

Abstract—Software maintenance is one of the essential processes

of Software-Development Life Cycle. The main philosophies of
retaining software concern the improvement of errors, the revision of
codes, the inhibition of future errors, and the development in piece
and capacity. While the adjustment has been employing, the software
structure has to be retested to an upsurge a level of assurance that it
will be prepared due to the requirements. According to this state, the
test cases must be considered for challenging the revised modules and
the whole software. A concept of resolving this problem is ongoing
by regression test selection such as the retest-all selections,
random/ad-hoc selection and the safe regression test selection.
Particularly, the traditional techniques concern a mapping between
the test cases in a test suite and the lines of code it executes.
However, there are not only the lines of code as one of the
requirements that can affect the size of test suite but including the
number of functions and faulty versions. Therefore, a model for test
case selection is developed to cover those three requirements by the
integral technique which can produce the smaller size of the test
cases when compared with the traditional regression selection
techniques.

Keywords—Software maintenance, regression test selection, test

case.

I. INTRODUCTION
MOUNTS of software are being developed for various
fields such as business, including education and industry

[1]. The maintaining software is one of the most important
following issues in software-development cycle [2], [3]. One
of the major harms of software maintenance is to execute a
suitable test suite that is used to test before maintaining the
modified code [4]. Test suite comprises a set of test cases used
for fixing bugs, functions, and faults [5]. If test suite size is
huge, and then executing time increases, this can reduce the
abilities of the entire software. Therefore, this paper proposes
a model for selecting a minimum test suite to fix to this
problem. Another problem after selecting the cases, we should
avoid the unintended bugs that can be performed while
running the program. The reason is that the reduction of test
cases may remove some test cases that should not be deleted
from a test suite because they affect the entire programs (e.g.,
execution time increases) [6]. According to this, the regression
test techniques are proposed produce the appropriate test suite
before selecting them for the process of modifying the new
software version. In general, there are three main strategies in
regression test explained as follows; Regression Test
Minimization involves removing irrelevant test cases.

A. Lawanna is Lecturer at Assumption University, Bangkok, 10240
Thailand (phone: 662-719-1079; fax: 662-719-1639; e-mail:
adtha@scitech.au.edu).

Regression Test Selection can choose the appropriate test
cases based on multiple regressions. Regression Test
Prioritization can rank test cases into small groups and
selection the most relevant test cases [7]. Moreover, this paper
studies the retest-all technique, random/ad-hoc selection, and
the control graph flow which is a safe regression test selection
[8]. In addition, one of the main objectives of those techniques
is to produce the small test suite while faultless is still
preserved. The record shows that the retest-all technique is
simplest, but it introduces the maintenance cost because all
test cases are revised. In the meantime, the random/ad-hoc
selection techniques can reduce the running time, but it cannot
preserve faultless rate [9]. The safe test based regression test
selection can reduce numbers of test cases and offers the better
faultless rate than others [10]. Therefore, a model for test suite
selection (MT) is proposed to handle those problems
mentioned above. It gives the better results compared with the
traditional regression techniques. The challenge of MT is that
it standardizes the requirements (e.g., the number of functions,
the lines of code, and the faulty versions) and integrates them
to find the small amounts of the average test cases. According
to this, it claims that our selection technique can reduce many
more test cases than some of the traditional regression
selection techniques.

Basically, the software testers use the automated test case
generation to produce the test suites, in which contain
numbers of the test cases. Sometimes, a test suite is called a
test pool, whereas a reduced suite of test cases is required
during the process of maintaining software [11]. However, the
selected test cases are the most important of a reduced suite. A
test suite can be changed, where there are the numbers of
function are requested by the developers, test team and the
users. Specifically, the entire program, which contains the
lines of code, may produce bugs after faults are found [12]. To
the survey, the traditional regression selection concerns faults
that can change the properties of the program that contains
with many lines of code [13]. Unfortunately, many techniques
are working due to the assumptions of the numbers of function
are solved by the test team already before coming to the part
of a test case selection. Therefore, in the future works, many
researchers are trying to concerns those three factors (numbers
of function, lines of code, and faults) including the other
factors, such as the structure of source code and a structure of
the entire system.

Adtha Lawanna

A Model for Test Case Selection in the Software-
Development Life Cycle

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:1, 2014

93International Scholarly and Scientific Research & Innovation 8(1) 2014 scholar.waset.org/1307-6892/9997423

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
1,

 2
01

4
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
97

42
3

http://waset.org/publication/A-Model-for-Test-Case-Selection-in-the-Software-Development-Life-Cycle/9997423
http://scholar.waset.org/1307-6892/9997423

II. RELATED WORKS

A. Retest-All Selection
The oldest and simplest technique of regression test

selection is the retest-all selections. It is the technique that
simply reuses all existing test cases in test suite and selected
test case, this technique “chooses" all test cases in T but failure
to preserve the faultless. This technique is very appropriate
when the size of a source code is proper. In order to measure
the size, it depends on the developers’ judgment. The problem
starts when the size is getting bigger that causes running time
increases. Unfortunately, that there are no reports about what
size is called small or proper size. Another reason is about
running time; it may refer to time consuming in searching data
inside database or may be executing time for checking bugs in
any lines of code. That’s why, the retest-all techniques cannot
response to faultless and time constraints, but no test selection
tools are available, developers often select test suite based on
“hunches", or loose associations of test suite with
functionality, line of codes and faulty versions [14].

B. Random/Ad-Hoc Selection
It randomly chooses some number of test cases from test

suite. The random algorithms can be varied by human
judgments. This technique claims that it is a fast selection,
which depends on random functions. Particularly, the different
numbers of random selection are required in one experiment.
One of the majors studying with this technique is to observe,
in which, what is the suitable random numbers that can reduce
the maximum numbers of test cases. Besides this, it is also
required to reduce the faults in a source code after running.
However, we found that this technique cannot guarantee the
abilities of reduction and faultless rate [15].

C. The Safe Test Technique
This paper focuses Rothermel and Harrold's regression test

selection tool because their results are better than the retest-all
and random/ad-hoc selection. This technique can be used to
construct the control flow graphs for a program or procedure
and its modified program and uses the flow graphs to select
test cases that execute the revised code from the original test
suite. They describe that, under certain conditions, the set of
test cases their technique selects includes every test case from
the original test suite that can expose faults in the modified
program or procedure. Particularly, although their algorithms
may choose some test case that cannot expose faults, they are
at least as accurate as other safe regression test selection
techniques. Unlike many other regression test selection
techniques, their algorithms can handle all types of program
modifications and all language constructs. They have
implemented their algorithms; initial empirical studies prove
that their technique can significantly reduce the cost of
regression testing modified program [16].

D. Subject Programs
In this paper, the eight subject programs, with a number of

modified versions and the test suites for each program are
provided. The programs are from two sources: a group of

seven programs collected and constructed initially by
Rothermel and Harrold and an interpreter for an array
definition language, used within a large aerospace application,
space. Table I shows the details of the subject programs, in
which those programs are originated by Hutchins and team.
These programs are written in C, and size varied from 138 to
516 lines of code. They applied a test pool of black-box to
generate these programs which test cases using the category
partition method with Siemens Test Specification Language
tool. Afterward, they applied additional white-box technique
to ensure that each exercisable statement, edge, and also
definition-use pair in the base program or its control flow
graph was exercised by at least 30 test cases. Hutchins and
team also generated faulty versions of each program, which
varied between 7 and 41 versions by modifying existing code
in the base version; in most the test cases they provided a
single line of code whereas in a few cases they changed
between 2 and 5 lines of code. Then, they discarded the
modifications that they realized either very easy to determine
the changes (e.g., found by more than 350 test cases in each
test suite) or very difficult to find the fewer than three test
cases) with their previously created test cases. Another
program, Space has been used as a subject for several
regression test selections. As Table I describes, it contains 136
C functions and 6,218 lines of code. Each of the program has
33 versions contains a single fault that can be discovered
while developing the program [16].

TABLE I

THE SUBJECT PROGRAMS
Name n l f

print-tokens 18 402 7
print-tokens2 19 483 10

replace 21 516 32
schedule 18 299 9

schedule2 16 297 10
space 136 6218 38
tcas 9 148 41

totinfo 7 346 23

The subject programs from Table I are often used for the
research area on techniques of choosing the test cases, e.g.,
regression test selection, minimization, and prioritization.

III. PROPOSED METHODS

A. Standardize the Requirements
According to the subject program as data set used

throughout this paper, the main requirements are standardized
at the first step of the proposed methods.

Definitions in this step are provided as follows; N: the
number of functions; x: the elements of N; F(x): the
neighborhood of x; X\: the standardized of N. Given a
program, let Xx ∈ be a requirement. Denote that F(x) the
neighborhood of x and)(),()(ixxl xFxFUXF

l∈= contains

requirements which are close to some other requirements in lx
. Suppose that P is a frequency function of the requirement

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:1, 2014

94International Scholarly and Scientific Research & Innovation 8(1) 2014 scholar.waset.org/1307-6892/9997423

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
1,

 2
01

4
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
97

42
3

http://waset.org/publication/A-Model-for-Test-Case-Selection-in-the-Software-Development-Life-Cycle/9997423
http://scholar.waset.org/1307-6892/9997423

running from 0 to 100%; equivalently there is a distribution of
requirement. Then the requirement size of lx is defined as

∑
∑

∈

∈
=

Xx

XFx
l

xP

xP

XSize l

)(

)(

)()((1)

The benefit of a requirement x with respect to a set, W of

the requirements is determined as;

∑
−∈ =

=
)()(1

)()(
WFxFUy l

k
i

yPxBFT (2)

where

)()(wFUWF Ww∈= (3)

The benefits of a requirement set or { }kxxxx ,...,, 321 is

defined as;

∑
−∈ =))((1

)(
WFxFUy l

k
i

yP (4)

The procedures of the standardization of the number of

functions are described as;
1. Determine the neighborhood F(x) for every requirement

Fx ∈
2. Set φ=1x .
3. Select a number of function from F — X\ with the

maximal benefit with respect to F(X\) and add it to X\.
4. Repeat step 3 until F(Z) - F(Xi) is empty or X1 has k

elements.
Remark: the size of the test cases and the benefit are used.

In fact, the benefit can be defined on other notions as long as it
takes the concept of usefulness.

B. Determine the Test Cases
In response to step 1, the integral technique is used to

integrate F(X\)with respect to (f,l,n) as;

∫∫∫=
f

000
f\)(dndldXFT

ln
 (5)

where, over a particular (n,l), the variable f is restricted
between a(n,l) and b(n,l) and, for a particular n, the variable l
is restricted between c(n) and d(l). The number of functions
can be changed any time depends on the user requirements,
programmers, and test team. Those requirements cause
inefficient of the modified code, including lines of code can
affect the faulty version (e.g., bugs or faults). Example of the
computation;

∫∫∫=
f

000
f\)(dndldXFT

ln

∫∫∫ ++=
f

000
f)f(dndldlnT

ln

∫∫ ++=
f

0

2

0
ff)

2
(dldnnlnT

l

(6)

∫ ++=
f

0

22
ff)

22
(dnllnlnT

)
2

fn)(l)(()(f)
2
ln)((f))()(

2
(

222
++= lnT

Therefore, the computations of finding the numbers of the

appropriate test cases can be done by using (6).

C. Determine the Average Test Cases
This step, the average test suite is computed by (7);

net
avr T

TT = (7)

The value of the net test cases netT is given by;

f××= lnTnet (8)

Equation (8) is useful for the computation, when the total

numbers of the test cases are needed.

IV. EXPERIMENTAL RESULTS

A. Standardization of the Requirements
According to the scientific data, the first step is to

standardize the requirements of test cases in a test suite in the
different programs shown in Figs. 1-3. The results show that
after the subject programs are standardized, the amounts of
each requirement are reduced. Accordingly, the complexities
of the modified programs are also reduced; the reason is that
the smaller numbers of the requirements can reduce the
executing and testing time. However, the experiments must
avoid the lack of the correctness after reducing some
requirements.

The standardization must concern the relevant requirements
that can affect the ability of the entire software. The properties
of the standardization of this paper can help the software
maintainers to produce the minimum errors at approximately
30% due to (1)-(4). However, the standardization technique
does not depend on only these requirements because sometime
the process of software maintenance deals with other
requirements such as the human judgments, the ability of the
maintenance team, and the hardware-software configuration.

B. The Average Test Suite
After the standardizations of the requirements of each

subject program are done then the average test cases in the test
suites are defined. According to (5), it can help us to find the
proper test cases. Particularly, (6) is applied to find the
average test cases in a test suite which needs the net test cases
from the original requirements that normally can be computed
by the multiplication of related requirements. The random

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:1, 2014

95International Scholarly and Scientific Research & Innovation 8(1) 2014 scholar.waset.org/1307-6892/9997423

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
1,

 2
01

4
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
97

42
3

http://waset.org/publication/A-Model-for-Test-Case-Selection-in-the-Software-Development-Life-Cycle/9997423
http://scholar.waset.org/1307-6892/9997423

te
an
of
It
ar

re
m
fo
fo

in
th
ra
th
re

Ve

ve
m
m
te
fin
re
th
be
of
m
ch
Fr
co
th
of
fu
se

stu
be
(1
(2
(3

Fi

chnique and
nd used for th
f the software
shows that th

re lower than t

C. Reduction
The first co

eductions afte
maintenance is
ormula that is
ollows;

Fig. 5 show
ncluding the M
han others ex
andom techniq
he more comp
equirements ca

D. The Ratio
Versions

The ratio be
ersion is one

maintainers to c
modified prog

chniques. Re
nding the fau

esults, it guide
he related req
efore running
f the limita

modifying sou
hanges made b
rom the surve
ode and the e
he test cases fo
f the most im
unctions. This
election is prop

From the wh
udies, the MT
ecause;
1) It offers the
2) The MT gi
3) The numbe

ig. 1 Before and

the safe regre
he evaluation.
 based on the
he average te
the results of t

 Rate
ontribution of
er selecting th
s higher than
s used for cal

ws the compa
MT. It gives t
xcept the res
que works we

mplexity cause
an be handled

between the N

etween the n
of the evalua

concern the po
gram after
elevant to Fig
ults can be fou
es the maintai
quirements in

through the m
tions of ma

urce codes, d
by users, prog
ey, many tech
effect from th
for the next pr
mportant requ
s is the reas
posed.
hole picture o
T gives the be

e smallest size
ives the maxim
ers of faults ar

d after the stand

ession test se
 Moreover, th
se techniques

est cases of th
the safe test.

f this paper
he test cases

n the tradition
lculate the va

arison betwee
the higher red
sult of the s
ell in this pro
ed by the hig
d by simply sel

Number of Te

number of te
ations that ca
ossibilities of
using the d
g. 6, it show
und in the M
iners to conce
n the process
maintenance
aintain the

depend on the
grammers, test
hniques conce

he faulty versi
rocess. This m
uirements suc
son why a m

of the abilities
etter capability

e of the test ca
mum of the re
re smaller than

dardization of th

election are pr
he average tes
 are shown in

he random tec

is the value
s for the pro
nal technique

alue of the re

en these tech
duction of tes
space program
gram this is b
gher number
lection.

est Cases and

est cases and
an help the so
f find the fault
different reg

ws that the l
MT. According
erns the influe

of testing so
process. In fa
program, in
e understandi
ters, and main
ern only the l
ions before se
may not handl
h as the num
model for te

s of the comp
y than others.

ases.
duction rate.
n others.

he number of fu

receded
st cases

n Fig. 4.
chnique

of the
cess of
es. The
duction

hniques,
st cases
m. The
because

of the

d Faulty

d faulty
oftware
ts in the
gression
least of
g to the
ences of
oftware
act, one

ncluding
ing the

ntainers.
lines of
electing
le some
mber of
st case

parative
This is

unctions

Fig. 2 Before

Fig. 3 Before a

Fig. 4

Fig. 5 T

and after the st

and after the sta

The studies of t

The reduction of

tandardization o

andardization of

the comparison

f the compariso

of the lines of c

f the faulty vers

n techniques

on techniques

code

sions

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:1, 2014

96International Scholarly and Scientific Research & Innovation 8(1) 2014 scholar.waset.org/1307-6892/9997423

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
1,

 2
01

4
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
97

42
3

http://waset.org/publication/A-Model-for-Test-Case-Selection-in-the-Software-Development-Life-Cycle/9997423
http://scholar.waset.org/1307-6892/9997423

re
te
ba
gu
co
fu
nu
de
re
pr
tim
af
se
ca
im

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10

Fi

V.
This paper c

eduction and
chnique such
ased regressio
uarantee that
omplexities in
unctions, faul
umbers of tes
ecrease the ab
erunning and
rocesses of m
me. By two m
ffect the perfo
election. For f
ase deletion,
mprove the per

] A. Abran, an
from a deman
63–90.

] W. Royce, “
9thInt. Conf. S

] A.M. Davis,
Alternative S
Softw. Eng. U

] E.B. Swanson
Engineering,

] J. Barton, E
experiments u
pp. 575–582,

] E. Jenn, J. Ar
into VHDL m
vol. 39, no. 4,

] H.K.N. Leun
Testing Glob
209-222.

] H. Agrawal,
regression tes
348-357.

] M.V. Zelkow
Validation o
Engineering,

0] A.B. Taha, S.
Localization

ig. 6 The comp

ductionRe

 CONCLUSION

contributes tw
faultless whe
as a random/

on test selec
t it is the
nvolves in th
lty version,

st cases and te
bilities of the e
re-debugging

maintaining s
main objective
ormance of ke
future works,
test case add
rformance of

RE
nd K. Nguyen, “
nd-based Perspec

“Managing the d
Software Enginee
H. Bersoff, and
oftware Develop

USA., vol. 14, no.
n, “The dimensio
USA, 1976, p. 49
. Czeck, Z. Seg
using FIAT,” IEE
1990.

rlat, M. Rimen, J.
models: The MEF
, Apr. 1990, pp. 5

ng, and L.J. Whi
bal Variables," JS

J. Horgan, E.
sting,” Conf. Sof

witz, D.R. Wal
of New Softw
World Scientific,
.M. Thebaut, and

and Revalidati

arison of findin

net

avrnet

T
TT

n
−

=

AND FUTURE

wo benefits, w
en compared
/ad-hoc select
ction. Howev

best becaus
he process of

bugs, run t
est suite size)
entire source
the program

software most
es, the selected
eeping faultles
we will apply

dition, or par
any software.

EFERENCES
Measurement of

ctive,” JSMR, USA

development of
ering USA, 1987,

E.R. Comer, “A
ment Life Cycle
10, Oct. 1988,pp

ons of maintenan
92–497.
gall, and D. Sie
EE Trans. on Co

. Ohlsson, and J.
FISTO tool,” IEE
575-582.
ite, "Insights into
SMR, USA., vol.

Krauser, and S
ftware Maintenan

llace, and D.W
ware Technolog
, 2003,pp. 229–2

d S.S. Liu, “An A
ion Based on

ng faults

WORKS
which are the

with the trad
ion, and the s

ver, the MT
se there are
f maintenanc
time execute
). Those facto
code while re
s, particularly
tly spent ver
d test cases m
ss after the te
y the concept
rtition techniq

f the maintenance
SA, vol. 5, no. 2,

large software s
 p. 1-9.

A Strategy for Co
Models,” IEEE T

p. 1462-1477.
nce,”2ndInt. Conf.

ewiorek, “Fault
omp. USA., vol. 3

Karlsson, “Fault
EE Trans. on Com

o Testing and R
2, no. 4, Dec. 1

S. London, “Inc
nce, USA., Sep.

. Binkley, Expe
gy. Empirical
63.
pproach to Softw
Incremental Da

 (9)

e higher
ditional
safe test

cannot
many

e (e.g.,
e time,
ors may
etesting,
y, in all
ry long

must not
est suite
t of test
ques to

e process
1993, pp.

systems,”

omparing
Trans. on

Software

injection
39, no. 4,

injection
mp. USA.,

egression
1990, pp.

cremental
1993, p.

erimental
Software

ware Fault
ata Flow

[11

[12

[13

[14

[15

[16

Analysis,” 13t

1989, p. 527-5
1] V.R. Basili, an

Testing Strate
Dec. 1987, pp

2] E. Wong, and
and Data-flow

3] G. Rothermel,
technique,” AC
pp. 173-210.

4] G. Rothermel,
test selection t
6, Jun. 1998, p

5] F.I. Vokolos,
differencing r
Maintenance,

6] G. Rothermel
techniques,” I
1996, pp. 529-

th Conf. Compute
534.
nd R.W. Selby, “
egies,” IEEE Tra
. 1278–1296.
A.P. Mathur, “F

w Testing,” SQJ, U
 and M. Harrold,
CM Trans. on So

, and M. Harrold
technique,” IEEE
pp. 401-419.

and P.G. Frank
regression testing
USA., Nov. 1998

l, and M. Harro
IEEE Trans. on
-551.

er Software and A

“Comparing the E
ans. on Soft. Eng

Fault Detection E
USA., vol. 4, no. 1
, “A safe efficien
oftw. Eng. USA.,

d, “Empirical stu
E Trans. on Softw

kl, “Empirical e
g technique,” the
8, p. 44-53.
old, “Analyzing

Softw. Eng. USA

Applications, US

Effectiveness of S
g. USA., vol. 13,

Effectiveness of M
1, 1995, pp. 69–8

nt regression test s
vol. 6, no. 2, A

udies of a safe re
w. Eng. USA., vol

evaluation of the
e Int. Conf. on S

regression test s
SA., vol. 22, no.

SA., Sep.

Software
, no. 12,

Mutation
83.
selection
pr 1997,

egression
l. 24, no.

e textual
Software

selection
8, Aug.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:1, 2014

97International Scholarly and Scientific Research & Innovation 8(1) 2014 scholar.waset.org/1307-6892/9997423

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:8
, N

o:
1,

 2
01

4
w

as
et

.o
rg

/P
ub

lic
at

io
n/

99
97

42
3

http://waset.org/publication/A-Model-for-Test-Case-Selection-in-the-Software-Development-Life-Cycle/9997423
http://scholar.waset.org/1307-6892/9997423

