
Fully decentralized Client Selection for
Energy-Efficient Federated Learning

Elia Guerra, Marco Miozzo, and Paolo Dini
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA)

Castelldefels, Spain
{eguerra, marco.miozzo, paolo.dini}@cttc.es

Abstract—Federated learning is the most famous algorithm
for training machine learning models over distributed datasets
without sharing the local data with a central server. However,
in many real-life settings, not all clients are equally beneficial
for training the model. The selection of the optimal subset of
participating clients is critical for ensuring high performance
and low energy consumption. This paper formulates the client
selection problem as a multi-agent optimization task with the
goal of finding a trade-off between performance and energy
consumption. In particular, we propose a fully decentralized
client selection policy based on non-stationary multi-armed
bandits where clients autonomously decide to participate or not
in the training process without relying on the central server.
The proposed solution outperforms the random client selection
policy reducing up to 12% both the number of rounds required
to achieve the target accuracy and energy consumption.

Index Terms—federated learning, data analysis, multi-agent
systems, multi-armed bandit, energy efficiency, edge computing.

I. INTRODUCTION

Federated Learning (FL) enables training Machine Learning
(ML) models over distributed data sources without sharing the
local data with a central server. Differently from the standard
cloud-based training process it reduces latency, communica-
tion overhead, energy consumption, and preserves privacy [1].
FL finds applications in scenarios like healthcare [2], traffic
prediction [3], and mobile traffic estimation [4].

The prominent implementation of FL is centralized [5], i.e.,
a central server coordinates the training process among several
clients. At each round, the central server randomly selects a
subset of the available clients to train on their local datasets
a ML model and share back the updated model weights.
Then, the central server is also in charge of aggregating the
model updates. Usually, the aggregation method is based on
Federated Averaging (FedAvg) [6].

Defining a proper client selection strategy is crucial to
guarantee fast convergence, limit communication overhead and
reduce energy consumption [7]. In the literature, the client

This publication has been partially funded by the Spanish project
PID2020-113832RB-C22(ORIGIN)/MCIN/AEI/10.13039/50110001103, Eu-
ropean Union Horizon 2020 research and innovation programme under Grant
Agreement No. 953775 (GREENEDGE) and the grant CHIST-ERA-20-SICT-
004 (SONATA) by PCI2021-122043-2A/AEI/10.13039/501100011033

selection problem has been widely investigated (see Section II)
focusing on a scenario where the central server has the addi-
tional overhead of selecting the optimal subset of clients. Most
of the proposed approaches concentrate on maximizing perfor-
mance, i.e., accuracy or convergence time, without considering
that in real-life scenarios energy devices have limited energy
available and it should be properly managed to avoid battery
depletion and jeopardize model training. Moreover, efficient
learning systems, especially during their training phase, is
a need today due to the high energy consumption of ML
computations [8], [9].

In addition, the classical single point of failure problem
may arise in such star topology, where a central node is
orchestrating the whole process. It may also represent the
bottleneck of the procedure when the number of participating
nodes increases. Hence, we focus on relaxing the FL algorithm
dependencies on the central server by minimizing its tasks.
In particular, in this work, we propose a fully decentralized
solution for the client selection problem. Differently from
the literature reviewed, we consider an approach where each
client autonomously decides to join or not the next FL round.
The goal is to find a global trade-off between the achieved
performance and the amount of energy spent. The problem is
stated as a multi-agent optimization and solved with a model-
free approach. In fact, we provide a solution in which each
client learns the policy to follow (i.e., to join or not the
training process every round) through a lightweight Multi-
Armed Bandit (MAB) model. This is the first attempt to
apply decentralized decision-making to the client selection
problem in FL solutions with a central server, to the best of
our knowledge. Simulation results demonstrate that the MAB
agents at each client are converging to stable policies and lead
to a proper trade-off between the accuracy of the model and
the energy spent during the training phase. Our analysis opens
new possibilities of improvement specially in presence of the
non-iid data (as specified in Section V) and may pave the way
for new approaches to decentralized FL.

Summarizing, the contributions of this work may be listed
as follows:

• We state the client selection optimization as a multi-agent
decision-making problem.

• We propose a fully decentralized client selection policy
based on the non-stationary MAB model.979-8-3503-0460-2/23/$31.00 ©2023 European Union

• We evaluate the proposed solution and compare it against
the random client selection policy.

• We present a set of results, which demonstrate that the
proposed solution converges to a stable policy and jointly
optimizes the energy consumption and the accuracy of the
FL algorithm.

The rest of the paper is organized as follows. Section II
describes the related work, Section III describes the FL set-
ting, Section IV introduces the system model and details the
proposed solution. Finally, Section V evaluates the algorithm
performance, and Section VI concludes the paper with the final
remarks.

II. RELATED WORK

Client selection for FL is a well-known problem in the
literature and it has been addressed from several points of view.
A common approach is estimating the client contribution by
evaluating specific metrics of its dataset [10], [11]. In [10], the
authors define the dataset entropy to capture the distribution,
the quantity of information, the unbalanced structure, and the
non-IIDness of each client dataset. The notion of entropy is
used to weigh the local updates of each client during the
aggregation phase or to select the subset of participating clients
in each FL round. A N-IID Index is introduced in [11] to
properly select clients. At each round, the server chooses half
of the available clients with the highest number of samples on
their local datasets. Then, each selected client sends the mean
and standard deviation of each feature to the central server.
With this information, the central server can compute the N-
IID Index that represents the disparity between two datasets’
distributions. The central server uses this index to select the
clients with the closest distribution to avoid heterogeneous
datasets that may compromise the model aggregation step. A
different approach is used in [12] to estimate the contribution
of each client to the model convergence. The central server
samples a subset of clients with probability proportional to
their local dataset size, then the selected clients evaluate the
current global model on their local dataset. Finally, the server
selects the clients with the highest local losses. An improve-
ment of this algorithm, taking into account communication
efficiency and fairness is proposed in [13] with the usage of
MAB.

Another common technique adopted to solve the client se-
lection problem is reinforcement learning. In [14], the authors
introduce a deep reinforcement learning model running at
the central server to find the best client selection policy at
every round. An alternative formulation is proposed in [15],
where the authors consider also devices with a limited amount
of energy units available. The proposed strategy is able to
reduce the number of energy units consumed by edge devices.
Even in this case, the central server is in charge of selecting
participating clients. Both proposals suffer from the curse
of dimensionality due to the large action-state space of the
centralized control approach and deep neural networks are
used as function approximation to limit such issue. This
approach may lead to high computational overheads of the

central server, which may jeopardize the energy savings of
the proposed solution.

Resource-constrained devices are also considered in [16].
Here, client selection is stated as a bilevel optimization prob-
lem and resolved with a heuristic approach. In particular, the
authors propose a regression-based method to estimate CPU,
memory, and energy utilization during the next training round
and select devices with enough available resources for training
a model to solve an anomaly detection task.

In [7], the authors investigate the impact of temporal pat-
terns on FL performance. Considering a scenario with 10
clients, the authors show that selecting an increasing number of
clients for each round guarantees higher accuracy and reduces
its standard deviation. Following this observation, the authors
propose an online optimization algorithm to jointly optimize
the client selection problem and the available communication
resources.

From the surveyed literature, it emerges that the client
selection problem has been approached mainly with central-
ized control methods, which, in turns, may lead to the curse
of dimensionality problem, especially when the number of
clients is high. Moreover, the central server may represent the
bottleneck and the single point of failure of the system. To
limit such issues, we present a decentralized client selection
framework with the aim of improving scalability and flexibility
of FL in realistic deployments (e.g., Internet of Things). An
energy model based on real measurements is also introduced to
drive the training phase towards environmental sustainability.
Our approach leverages the client capability of sensing the
environment and automatically understanding when to partic-
ipate in the training round or not, so as to find a global trade-
off between the accuracy of the model and the energy spent
during the training phase. To the best of our knowledge, this
is the first attempt to decentralize the selection of clients in
FL solutions with a central server.

III. FL OVERVIEW

In FL, a set N = {1, . . . , N} of clients with their local
datasets D1, . . . , DN train collaboratively a global model, e.g,
a set of weights w, to minimize the weighted global loss
function:

ℓ(w) =

N∑
i=1

|Di|
|D|

ℓi(w), (1)

where ℓi is the loss function computed on the local dataset of
the i− th client and |D|=

∑N
i=1|Di|.

To achieve this goal, clients exchange model parameter
updates that have been computed during several training
iterations of the global model on the local dataset.

As shown in Figure 1, at the beginning of a round t, the
central server selects a random subset Pt ⊆ N of m clients
(those marked with a green tick in the figure). Each selected
client i ∈ Pt receives the current global model wt and trains
it on its local dataset for E epochs with a mini-batch size B.
At the end of the training process, the trained model wt+1

i

is sent to the server. The server aggregates the received local

Central server

Edge device

Communication
link

Fig. 1: FL scenario overview.

updates and by computing the weighted average generates the
new global model as follows:

wt+1 =
∑
i∈Pt

|Di|
|D|

wt+1
i , (2)

where |D|=
∑

j∈Pt |Dj |. In this work, we adopt the FedAvg
algorithm [6] merging rule to generate global model updates.
The process is repeated until the model converges, e.g., a target
accuracy is reached.

IV. SYSTEM MODEL

In our conception, client selection is seen as a sequential
decision-making problem. In the literature it is normally the
central server in charge of deciding the active set of clients
at every round, usually adopting a random policy. Instead
here in this paper, we model the problem as a multi-agent
system where every client makes autonomously the decision
to participate or not, being the ultimate goal to minimize
the energy consumption of the entire process, while at the
same time maintaining accuracy at a target level. A model-
free cooperative control framework is designed to achieve such
goals.

Formally, we consider the FL architecture described in
Section III where a set N = {1, . . . , N} of clients with their
local datasets D1, . . . , DN train collaboratively a machine
learning model. Each client is an agent of our sequential
decision-making problem. At each learning episode, i.e. FL
round, every agent autonomously decides to participate (p) or
not (np) in the training process based on its past experience.
At the end of each FL round, each client receives a reward
from the environment to update its experience. To limit the
additional computational overhead on edge devices, we model
the agent decision-making as a reinforcement learning task us-
ing MAB [17]. In fact, despite its simplicity, the computations
needed by MAB result much smaller than other reinforcement
learning alternatives (e.g., Q-learning). During a generic round
t, a client i ∈ N , chooses an action a ∈ A = {p, np} to
maximize the long-term reward. To achieve this goal, the client
keeps an estimate of the expected reward for each possible

action, i.e., Qt
i(p) and Qt

i(np). Let a ∈ A be the action
selected, the client i receives a reward Rt

i and updates Qt
i(a)

follows:

Qt+1
i (a) = Qt

i(a) + γ(Rt
i −Qt

i(a)), (3)

where γ regulates the trade-offs between the new reward
Rt

i and the old reward estimate Qt
i(a). Starting from these

estimates, the client selects the action for the current round by
sampling from the probability distribution obtained with the
softmax policy [18]:

pti(a) =
eQ

t
i(a)∑

b∈A eQ
t
i(b)

, (4)

where pti(a) is the probability of selecting the action a at
the round t. Note that each client has a different probability
distribution.

The reward function for agent i is determined by the
difference in validation accuracy of the global model between
the current round t and the previous round t − 1, denoted as
At−At−1, as well as the total energy spent during the current
round Et, in detail:

Rt
i = (At −At−1)1i∈Pt +

(
1− Et

Emax

)
, (5)

where Emax is a normalization factor that represents the
maximum energy consumption required if all the N clients
would have participated at round t.

The rationale is that of a cooperative multi-agent system,
where each client has a global system-wide optimization
objective. In our case, the reward function is made of two
terms: the first is an accuracy maximization, the second is
a penalty due to the energy spent at each round for that
accuracy increase. Note that the reward function is different
for participating and non-participating clients, as denoted by
the presence of the step function (1i∈Pt) in the accuracy
maximization term. This encourages clients to participate and
makes the learning process converge faster. Figure 2 shows
the process from the perspective of a participating and non-
participating client.

The system evolves as follows. At every round t, depending
on the decision made, each client may spend energy of three
types: computation, communication, and idle energy. The
computation energy is the energy spent for training wt on
the local dataset:

Et
train,i = P t

hw,iT
t
train,i, (6)

where P t
hw,i is the average power consumed by the hardware

during the training process and T t
train,i its duration.

The communication energy is the energy spent for sharing
the model updates wt

i optimized on the local dataset with the
central server. As reported in [1], it can be computed as:

Etx = PtxTtx, (7)

where Ptx and Ttx are the transmission power and time,
respectively. Note that the communication energy is fixed since

Softmax Participating in the
current FL round

Update

Softmax Non-participating in
the current FL round

Update

Fig. 2: Client participation over time on CIFAR-10 and CIFAR-10p dataset

all the clients train the same ML model.
The idle energy is the energy spent by the client while

waiting for the conclusion of the current FL round:

Et
idle,i = Pidle,i(Tround − T t

train,i), (8)

where Tround is the maximum duration of the round defined by
the central server and needed to avoid stragglers: if a client
does not start the upload process within Tround seconds, its
contribution will be discarded. Pidle,i is the average power
drained while waiting for the conclusion of the current FL
round, i.e., Tround − T t

train,i.
As a consequence, the total energy for a participating client

i during a round t is:

Et
p,i = Et

train,i + Etx + Et
idle,i. (9)

Instead, the energy for a not participating client j is:

Enp,j = Eidle,j = Pidle,jTround. (10)

The total amount of energy consumed in round t is:

Et =
∑
i∈Pt

Et
p,i +

∑
j∈N\Pt

Enp,j , (11)

where Pt is the active set of participating clients in round t.
The total energy consumed for R rounds is:

E =

R−1∑
t=0

Et. (12)

V. PERFORMANCE EVALUATION

A. Simulation Setup

We consider two datasets for our analysis. The first is the
CIFAR-10 dataset [19] with 50 000 training samples randomly

TABLE 1: Simulation parameters.

Parameter Description Value

|w| Number of model parameters 11 181 642
Sw ResNet-18 model parameters size 44.73 MB
η Learning rate 0.01
N Number of total clients 50
E Local epochs number 5
B Batch size 20

Tround Maximum training time 10s
ℓi Local loss function Sparse Cat. Crossentropy

Tacc,IID Target accuracy on CIFAR-10 0.73
Tacc,nIID Target accuracy on CIFAR-10p 0.66
PTx Tx power for edge devices 9 dBm
Pidle Idle power consumption 96.85 W
Emax Max energy consumption 0.54 Wh

splitted across 50 clients and 10 000 test samples. From the
test set, we extract 7000 samples as a validation set. The input
features are 32×32 color images divided into 10 classes. Then,
we create also the CIFAR-10p dataset by randomly restricting
the client dataset of 46 out of 50 clients to 5 classes only. The
clients with full-label distribution are called superclients.

We adopt ResNet-18 [20] to correctly classify the input
samples. The number of trainable parameters of ResNet-18
(|w|) is 11 181 642 and if stored with float32 variables, i.e.,
4 bytes for each variable, the size in memory (Sw) is 44.73
MB.

At each FL round, each client executes Stochastic Gradient
Descent (SGD) for E local epochs and sparse categorical
cross-entropy loss (ℓi) on the local dataset. Then, it shares the
local model updates with the central server. The simulation is
concluded when the global model, evaluated on the validation
set, archives at least the target accuracy of Tacc,IID = 0.73

0 4 8 12 16 20 24 28 32
Round ID

0

4

8

12

16

20

24

28

32

36

40

44

48

Cl
ie

nt
 ID

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Expected reward p

(a) Q(p)

0 4 8 12 16 20 24 28 32
Round ID

0

4

8

12

16

20

24

28

32

36

40

44

48

Cl
ie

nt
 ID

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Expected reward np

(b) Q(np)

Fig. 3: Expected reward on CIFAR-10 dataset.

0 4 8 12 16 20 24 28 32 36 40 44
Round ID

0

4

8

12

16

20

24

28

32

36

40

44

48

Cl
ie

nt
 ID

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Expected reward p

(a) Q(p)

0 4 8 12 16 20 24 28 32 36 40 44
Round ID

0

4

8

12

16

20

24

28

32

36

40

44

48

Cl
ie

nt
 ID

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Expected reward np

(b) Q(np)

Fig. 4: Expected reward on CIFAR-10p dataset.

and Tacc,nIID = 0.66 on CIFAR-10 and CIFAR-10p datasets
for 3 consecutive rounds, respectively. We require to match
the validation accuracy for multiple rounds to avoid validation
accuracy spikes. The accuracy thresholds are defined experi-
mentally and consider both the dataset and the ML model.

The list of simulation parameters is reported in Table 1. A
more comprehensive overview of the adopted communication
model can be found in [1]. Our code, based on PyTorch [21],
run on a server equipped with two Intel Xeon 6230, 188GB of
RAM, and an RTX 2080Ti1. We used Codecarbon [22] Python
library to measure Etrain, which returns periodically samples of
the power consumption by CPU, DRAM, and GPU. We have
performed every simulation 5 times for statistical consistency.

B. Result Analysis
We first evaluate the convergence of the proposed MAB

implementation to solve the multi-agent sequential decision-

1For the sake of reproducibility the source code is available at https://gitlab.
cttc.es/supercom/energy-efficient-decentralized-client-selection

making problem. We optimize the value of γ with grid search.
On the CIFAR-10 dataset, the value of γ = 0.7 is that

returning the best performance. Figure 3 shows the evolu-
tion of the expected reward of participating Q(p) and non-
participating Q(np) for each client during the whole training
process. Each row represents one specific client. After a
transitory period at the beginning of the process, we can notice
that the Q values are stabilized around one value. Moreover,
such value is similar for all the clients since data are iid
distributed, therefore selecting one client or another does not
provide any advantage in terms of accuracy and energy.

Similarly, on CIFAR-10p dataset, the value of γ = 0.6 is
that returning the best performance. Figure 4 shows the evo-
lution of Q(p) and Q(np) for each client during the learning
process. As observed for the CIFAR-10 dataset, the values
are changing round after round till reaching convergence. So,
even in this case, the proposed MAB agent on each client is
learning the structure of the problem.

Also, in this case, Q(p) and Q(np) converge to similar

https://gitlab.cttc.es/supercom/energy-efficient-decentralized-client-selection
https://gitlab.cttc.es/supercom/energy-efficient-decentralized-client-selection

TABLE 2: Baseline results on CIFAR-10 and CIFAR-10p dataset with random selection policy.

m R σ(R) E σ(E)

5 62 0 885.21 0.15
10 43 0 649.49 0.18
15 45 0 717.19 0.21
20 49 0 820.84 0.22
25 38 0 667.84 0.24
30 38 0 699.22 0.38
35 35 0 672.66 0.87
40 37 0 741.81 1.46
45 40 0 833.68 1.67
50 39 0 845.44 0.56

MAB 36.2 0.44 638.16 7.14

(a) CIFAR-10

m R σ(R) E σ(E)

5 100 0 1388.81 0.03
10 89 0 1276.24 0.14
15 67 0 990.17 0.41
20 61 0 928.62 0.08
25 55 0 861.72 0.50
30 64 0 1032.50 3.53
35 63 0 1040.60 1.02
40 57 0 967.98 0.89
45 65 0 1130.39 1.38
50 55 0 981.25 0.25

MAB 48.8 2.19 758.79 33.88

(b) CIFAR-10p

values for all the clients. This includes the 4 superclients,
i.e. {45, 46, 47, 48}, which have a local dataset with all the
possible labels. When a superclient participates in the process,
it leads to a greater accuracy improvement (first addend
of (5)). However, its participation also results in higher energy
consumption due to its larger dataset (second addend of (5)).
In our simulation scenario, these two factors return similar
values, thus resulting in equal expected reward for clients with
pruned label distributions and superclients. In fact, the reward
function is not able to capture the different data distributions
across the clients and is missing to let superclients participate
more, as should be expected. This opens the doors to further
improvements in future work to include additional terms in the
reward, which may consider the different label distributions.

As a further analysis, we compare our decentralized ap-
proach with the classical centralized random client selection
policy. The two key performance indicators used are the
number of rounds R and the energy E required to reach the
target accuracy. In Table 2, we report the averaged values of
rounds R and energy E together with σ(R) and σ(E) that
indicate the relevant standard deviations, respectively. The last
row in the Table specifies the values obtained with our MAB
agent implementation.

First, we note that on the CIFAR-10 dataset (Table 2a),
m = 35 minimizes the number of rounds, but the energy
consumption is minimized by m = 10. This result underlines
the importance of having the right client selection policy
for achieving a good trade-off between accuracy and energy
spent and stresses that research directed to only reduce the
convergence time/communication rounds is not enough for
efficient FL processes. From our experiments, instead, this
claim appears to be valid in non-iid scenarios (Table 2b). Then,
MAB reaches the target accuracy on average in 36.2 (48.4)
rounds with an average energy consumption of 638.16 Wh
(758.79 Wh) on CIFAR-10 (CIFAR-10p). On the CIFAR-10
dataset, the MAB approach requires 1 round more, but saves
the 1.7% of energy. On the CIFAR-10p dataset, the proposed
MAB approach improves both key performance indicators of

the 12% with respect to the best baseline for both energy and
number of rounds.

Such better performance may be mainly explained through
Figure 5, in which we report the number of participating
clients for the two datasets CIFAR-10 (iid) and CIFAR-10p
(non-iid).

The active set of clients varies at each round and makes the
system find the right trade-off between accuracy and energy,
following the defined reward function. Moreover, we can
notice that the number of participating clients at each round
follows similar trends for the two datasets. This result is due
to the fact that our MAB implementation does not consider
data distribution as a decision metric. As stated above, such
a feature deserves further studies to achieve higher energy-
efficient FL processes.

0 10 20 30 40

20

25

30

FL round

N
um

be
r

of
cl

ie
nt

s

CIFAR-10
CIFAR-10p

Fig. 5: Client participation over time on CIFAR-10 and
CIFAR-10p dataset

VI. CONCLUSIONS

This paper addressed the client selection problem in FL by
formulating it as a sequential decision-making problem, where
each client autonomously decides whether to participate in the
current FL round or not. By considering the cost in terms of
energy and the potential benefit in the accuracy of each action,

we proposed a novel solution based on non-stationary multi-
armed bandits.

The proposed MAB based solution offers several advantages
over the previously proposed techniques used for client selec-
tion. It enables clients to make autonomous decisions based
on their local estimate of the expected reward, promoting a
scalable and decentralized client selection policy. This auton-
omy empowers individual clients to evaluate their own utility
in contributing to the global model accuracy. Moreover, the
experimental evaluation shows that the MAB-based approach
outperforms the baseline by achieving a significant improve-
ment up to up to 12% in energy consumption and number of
rounds.

Finally, we are currently working on additional improve-
ments to the definition of the reward function, which aim
to consider the heterogeneous data distributions in the local
dataset and lead to higher energy efficiency of FL processes.

REFERENCES

[1] E. Guerra, F. Wilhelmi, M. Miozzo, and P. Dini, “The cost of training
machine learning models over distributed data sources,” IEEE Open
Journal of the Communications Society, vol. 4, pp. 1111–1126, 2023.

[2] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang,
“Federated learning for healthcare informatics,” Journal of Healthcare
Informatics Research, vol. 5, pp. 1–19, 2021.

[3] C. Lanza, E. Angelats, M. Miozzo, and P. Dini, “Urban traffic forecasting
using federated and continual learning,” in 2023 6th Conference on
Cloud and Internet of Things (CIoT), pp. 1–8, 2023.

[4] V. Perifanis, N. Pavlidis, R.-A. Koutsiamanis, and P. S. Efraimidis,
“Federated Learning for 5G Base Station Traffic Forecasting,” 2022.

[5] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y
Arcas, “Communication-efficient learning of deep networks from de-
centralized data,” in Artificial intelligence and statistics, pp. 1273–1282,
PMLR, 2017.

[7] J. Xu and H. Wang, “Client selection and bandwidth allocation in
wireless federated learning networks: A long-term perspective,” IEEE
Transactions on Wireless Communications, vol. 20, no. 2, pp. 1188–
1200, 2020.

[8] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in NLP,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 3645–
3650, 2019.

[9] “AI and Compute,” May 2018. https://openai.com/blog/ai-and-compute/.
[10] B. AAMER, H. Chergui, M. Benjillali, and C. Verikoukis, “Entropy-

driven stochastic federated learning in non-iid 6g edge-ran,” Frontiers
in Communications and Networks, p. 45, 2021.

[11] A. Houdou, H. Alami, K. Fardousse, I. Berrada, et al., “NIFL: A statis-
tical measures-based method for client selection in federated learning,”
IEEE Access, vol. 10, pp. 124766–124776, 2022.

[12] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning:
Convergence analysis and power-of-choice selection strategies,” arXiv
preprint arXiv:2010.01243, 2020.

[13] Y. J. Cho, S. Gupta, G. Joshi, and O. Yağan, “Bandit-based
communication-efficient client selection strategies for federated learn-
ing,” in 2020 54th Asilomar Conference on Signals, Systems, and
Computers, pp. 1066–1069, IEEE, 2020.

[14] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications, pp. 1698–1707, IEEE,
2020.

[15] H. Zhang, Z. Xie, R. Zarei, T. Wu, and K. Chen, “Adaptive client
selection in resource constrained federated learning systems: A deep
reinforcement learning approach,” IEEE Access, vol. 9, pp. 98423–
98432, 2021.

[16] S. AbdulRahman, H. Tout, A. Mourad, and C. Talhi, “FedMCCS:
multicriteria client selection model for optimal IoT federated learning,”
IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4723–4735, 2020.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[18] R. S. Sutton, A. G. Barto, et al., “Reinforcement learning: an introduc-
tion,” 1998.

[19] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[22] V. Schmidt, K. Goyal, A. Joshi, B. Feld, L. Conell, N. Laskaris,
D. Blank, J. Wilson, S. Friedler, and S. Luccioni, “CodeCarbon: Estimate
and Track Carbon Emissions from Machine Learning Computing,” 2021.

	Introduction
	Related work
	FL Overview
	System model
	Performance Evaluation
	Simulation Setup
	Result Analysis

	Conclusions
	References

