ∃r.Xc′,n−1 |

(c, c′) ∈ rC } ⊑ Xc,n in T ′. Recall that (Xc,n)
I[Z] =

Z(Xc,n) = (∃sim(C, c)↾n)I and that ∃sim(C, c)↾n =d
{ A | c ∈ AC } ⊓

d
{ ∃r.(∃sim(C, c′)↾n−1) |

(c, c′) ∈ rC } (see Page 5 in (E)). Since we also have
(Xc′,n−1)

I[Z] = Z(Xc′,n−1) = (∃sim(C, c′)↾n−1)
I for

each c′, it follows that I[Z] satisfies the considered CI.
5. Let Yd ⊑

d
{A | d ∈ AD } ⊓

d
{ ∃r.Yd′ | (d, d′) ∈ rD }

be in T ′, and consider an element x ∈ (Yd)
I[Z]. Recall

that (Yd)
I[Z] = Z(Yd) = (∃sim(D, d))I , and so there is

a simulation from D to I containing (d, x). Thus, d ∈
AD implies x ∈ AI = AI[Z]. Likewise, (d, d′) ∈ rD

implies that there is x′ with (x, x′) ∈ rI and such that
there is a simulation from D to I containing (d′, x′), i.e.

x′ ∈ (Yd′)I[Z], and therefore x ∈ (∃r.Yd′)I[Z]. We
conclude that I[Z] satisfies the considered CI.

Conversely, assume that I is a model of ∃X.T ′, i.e. there
is a variable assignment Z such that I[Z] is a model of T ′.

First, we show by induction on n that (∃sim(C, c)↾n)I ⊆
Z(Xc,n).

• Recall from Page 5 in (E) that ∃sim(C, c)↾0 =
d
{ A |

c ∈ AC }. Since T ′ contains the CI
d
{ A | c ∈

AC } ⊑ Xc,0 and I[Z] is a model of T ′, we obtain that
(∃sim(C, c)↾0)I ⊆ Z(Xc,0).

• Regarding the induction step, assume that n > 0. Re-
call from Page 5 in (E) that ∃sim(C, c)↾n =

d
{ A |

c ∈ AC } ⊓
d
{ ∃r.∃sim(C, c′)↾n−1 | (c, c′) ∈ rC }.

Furthermore, T ′ contains the CI
d
{ A | c ∈ AC } ⊓d

{ ∃r.Xc′,n−1 | (c, c′) ∈ rC } ⊑ Xc,n. Since I[Z] is
a model of T ′ and the induction hypothesis yields that
(∃sim(C, c′)↾n−1)

I ⊆ Z(Xc′,n−1) for each involved c′,
we obtain that (∃sim(C, c)↾n)I ⊆ Z(Xc,n).

Next, consider a CI ∃sim(C, c)↾n ⊑ ⊥ in T . Then T ′

contains the CI Xc,n ⊑ ⊥ and thus Z(Xc,n) = ∅. Since
(∃sim(C, c)↾n)I ⊆ Z(Xc,n), we conclude that I satisfies
the considered CI.

Last, let ∃sim(C, c)↾n ⊑ ∃sim(D, d) be a CI in T . Then
T ′ contains the CI Xc,n ⊑ Yd and, since I[Z] is a model
of T ′, we infer that Z(Xc,n) ⊆ Z(Yd). We already know
that (∃sim(C, c)↾n)I ⊆ Z(Xc,n), and it remains to show that
Z(Yd) ⊆ (∃sim(D, d))I . To this end, let x ∈ Z(Yd) and
consider the relation S := { (v, u) | u ∈ Z(Yv) }. Since
x ∈ Z(Yd), S contains (d, x). We proceed with verifying
that S is a simulation from D to I, which then yields that
x ∈ (∃sim(D, d))I .

(S1) Let (v, u) ∈ S, i.e. u ∈ Z(Yv), and further let v ∈
AD. Then T ′ contains a CI Yv ⊑ A ⊓ · · · by Rule (e).
Since I[Z] is a model of T ′, we have that Z(Yv) ⊆ AI .
We conclude that u ∈ AI .

(S2) Let (v, u) ∈ S, i.e. u ∈ Z(Yv), and further let
(v, v′) ∈ rD. Then T ′ contains a CI Yv ⊑ ∃r.Yv′ ⊓ · · ·
by Rule (e). Since I[Z] is a model of T ′, we have
that Z(Yv) ⊆ (∃r.Yv′)I , i.e. (u, u′) ∈ rI for some
u′ ∈ Z(Yv′). The latter yields (v′, u′) ∈ S.

Finally, it remains to show that the rewriting can be obtained
in polynomial time. Rules (a) and (b) are applied once for
each CI in T and yield CIs of constant size. Rules (c) and (d)
yield the CIs that describe the layered copies of the premise
structure C. The size of each introduced CI is linear in C,
and the overall number of introduced CIs is polynomial in C
and the respective unfolding depth n. Thus, the exhaustive
application of these two rules finishes in polynomial time.
The last Rule (e) merely rewrites the conclusion structure D
into CIs and thus finishes in linear time.
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