Unleashing the power of data through organization Structure and connections for meaning, learning, and discovery

Dagobert Soergel

Department of Library and Information Studies Graduate School of Education University at Buffalo

ISKO UK 2015

See the full paper for detail and references

Soergel, Unleashing the power of data through organization ISKO UK 2015

The Future of Knowledge Organization

Knowledge organization is needed everywhere

Create the future of KO

Think BIG. Think answers not pointers. Focus on substantive data

Many areas, tasks, and functions that could profit from KO principles

Engage with Ontologies, AI, data modeling

Areas, tasks, and functions

- 1 Knowledge bases for question-answering and cognitive systems
- 2 Knowledge base for information extraction from text or multimedia
- 3 Linked data
- 4 Big data and data analytics. Data interoperability and reuse
- 5 Interoperability of operational information systems. Electronic health records (EHR) as an example
- 6 Information systems in the enterprise
- 7 Influence diagrams (causal maps), dynamic system models, process diagrams, concept maps, and other node-link diagrams
- 8 Knowledge organization for understanding and learning
- 9 Knowledge transfer between domains

Unification

- across applications
- across types of data (example: organization database treated like classification)
- across disciplines, supports knowledge transfer from one discipline domain to another
- across languages (precise definitions)
- **across cultures**, across organizations (organizational cultures)
- across worldviews

Part 2 The application of Knowledge Organization

Soergel, Unleashing the power of data through organization ISKO UK 2015 2.1 Knowledge bases for question-answering and cognitive computing

> Soergel, Unleashing the power of data through organization ISKO UK 2015

Knowledge base	Some KOS used	
CYC Common sense knowledge	CYC Ontology, including entity types, relationship types, and entity values	
IBM Watson Custom KB for applications	An extensible inventory of relationship types	
Google Knowledge Graph Huge database of varied kind of data (Starr 2014)	schema.org for entity types and relationship types	
DBpedia Large database of statements extracted from Wikipedia	DBpedia Ontology (E-R schema) Authority lists for individual entity values (instances), each identified by a URI.	
GDELT Event reports	CAMEO Coding Scheme for events Own list of 300 themes, World Bank Taxonomy themes 2,300 emotions and themes (from 24 sentiment analysis packages) US government geonames standards	

2.2 Knowledge base for information extraction from text or multimedia

Often only text is considered, but information can be extracted from graphs and video (for example, identifying people by face recognition and relationships between people from analyzing scenes). In the following text+

Information extraction

- Entity extraction (Named-entity recognition) Locating references to entities in text+, associate with a unique identifier.
- Information extraction

Formally represent the propositions the text makes about these entities.

Information extraction both uses and feeds knowledge bases for question answering.

KOS for information extraction

Information extraction needs much knowledge, which must be properly organized into KOS

- Linguistic knowledge: morphological, part-of-speech, and lexical (meaning). Lexicalized phrases.
- Large KOS listing entity values and their (multiple) names (persons, organizations, places, concepts/subjects, ...)
- Knowledge supporting word sense disambiguation (WSD).
 Both linguistic knowledge and world knowledge.

2.3 Linked data

- Entity-relationship data model
- Data from independent data sets can linked
- Key implementation component of the Semantic Web
- Enormous opportunity for KO.
 - Deploying KOS data on the Web and have them more widely used.
 - Linked data require properly structured and often very large KOS.

Linked data

- The more pervasive standardization with respect to
 - entity types
 - relationship types
 - · entity values

the more successful linked data searching will be

• This is a problem of knowledge organization

Drug <hasName> Text Drug <hasGenericVersion> Drug

Drug <hasActiveIngredient> ChemicalSubstance

Drug <hasClinicalPharmacologyDescr> Text

Drug <hasIndicationDescr> Text

Drug <hasContraIndicationDescription> Text

Drug <administeredVia> RouteOfAdministration DBDrug <hasName> Text DBDrug <hasGenericName> Text DBDrug <hasCASRegistryNumber> URI

DBDrug <hasAbsorptionDescr> Text DBDrug <hasBioTransformDescr> Text DBDrug <hasPharmacolDescr> Text DBDrug <hasProteinBindRate> Pct DBDrug <hasIndicationDescr> Text DBDrug <hasPossibleDiseaseTarget> Disease DBDrug <hasContraIndicationInsert> Document DBDrug <hasDosageForm> DosageForm

2.4 Big data and data analytics. Data interoperability and reuse

Soergel, Unleashing the power of data through organization ISKO UK 2015

Example 1. Merging like datasets

- **Research question**: Factors affecting school success
- Need large sample, so merge data sets with anonymized data on individual students and test scores from many US states (many European countries)
- Problem: this works only if variables are defined the same way in all data sets
 - Factors such as socio-economic status of the student or home environment
 - Concepts and skills covered in the tests.
- This is a knowledge organization problem

Example 2. Linking datasets

- **Research question:** relationships between
 - · per capita income,
 - · how people feel about the economy, and
 - · birth rate

Unit of analysis: Locality

- The variables needed are in three different data sets:
 - 1 per-capita income by locality
 - 2 Twitter messages (analyze for sentiment)
 - 3 Birth rate by locality

The data sets need to be linked so that for each locality we have values for the three variables

• Problem: The ability to link these data sets depends on the linking variable, locality, being defined the same way and identifiable (a problem with Twitter)

2.5 Interoperability of operational information systems

Electronic health records (EHR) as an example

Interoperability of EHR data is an obvious must, but far from solved.

Needs KOS for

- race/ethnicity, age, sex
- bodily or mental functions or conditions
- diseases
- medical procedures
- drugs
- Worked on heavily, mainly by people in biomedical informatics / biomedical ontologies.
- Given here as one example of the importance of KO for operational systems.

2.6 Information systems in the enterprise

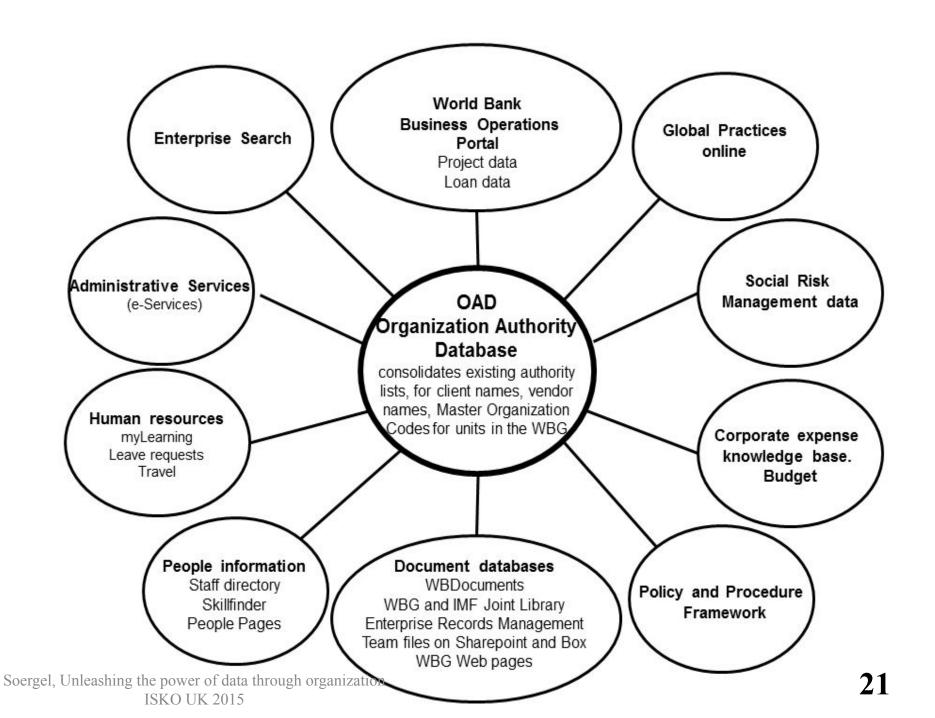
Soergel, Unleashing the power of data through organization ISKO UK 2015

Example 1

• Problem:

Many organizations do not know in a central place what data they have

• Solution:

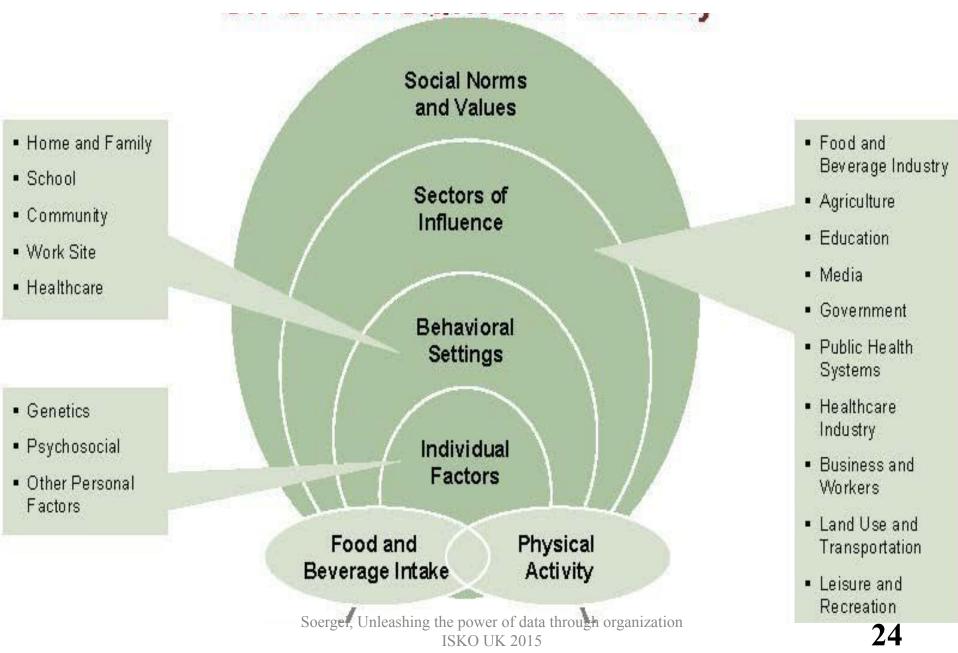

 Develop an enterprise-wide entity-relationship conceptual data schema (an enterprise ontology, an enterprise data model, the modern version of a data dictionary), using ideas from Web standards.

 Use this to organize an inventory or registry of all data systems in the organization and the specific pieces of data in each.

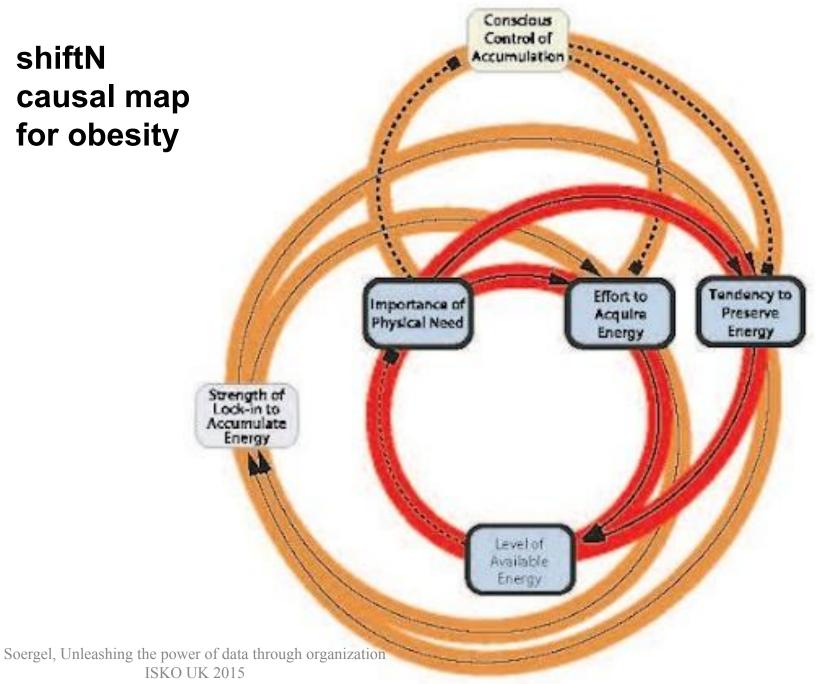
Example 2

<u>Unified</u> authority database for Organizations

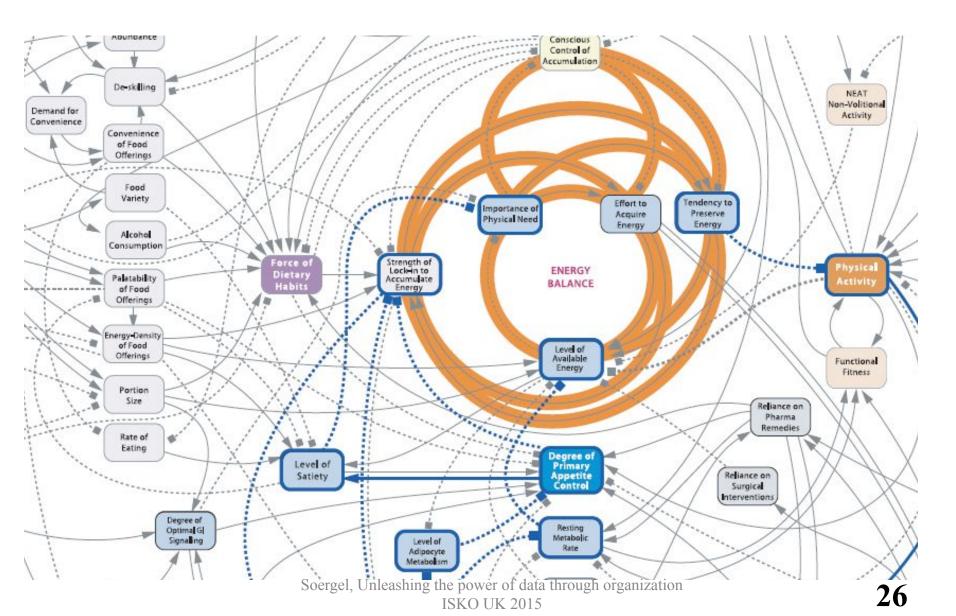
considered for the World Bank Group (WBG)

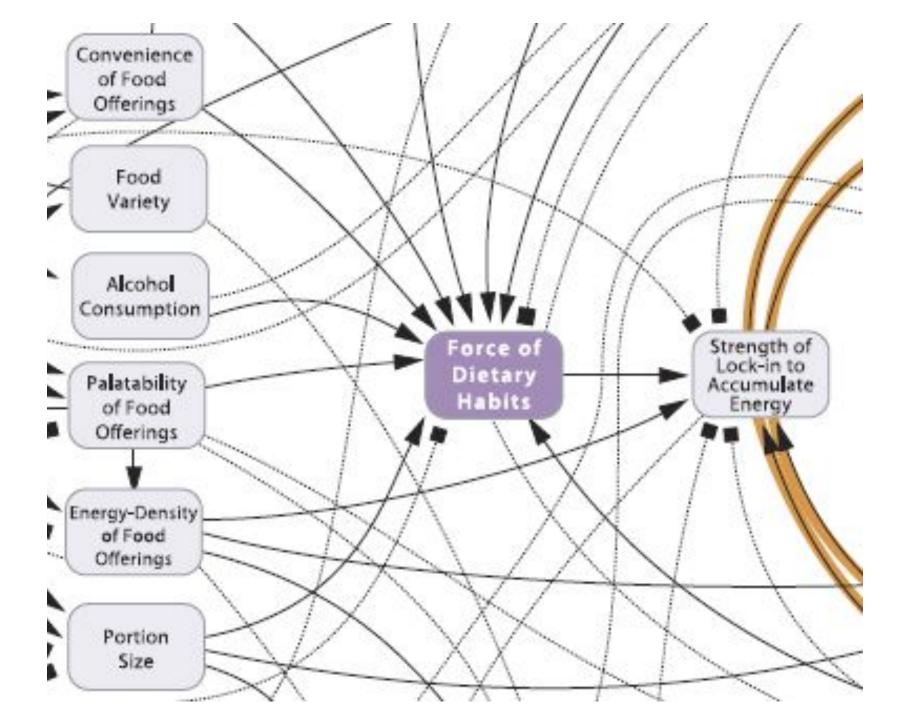

Example 2 cont.

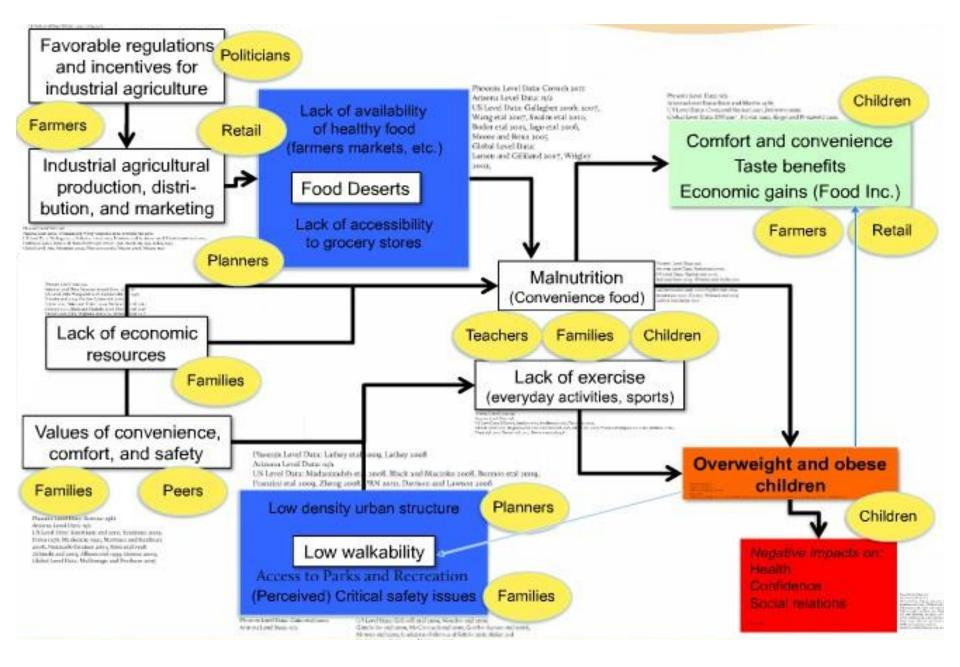
 The enterprise-wide Organization Authority Database should be structured exactly like a hierarchical thesaurus: Just like concepts, the organizations form a hierarchy, and they have multiple names


2.7 Node-link diagrams

- Causal maps (influence diagrams)
- Dynamic system models
- Process diagrams
- Concept maps
- Other


Influences on overweight and obesity





Segment the large and detailed shiftN causal map for obesity

Soergel, Unleashing the power of data through organization ISKO UK 2015

KO issues

- Arranging variables in a meaningful order
- Mapping variables from one model to another

Coming up later

- Merging node-link diagrams
- Linking node-link diagrams

shiftN causal map variables. Top level with example detail (arranged by DS)

Individual	Environment	
Engine Energy balance Conscious control of accumulation Effort to acquire energy Strength of lock-in to accumulate energy		
Physiology Degree of primary appetite control by brain Genetic and/or epigenetic predisposition		
Food consumption Force of dietary habits Tendency to graze Demand for convenience Food exposure Food variety	Food production Societal pressure to consume Demand for health Pressure to improve access to food offerings Cost of ingredients	
Individual physical activity Level of transport activity	Physical activity environment Dominance of motorised transport Opportunity for unmotorised transport	
Individual psychology Food literacy Stress	Social psychology Exposure to food advertising Peer pressure	

Some (approximate) matches and non-matches between 4 lists of variables

Soergel, Unleashing the power of data through organization ISKO UK 2015

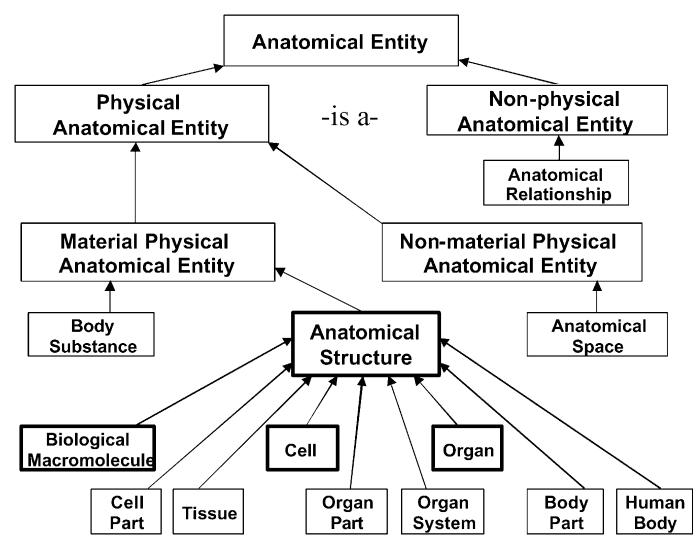
shiftN	Kaplan	Nanotechnology	Downey' list
Engine			
Energy balance	Energy balance		
	Energy intake		
	Energy expenditure		
Conscious control of accumulation			lack of self-control
Effort to acquire energy			
			Response to food cues
Physiology			
Appetite control by brain			
Genetic & epigenetic predisposition			genetics epigenetic factors
Food consumption	Food and bev. intake		overeating
Force of dietary habits			
		Malnutrition (conv. foods)	high fruct. corn syrup
Food production	Food & bev. industry	Agricultural production	agricultural policies
		Food deserts	food deserts
Cost of ingredients			
Indiv. physical	Physical activity	Exercise & physical activity	
activity	Soergel, Unleashing the p	ower of data through organization	
	ISF	Lack of exercise	Low physical activity

More uses of node-link diagrams

In biology and in industrial engineering

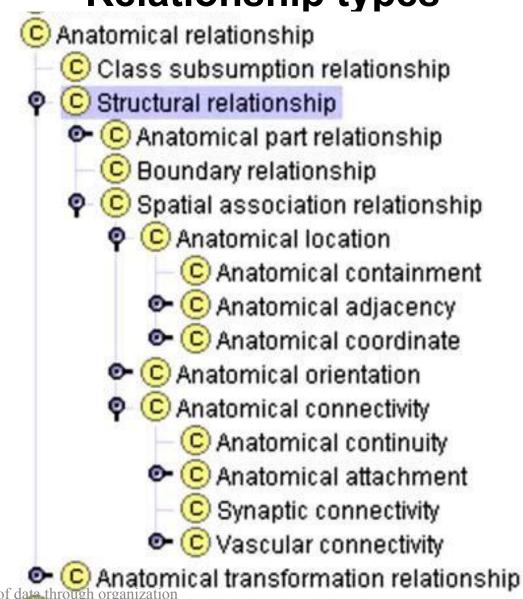
 diagrams of sequential and interrelated processes that lead to some outcome or state

In biology


- diagrams of signaling pathways,
- diagrams of metabolic networks,
- diagrams of gene regulatory networks

Concept maps

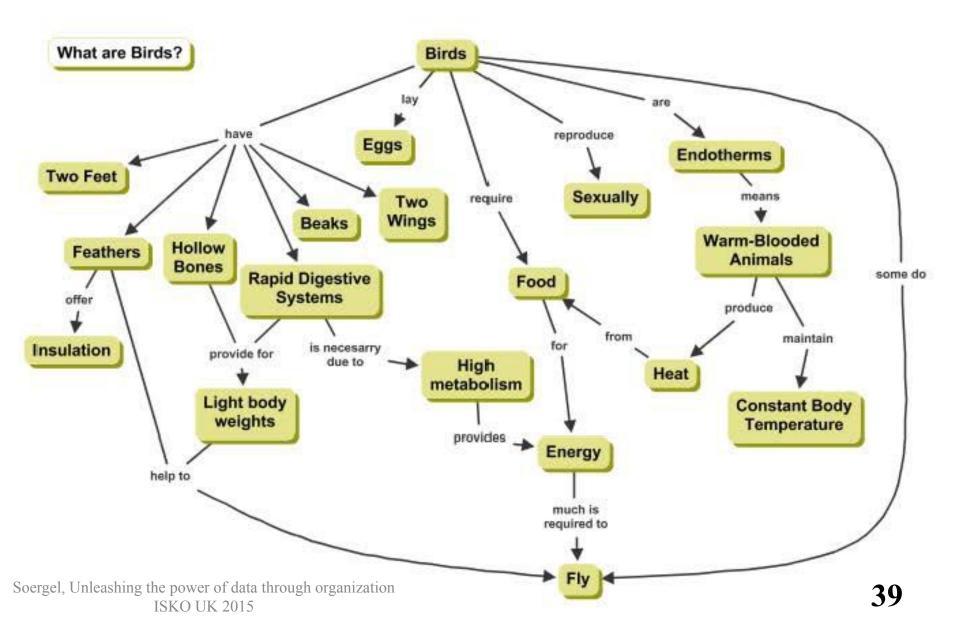
- Used as thesaurus displays since the 1950s
- Resurfaced forcefully in education
- If you know of earlier uses, let me know


2.8 Knowledge organization for understanding and learning

Foundational Model of Anatomy: Entity types

Soergel, Unleashing the power of data through organization ISKO UK 2015

Foundational Model of Anatomy: Relationship types



Soergel, Unleashing the power of data through organization ISKO UK 2015

Hypothesis

Students who are taught anatomy using the *Foundational Model of Anatomy* have a better grasp of the structure of the body.

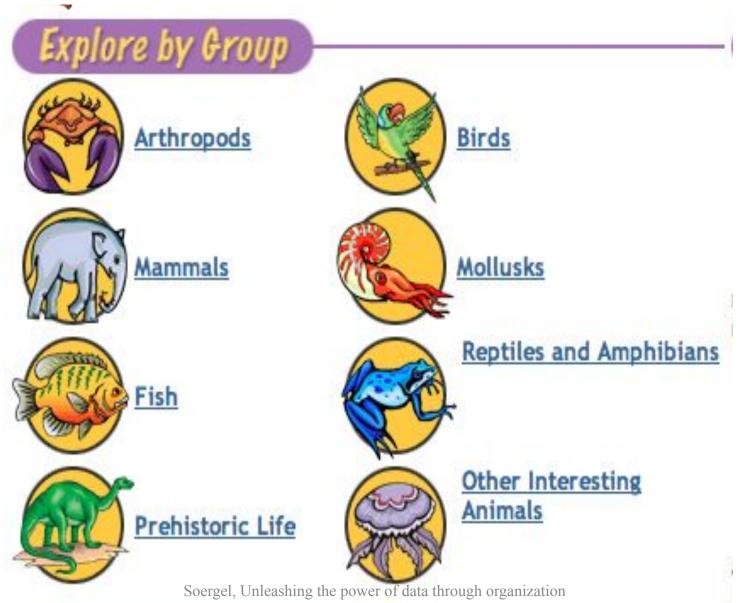
Concept map about birds

Concept map hypotheses

The bird concept map will allow learners to form a better internal representation of a bird as a system.

Constructing concept maps will help learners to develop a better understanding (a better structured mental model) of the topic.

Meaningful arrangement Classification of animals


a. Britannica Elementary: Menu for Animal Kingdom

Thoughtless arrangement, devoid of any meaning One of many such examples from children's websites

b. Meaningful arrangement Based on the modern cladogram shown in c.

c. Vertebrates cladogramower of data through organization ISKO UK 2015

Britannica Elementary: Menu for Animal Kingdom Thoughtless arrangement, devoid of any meaning

ISKO UK 2015

Animal Kingdom: Meaningful arrangement

based on modern science

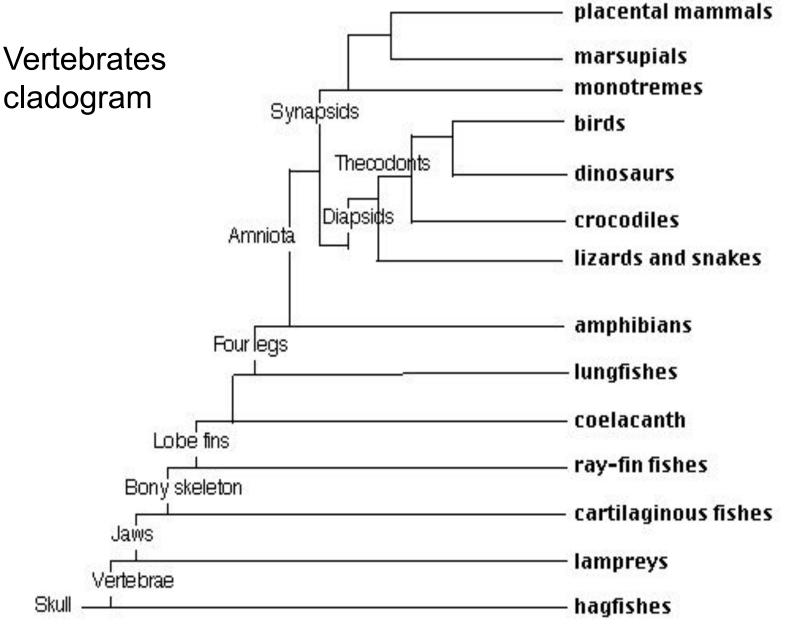
Animals without a spine (*invertebrates*)

Snails, octopus, mussels (mollusks)

Bugs (insects), spiders, crabs (*arthropods*)

Animals with a spine (vertebrates)

Fish


Frogs, toads, salamanders (amphibians)

Lizards&snakes, crocodiles, dinosaurs, birds

Lizards&snakes, crocodiles, dinosaurs (reptiles)

Birds

Elephants, whales, cows, dogs, bats, mice, monkeys, apes, humans (*mammals*)

Soergel, Unleashing the power of data through organization ISKO UK 2015

Meaningful arrangement hypothesis

Young students who use the animal home page with the meaningful arrangement will over time absorb the sequence and perceive a progression. When much later in biology the structure of the animal kingdom and the evolution of animals are discussed, these students will understand more quickly.

2.9 Knowledge transfer between domains

Management styles and educational styles compared			
Style of social interaction	Management style	Educational style	
Autocratic, authoritarian, directive	Autocratic, authoritarian, directive (coercive), top-down	Direct instruction, teacher-centered Teacher as formal authority, expert	
Military style	Military style	Military style	
Paternalistic	Paternalistic		
Authoritative (visionary)	Authoritative (visionary)		
Persuasive	Persuasive		
Coaching	Coaching	Teacher as facilitator	
Individual inner discipline, motivation, agreement with norms	el, Unleashing the power of data through of	Montessori	

Figure 17. Management styles and educational styles compared			
Style of social interaction	Management style	Educational style	
Participatory, democratic	Participatory (democratic), consultative	Democratic and Free Schools	
Collaborative, teamwork	Collaborative, teamwork	Cooperative Learning Teacher as facilitator, delegator	
Self-directed groups	Holacracy, self-management in groups		
Laissez-faire, free-wheeling	Laissez-faire	Open Schools (and Classrooms) (Summerhill)	
Chaotic	Chaotic		
People try their own thing		Inquiry-based learning, student-centered (related to constructivism) Teacher as facilitator, delegator	

Part 3 General observations on knowledge organization and its role

Soergel, Unleashing the power of data through organization ISKO UK 2015

3.1 Better data modeling

- Entity-relationship modeling is fundamental Kudos to Peter Chen (1976) and precursors
- Three past blunders
 - 1 Attributes as elements in entity-relationship modeling
 - 2 Calling relationships *properties*, as is done in RDF
 - 3 Using only binary (two-way) relationships

Part 4 Conclusions

Soergel, Unleashing the power of data through organization ISKO UK 2015

Conclusions 1

- Many applications of KOS.
- Consider both
 - requirements for machine processing, specifically inference, and
 - requirements for human processing, specifically meaningful arrangements that assists in making sense

Conclusions 2

- Many opportunities for people with good training in KO to improve KOS now used
- Prepare students for that, specifically
 - Students should have a basic understanding of logic, formal ontology principles, inference, and complex queries
 - Foster the ability to discern meaningful structures and then convey structure and meaning through good document design.
 - Foster the ability to work with researchers on defining variables, determining data collection methods, and curating, and sharing data, all to improve interoperability and reusability.

Conclusions 3

- We need more communication between the following largely separated communities:
 - Knowledge Organization
 - Semantics in linguistics and terminology
 - Knowledge representation in artificial intelligence
 - Ontology
 - Data Modeling
 - Semantic Web

The Future of Knowledge Organization

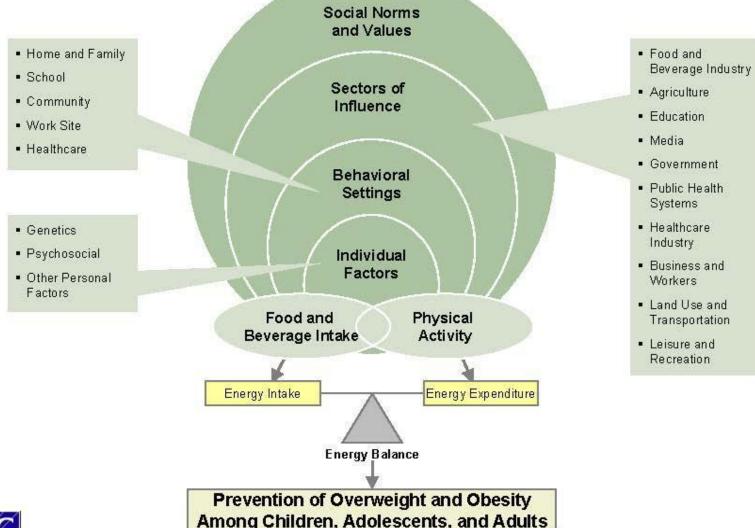
Knowledge organization is needed everywhere

Create the future of KO

Think BIG. Think answers not pointers. Focus on substantive data

Many areas, tasks, and functions that could profit from KO principles

Engage with Ontologies, AI, data modeling


Dagobert Soergel

dsoergel@buffalo.edu

www.dsoergel.com

Soergel, Unleashing the power of data through organization ISKO UK 2015

An Ecological Framework for Organizing Influences on Overweight and Obesity

Adapted from: Koplan JP, Liverman CT, Kraak VI, editors. Preventing childhood obesity: health in the balance. Washington, DC: Institute of Medicine, National Academies Press; 2005.