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Supporting Information Text
Methods

The asymptotic biases of all robust location estimators proposed in this article for the Weibull, gamma, Pareto, and lognormal
distributions were computed within specified kurtosis ranges and standardized by the standard deviations of the respective
distributions. For Weibull, gamma, and lognormal distributions, the kurtosis range is from 3.1 to 15 in steps of 0.1 (there are
two shape parameter solutions for the Weibull distribution, the lower one is used here). For Pareto, the range is from 9.1 to 21.

To approximate the asymptotic results, a quasi-Monte Carlo study (1, 2) was conducted by generating a large quasi-random
sample with sample size 3.686 million for corresponding distributions and quasi-subsampling the sample 3.686 million times (3)
to approximate the distributions of the kernels of the weighted Hodges-Lehmann mean. The accuracies of these results were
checked by comparing the sample mean and mean H-L mean to the population mean. The errors were found to be smaller
than 0.001c.

For the generalized Gaussian distribution with a kurtosis range from 3.1 to 15, the standard errors of all estimators were
computed by approximating the sampling distribution using 1000 pseudorandom samples of size n = 4096. Common random
numbers were used for better comparison.

The complete definition of the stratified mean

When |41 ] mod 2 = 1, the €,b-stratified mean is defined as

bl 2L | 1)
n(l—( 57 | )‘> b 521 | ne
- b—1

1
SI\/I6 = - Xz Xz Xn—i b -1
b= b Z + > (Xi + Xn—is1)(b— 1)+
i:w+l M+1
%( b—1 _1) (2&]';3«}1»1)715
> S (X Xag )b
j=1 ij:(2bjzll—11)ns+l

When [ 42| mod 2 = 0, the definition is

(2bj — b+1)ﬂf

SMe p,n = % E Xi + Z Z (X, + Xn—i;41)b

b—1 i 2b b—1
i=gme | G5t 41 ij=2bigboline 4y

In situations where ¢ mod 1 # 0, a potential solution is to generate ¢ smaller samples that satisfy the equality by sampling
without replacement, the sample sizes are divided into two cases, 1, sampling the original sample (\_nej% mod 1)t times with
sample size ||ne]1], 2, sampling the original sample (1 — |ne| mod 1)t times with sample size HneJ%J Since rational
numbers are closed under multiplication and division, excluding division by zero, the continuity can always be ensured as long

as t is large enough.

Orderliness and weighted average inequality

Unlike the mean-median-mode inequality, for which computing necessary and sufficient conditions is often challenging, the
following result highlights another advantage of the trimming inequality.

Theorem 0.1. A necessary and sufficient condition of the ~y-trimming inequality for a right-skewed distributions is the
monotonic decreasing of the bias of trimmed mean as a function of the breakdown point €.

Proof. From the definition of y-trimming inequality, since V0 < €1 < €3 < TMe, 4y > TMe, ~, therefore

1+7

TM€1,W —H > TMEzy’Y —H Brum

o = o €1, = Bru

<= Brwm (e1,7) > Brm (e2,7),

€2,
which implies the monotonic decreasing of Bru(e,y) with respect to e. O

The bias function is free of scale parameter, so the derivatives are much easier to compute. A useful sufficient condition for
the y-trimming inequality is «y-orderliness.

Theorem 0.2. A sufficient condition of the y-trimming inequality for a right-skewed distribution is y-orderliness.
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Proof. The y-trimming inequality is equivalent to, V0 < € < -— +7, m ;-;;- ° Q (u) du

f u) du, where §

— l—e—~e
is an infinitesimal quantity.

1 1—e+6 T 1 n(l—e)+1 )
Then’ l—e—ve+25 Jye—45 Q(u) du - hmn—)oc ((nfnefn'ye+2) Zi:n'\/e Xl) 2

G (Xmen + Xuamo + D00, X)) =
th)wmquﬁmQHmWWKWM+w%%%DﬁmLmD:

MHA@MW),ﬁxﬁmmww&mﬁﬂﬁgﬁaxxﬂmD:

n—nme—nye—4 n—nme—n-ye n(l—e)—1
limy— o0 (n—ne—n~e) n'ye) ( nyet1 +X (1—e) + (nfnefnze+2) (Xn'YhLl +X"(1*5)) + (nfnefn'yzﬁ»Z) Zi—n'ye+2 Xl)) 2
n(l—e)—1 n—ne—nye n(l—e)—1 —
( nye+l +X“(1 €) + (n ne— 7rye+2) i=nye+2 X’ + (n—ne—n'yz+2) Zz nye+2 1)) -
n(l—e)—1 _
(n—ne—nve) n'ye) (X"'Y€+l +X"(1—€) + Zi—n’ye+2 XZ)) -

n(l—e) _
lim, o ((n ne—n-ye) Z’L =nvye+1 XZ) [ pp——p f Q u) du. O

Theorem 0.3. For a right-skewed continuous distribution following the ~y-orderliness, the Winsorized mean is always greater
or equal to the corresponding trimmed mean with the same € and 7.

(n—ne—n~e) n’ye)

Proof. For a distribution following the ~-orderliness,
. n n(l—e
hm"‘)w ((1 + 'Y) n—nel—n'ys ((1-&-"/ n’ye) Xn75+1 + (’I’L (1 - 6) - ﬁ) X"(l 5)) (1 + 'Y) n—ne—nvye Z’L (nw5>+1 XZ)
. 1t —(14) 14 (1—)(1+7) n(1-e)
— hmn"w ((1 € ’Y'ye) ('7 14—':/y ’ye) Xn'ye+1 + (1—61“/6) ( i+'y L~ ﬁ) Xn(l 5) > (1 + 7) n—ne—n-ye Zi:n'ye«kl Xl)

2 X + (FE522) Xuaoo 2 (149) s Toie 2y X

l—e—~e 1—e—re n—ne—nye i1=nvye+1

<= limy, 00

1—
(’an'ye+1 + Xn(lfe)) > (1+ W)m ZZL(MZ)H Xi)

(n — ne — nrye) ('yXMEH + Xna- 5)) (1+7) ZZ;(ZZZL Xi)

n—nen—n'ye (nE'YXn'ye+1 +7’LEXR(1,6)) Z ne-&;bn'ye Zﬁ(l*é) Xz)

i=nvye+1

n—ne—n-vye n(l—e) n(l—e)
e aj (ne’)’Xme+1 -|-neXn(1,5)—i—z:2 et 1 )>ZZ et )

% (ne’meeH +neXpa—o + 27.1_(176) Xi) 2 e e Z"(l ©) ), the proof is finished.

i=nvye+1 i=nvye+1

<= limn_ 00
< limy— 00
< limy— 00
<= limyp— 00

< limn 00

NS NS N N N N

O

Theorem 0.4. A sufficient condition of the ~y-Winsorization inequality for a right-skewed distribution is the monotonic
decreasing of the quantile average function with respect to the breakdown point €, if 0 <y < 1.

Proof. The 'y—Winsorization inequality is equivalent to,
V0 < e < 1+7, fj;i;ﬂsQ(u)du—F(76—5)Q(76—5)+(6—5)Q(1—e+§) > [7°Q (u) du 4 veQ (ve) + €Q (1 — €), where
¢ is an infinitesimal quantity.

Then, similar to Theorem 0.2, by deducing
flei?&Q(u)du—}—(ve—5)@(76—5)4-(6—6)@(1—e+5) ZQIET QA (u)du+ (ve—96)Q(ye—9)+(e—9)Q(1—e+9)

5
n+1

J B
= lim, oo (% ZZNFT’Z,YE Xi+ Z;t:e 1 Xn—i+ (TVYE - 1) Xn'ye + (TLE - 1) Xn—ne+l))

i=nvye+1

e
'lj‘yn X + 11+7Z€ Xn—i + XTL'\/E+1 + Xn—ne + (TWE - 1) Xn'ye + (TLE - 1) Xn—ne+1>

i=nvye+1

L’VL 777/
Zi1:;76+1 Xi+ D07 Xnei + (ny€) Xnye + (n€) Xn— ne)) f u) du+veQ (ve) + €Q (1 — €), the proof
is complete. O

=limn— o

X _n
( R X + 1176 Xn—i + Xnvyet1 + Xnne + (nye = 1) Xyet1 + (ne — 1) Xn,M))

> tim, oo ( 4

Theorem 0.5. A necessary and sufficient condition of the vth y-orderliness is the sign of the vth derivative of the bias function
of the quantile average with respect to the breakdown point € satisfy the same constraint.

Proof. The proof is analogous to Theorem 0.1. O

Then, the orderliness for parametric distributions will be discussed. For simplicity, 0 < € < % is assumed in the following
proofs unless otherwise specified.

Theorem 0.6. The Weibull distribution is ordered if the shape parameter o < ~ 3.259.

1
— 1-1In(2)

30f8



82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

a87(§)a(§)a_l

Proof. The pdf of the Weibull distribution is f (x) = , « > 0, the quantile function is F~* (p) = A(— In(1—p))*/,
1>p>0,a>0,A>0. Then, the standardized bias of a symmetric quantile average with a breakdown point ¢, is

SQA, —p _ 5 (M-Il =)/ 4 A(-In(@)"/*) ~AT(1+4)

BSQA(G,OJ) = =
o 2
\/)\2 (F(1+§) ~T(1+1) )
9Bsaa (Cmapa +< ln(en /e (-~} | (—n()V* 1 -1
= = 2\/F(L+2 = ;)2 . Let g(e,a) = P + o = — (—In(1—-€)a((1—¢e)(In(1—¢))  +

11
(=In (e))é (eln (e))~'. Arranging the equation g(e,) = 0, it can be shown that T = (1;'(’1(1)) “ . Let L(e) = et

1 00 In(e) o1
€,a) — R(e, a), then 3L(,;ZR = (l"(l E))(2 (17@) . If e > 0, In(e) - —o0,

L
R(e,a) = ( In (c) )a , LmR(e,a) = L

In (1—¢) ( a
In(l1—¢) - 07, 6%’2R > 0. For 0 < e < %, aL@TSR > 0, so LmR(e, ) is monotonic with respect to a. When a = #11(2)’
In —1n(e))(2) 1n(2¢ —
g(e) = _e(fln(le))h“@) + (176)(71&176))1“(2) Let h(e) = 6(— In (e)) (2))7 h/ (e) = %@(2) for 0 <e<e In(2) _ %

R’ (¢) > 0. As a result, h(€) is monotonic increasing, —h (1 — €) is monotonic increasing, h (e) — h (1 — €) is also monotonic
increasing. So, if 0 <e <1, h(e)—h(l—€)<h (%) —h (1 - %) =0, g(e,a) <0. So, 8135% < 0, Bsqa (€, a) is monotonic

decreasing in € when o < The assertion follows from Theorem 0.5. O

1
T—In(2)
2r(144)° 301+ 2)r(1+3)+r(1+3)
( (1+2) (1+1)2)3/2
solution of fi3 = 0 as ap =~ 3.602. The above proof implies that when « is close to ag, the bias function of SQA is no longer
monotonic.
Then, the bias function of the trimmed mean for the Weibull distribution can be expressed as

. Denote the

Remark. The Weibull distribution can be symmetric. Its skewness is fiz =

r(1+1,-in(1-e))-r(1+1,- In(e)) 1
1—2e - (1 + E)

\/1“ 14+2) -7 (1+ 1)

Numerical solutions and the plot in Figure S1 indicate that, when a = 3.259,¢ = 0.1, 8%% ~ —0.164; when ¢ = 0.4,
8138% ~ —0.001; and when ¢ = 0.499, % A 7.66 x 1078, Thus, the bias function of the trimmed mean can also be

Brum(e, o) =

non-monotonic when o > ﬁ
Additionally, the second derivative of the bias function of SQA for the Weibull distribution is,
1 1 o 1
o _<—12n<;)>5‘1_(—13(e>2)1/‘*_(71n2<e>>1/f* (Z-1)ma-ena +a<—1n<1—e)>25‘1
a2<2 In(e a2 In2(c a2 In T—o)(a—ae —ae . .
aQSQA = In(e) InZ(e) In(e) 1) ) ( ) . Numerical solutions show that when
€ 2\/1“ 242) p(14-1)?

2
a<3 0<e< %, o EZSQA > 0. The flip of signs occurs when « is close to

T~ 3.259. Whena: e = 0.1,

828‘35'3‘* ~ 3.259; when ¢ = 0.4, & DS94 2 0.020; when € = 0.5, o DS9A v —7.34 % 10716, A plot of Z2594 for 0.25 < € < 0.5
is given in Figure S1.

Then, the third derivative of the SQA for the Weibull distribution is,

#Bsqa _ _ (a=1D(a-1)(e=D)*(— ()& *-3(a—Da(e=1)3 (= In(e) & 2

3¢ 2(13(571)363\/F(QTM)7F(1+é)2
_ 2&253(—1n(1—e))%*1+2a2(e—1)3(—1n(e))é*1+(1—a)(1—2a)e3(—1n(1—€))%*3+3(1—a)ae3(—1n(1—e))é*
0(3(6—1)363\/F at2 —r(1+i)2

when a < 3, 0 < € < %, < 0. The ﬂ1p of signs occurs when o« = 3.471.. When € = 0.4, BBA‘* ~ —0.0218; when

e = 0.499, 2 BSQA ~ 4.928 x 10 5. A plot of 2 SQA for 0.3 < € < 0.5 is given in Figure S1.

Because the kurtosis range used here for the Welbull distribution is discrete and starts from 3.1, the corresponding « is
2.133, so among the kurtosis range discussed here, the numerical results show that the Weibull distribution follows the first
three orderlinesses.

1
T—In(2)’

2
. Numerical solutions show that

83 BSQA

A—aga—l,7%

The pdf of the gamma distribution is f (z) = F(Q)JX , x>0, the quantile function is Q (p) = AP (a, p), 1 > p >0,

a>0,\ >0, P is the regularized incomplete gamma function. So, E [X] = ffooo xf (x) dr = a. Similarly, the variance is a\?.
Then, the standardized bias of a symmetric quantile average with a breakdown point e, is

SQA — TP Yo, 1 =€)+ AP (e, €)) — X
Bsqal(e, a) = Q; M=2( ( )a/\2 (@,9)) )

40f8



A Weibull Distribution
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B Weibull Distribution
0.4
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0.2+

azBSQA
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0.1
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C Weibull Distribution
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Fig. S1. A. The first derivative of the bias function of TM for the Weibull distribution with respect to the breakdown point €. B. The second derivative of the bias function of SQA
for the Weibull distribution with respect to the breakdown point . C. The third derivative of the bias function of SQA for the Weibull distribution with respect to the breakdown
point e.

50f8



109

110

111

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

8B§’€QA = F(a)( P~ (ae) p= Yoy €)= — Pil(o"l_e)P_l(a 1 —€)'™®). It is trivial to show that when a < 1, P™(a,¢) is

BSQA

monotonic increasing in €, if 0 < € < 5. Then < 0, Bsqa (€, @) is monotonic decreasing in € over the interval (0, ).

However, the analytical analysis of a > 1 is hard. Numerical results shows that the flip of signs of QSA occurs when

2
a ~ 139.5 (Figure S2). The second derivative of the bias function for the gamma distribution is 81;# = %((1 —

Oé) 2P~ (a, lfe)Pfl(a 1— 6)1720‘ +62P_1(a,175)P71(a’ 1— 6)27204 4 (1 _ 06)62P_1(o¢,e)})71(oé7 6)1720‘ +62P_1(a,5)P71(a’6)272a)'

SQA

The flip of signs of 2 occurs when a ~ 78 (Figure S2). The third derivative is much more cumbersome; numerical results

SQA

show that the flip of signs of 2 occurs when a = 55 (Figure S2). Since the kurtosis range of the gamma distribution here
is discrete and starts from 3.1, the corresponding « is 60. The second point is a = 30. Besides the first point, the numerical

results show that the gamma dlstrlbutlon follows the first three orderlinesses within the kurtosis setting here.
_(n@-w?
For the lognormal distribution, the pdf of it is f (x) = %, x > 0, the quantile function is @ (p) = e“*ﬁ”erffl@p),
02
1>p>0,0>0X>0. So, E[X] = ffooo xf (x)dx = eT'2 . Similarly, the variance is (6‘72 — 1) e2mro? Then, the

standardized bias of a symmetric quantile average with a breakdown point ¢, is

— - o2
% (6u—\/§o'erfc 1(2¢) + e,u,—ﬂv‘ertc 1(2(1—6))) _ e‘u+7
Bsqal(e, o) =

(6‘72 — 1) e2nto?

The first two orderlinesses for the lognormal distribution were already discussed in the Main Text, the numerical results show
that the third orderliness is also valid within the kurtosis setting here.

Bias bound

As stated in the Main Text, Bernard et al. (2020) (4) derived the bias bound of the symmetric quantile average for Py,

Vo — 14,/ ) L>e>0

Bsqal(€) = [SQA—p _ ( " i
1 1—e 1 1
7 3 g = 32€> 5

Theorem 0.7. Extending the bound to the quantile average, there are two main cases for the upper bound:
Main Case 1: If5>~v >0,

1 3ve 1
QA =1 Ltk ees? i)
supﬁ f”y T )1 3(1—¢) 3ve 1
PEPUNPu=0,0=1 2 sa—0 T\ 1o57¢ T 2 €> 5

Main Case 2: Ifv > 5,

3ve 5
96 -1+ 4—3’76) 52620
1

4 5
9e -1+ 9(1—76)_1) T 2€> 6y

sup QA(e,7) =

PePyNPu=0,0=1

2]

= N

Proof. Since SUP pepy, P2 1(QMre) +Q(1—¢) < %(suppepum;.;zr Q(~e) +SUPpep, P2 Q(1 — ¢)), the assertion follows directly
from the Theorem 1 in (4). O

Since the lower bound is for the left skewed distribution, so using the second definition of the quantile average is better.
From the Corollary 1 in (4), there are also two main cases, which are identical to the opposite of the above upper bound if
using the second definition of the quantile average:

Main Case 1: If 5 >~ >0,

(v )

2 9e¢ 4—3ve 6

pPepP ﬂlgf(‘%Aa(Gl ’Y) 3(1—¢) 3~e 1 [3}
v 30— T\ 15¢) T 2€> 5%

I
v
1y

\Y
[an)

NI

Main Case 2: If v > 5,

4 3ve
9e 1 + 473’75)

4 4
5c Lt/ sa=mg — 1) =

=2}

e Sl
IV
[
\Y%
o

inf QA(e,y) =

PeEPyNPu=0,0=1

N[= =

\Y
(o]
%

3ler
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A Gamma Distribution

151
101
S
N w
2|° s
0 \\ — \
_5- T T T T T T
0.0 01 0.2 0.3 0.4 05
€
O— 139 — 1395 — 140 — 1405 — 141 — 1415 — 142 — 1425 — 143 1435
B Gamma Distribution
1500
1000+
5 500+ //\\5\\
glb o % —
%5 -
-5001
~1000+
0.0 01 0.2 03 0.4 05
€
O— 77 — 775 — 78 — 785 — 79 — 795 — 80 — 805 — 81 815
C Gamma Distribution
2e+05 1
< 1e+05
7| RN
m %
S 0e+00 1 =
~1e+05-
0.0 01 02 03 0.4 05
€

O=— 54 54.5 55 555 = 56 = 56.5 57 575 = 58 58.5

Fig. S2. A. The first derivative of the bias function of SQA for the gamma distribution with respect to the breakdown point €. B. The second derivative of the bias function
of SQA for the gamma distribution with respect to the breakdown point €. C. The third derivative of the bias function of SQA for the gamma distribution with respect to the
breakdown point €.
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Bernard et al. (2020) (4) also investigated the bias bounds of Range Value at Risk (5), which is
1 B
RVaRap = m/ VaR (u)du,0 < a< <1,

where VaR (u) = inf{z € R: Fy(z) > u}. They pointed out that VaR (u) is the quantile function, and it is obvious here that

RV aRq,p is the trimmed mean. Let a = e, 8 = 1 —¢, then because of asymmetry, the upper bound sup RVaRao—e =1
PEPyNPL=0,0=1
and lower bound inf RVaRao—~e,p=1-¢ are not exactly opposite values. Also, they are very complex in form. If setting

PePyNPu=0,0=1
v =1, they are opposite values, i.e., the bias bound of symmetric trimmed mean is

Berar(e) = STl ¢(9¢2+ (4-3v/9e7+4) e /o2 +a+2)
€) = = .
o 7 (2671)\/7%H(4\/9e2+479)e2+6(\/9e2+472)e+§(\/9e2+472)+%(3\/952+478)53

Theorem 0.8. The above bias bound function, Bsru(€), is monotonic increasing with respect to € over the interval [0, %}

2\/6(—583267+232(\/m—2) e+32(\/m—2) +324(6\/m_25)66)
(1726)2\/@(724364#»18(4\/@79)62+36(m72)6+8<\/@72)+27(3@ 8) )
2\/6(2(397@7830)62%4(50@7171)e5+9(294\/@7779)e4+9(193\/@7444) 3)
(1725)2@( 24354+18(4\/m 9) 2+36(\/m 2) e+8(\/m 2)+27(3\/m 8) ed) K
Let g(e) = —5832¢" + 2 (397\/9627 830) € 4 232 (m 2) e+ 32 (\/9627— 2) + 324 (6v/9€2 + 4 — 25) -+
54 (50\/9627 - 171) e +9 (294\/9627 779) e +9 (193\/9627 444) €” and h(e) denotes the common denominator

of dBSdTiM(). Then, for 0 < e < %, h(e) > 0. To have g(e) > 0, it is equivalent to 2 x 397v/9¢2 + 4€* + 2321/9€% + 4e +
32v/9€2 + 4 + 324€® x 64/9€2 + 4 4 54€5 x 50v/9€2 + 4 + 9e* x 294v/9€2 + 4 + 93 x 193v/9€2 + 4 > 5832¢” + 2 x 830€? + 2 x

232¢ + 32 X 2 + 25 x 324€® + 54€® x 171 + 9¢* x 779 4 444 x 9¢3. Squaring the left and right sides and then expanding, it
is equivalent to 34012224€* 4 944784003 + 173315376€'? + 231367104t + 245524284¢€*° + 213603804€” + 15523884965 +
94957380 + 48836664€° + 20951856¢® + 7364752¢* + 2051968¢> + 4277762 + 59392¢ + 4096 > 34012224¢'* + 94478400€*2 +
173315376€2 +231367104¢" +245454300€'° + 213576588€” + 155256345 + 94952088¢” + 48850488¢° + 20954880€” + 7361296¢* +
2051968€> + 42777662 + 59392¢ + 4096 <= 69984¢'° + 27216€” — 17496€® + 5292¢” — 13824€5 — 3024€° + 3456¢* > 0 «—
108(1 — 2¢)?e" (162¢" + 225€° + 144¢” + 100€ + 32) > 0. Then just need 162¢* + 225¢° + 144€> + 100 + 32 > 0. Since

144€* + 100€e 4 32 > 0 is valid for any € € R, g(e) > 0 is valid for any € > 0. So, dB%GM(Q > 0, which leads to the assertion of

Proof. dBSTM() 57 +

the theorem. m
. . . 1 . 1 3 .
Another interesting case is when v = 3, setting the y =0, 0 =1, sup RVaRa,% p=1—c = 31/ 5€ | 5€+ 8], obviously
PEPyNPu=0,0=1 3 2
1
monotonic, and inf RVaRa,% s=1_c = — 5V €(8+ 3¢), also obviously monotonic.
PeEPyNPu=0,0=1 3

SI Dataset S1 (dataset_one.xlIsx)
Raw data of asymptotic biases of all estimators shown in Figure 1 in the Main Text and the standard errors of these
estimators for the generalized Gaussian distribution.
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