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Due to the complexity of order statistics, the finite sample bias of
robust statistics is generally not analytically solvable. While the Monte
Carlo method can provide approximate solutions, its convergence
rate is typically very slow, making the computational cost to achieve
the desired accuracy unaffordable for ordinary users. In this paper,
we propose an approach analogous to the Fourier transformation to
decompose the finite sample structure of the uniform distribution.
By obtaining a set of sequences that are simultaneously consistent
with a parametric distribution for the first four sample moments, we
can approximate the finite sample behavior of robust estimators with
significantly reduced computational costs. This article reveals the
underlying structure of randomness and presents a novel approach
to integrate two or more assumptions.
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In the early nineteenth century, Bessel deduced the unbiased1

sample variance and found it has a correction term of n
n−1 .2

Later, Cramér (1) in his classic textbook Mathematical Meth-3

ods of Statistics deduced unbiased sample central moments4

with a linear time complexity. However, apart from the mean5

and central moments, the finite sample behavior of nearly all6

other estimators depends on the underlying distribution and7

lacks a simple non-parametric correction term. For example,8

the simplest robust estimator, the median, exhibits a highly9

complex finite sample behavior. If n is odd, E [mediann] =10 ∫ ∞
−∞

(
n+1

2

) (
n

n
2 − 1

2

)
F (x)

n
2 − 1

2 [1 − F (x)]
n
2 − 1

2 f(x)xdx (2),11

where F (x) and f(x) represent the cumulative distribution12

function (cdf) and probability density function (pdf) of13

the assumed distribution, respectively. For the exponential14

distribution, the above equation is analytically solvable, yield-15

ing E [mediann] =
2−n−1(n+1)( n

n−1
2

)
(

Hn−H n−1
2

)
Γ( n+1

2 )√
π

λΓ( n
2 +1) ,16

where Hn denotes the nth Harmonic number, Γ represents17

the gamma function, and λ stands for the scale parameter of18

the exponential distribution. However, for distributions with19

more complex pdfs, such equations are generally unsolvable.20

Another widely used exact finite sample bias correction is21

the factor for unbiased standard deviation in the Gaussian22

distribution, which can be deduced using Cochran’s theorem23

(3). For more complex estimators, writing their exact24

finite-sample distribution formulas becomes challenging. In25

2013, Nagatsuka, Kawakami, Kamakura, and Yamamoto26

derived the exact finite-sample distribution of the median27

absolute deviation, which consists of four cases, each with a28

lengthy formula (4). In such cases, even obtaining a numerical29

solution is challenging (2, 4). So, Monte Carlo simulation is30

currently the only practical choice for estimating finite sample31

corrections. However, the computational cost of Monte Carlo32

simulation is often too high to be processed on a typical 33

PC. For example, for median absolute deviation, Croux and 34

Rousseeuw (1992) provided correction factors with a precision 35

of three decimal places for n ≤ 9 using 200,000 pseudorandom 36

Gaussian sample (5). Hayes (2014) reported correction factors 37

for n ≤ 100 using 1 million pseudorandom samples for each 38

value of n to ensure the accuracy to four decimal places (6). 39

Recently, Akinshin (2022) (7) presented correction factors 40

for n ≤ 3000 using 0.2-1 billion pseudorandom Gaussian 41

samples. His result suggest that, for the median absolute 42

deviation, finite sample bias correction is required to ensure 43

a precision of three decimal places when the sample size is 44

smaller than 2000. This highlights the importance of finite 45

sample bias correction. However, since different correction 46

factors are required for different parametric assumptions, the 47

computational cost of addressing all possible cases in the real 48

world becomes significant, especially for complex models. 49

In addition to computational challenges, there exists an 50

inherent difficulty in dealing with randomness. The theory 51

of probability provides a framework for modeling and under- 52

standing random phenomena. However, the practical imple- 53

mentation of these models can be challenging, as discussed, 54

and their complexity greatly hinders our comprehension. The 55

quality of randomness can significantly impact the validity of 56

simulation results, and a deeper understanding of randomness 57

may offer a more effective and cost-efficient solution. The 58

purpose of this brief report is to demonstrate that the finite 59

sample structure of uniform random variables can be decom- 60

posed using a few well-designed sequences with high accuracy. 61

Furthermore, we show that the computational cost of esti- 62

mating finite sample bias from a Monte Carlo study can be 63

Significance Statement

Most contemporary statistics theories focus on asymptotic anal-
ysis due to its tractability and simplicity. Non-asymptotic statis-
tics are crucial when dealing with small or moderate sample
sizes, which is often the case in practice. In situations where an-
alytical results are difficult or impossible to obtain, Monte Carlo
studies serve as a powerful tool for addressing non-asymptotic
behavior. However, these studies can be computationally ex-
pensive, particularly when high precision is required or when
the statistical model demands significant computational time.
Here, we propose calibrated Monte Carlo study that aims to
approximate the randomness structures using a small set of
sequences. This approach sheds light on understanding the
general structure of randomness.
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Fig. 1. The frequency histograms of pseudo-random sequences on the interval [0,1] with size 80.

dramatically improved by obtaining a set of sequences that64

are simultaneously consistent with a parametric distribution65

for sample central moments.66

Decomposing the finite sample structure of uniform67

distribution68

Any continuous distribution can be linked to the uniform dis-69

tribution on the interval [0, 1] through its quantile function.70

This fundamental concept in Monte Carlo study implies that71

understanding the finite sample structure of uniform random72

variables can be leveraged to understand the finite sample73

structure of any other continuous random variable through the74

quantile transform. The Glivenko–Cantelli theorem (8, 9) en-75

sures the almost-sure convergence of the empirical distribution76

function to the true distribution function. However, the indi-77

vidual empirical distribution often deviates significantly from78

the asymptotic distribution even when the sample size is not79

small (Figure 1, sample size is 80), which cause finite sample80

biases of common estimators. Let µ, µ2, . . ., µk denote the first81

k central moments of a probability distribution. According to82

the unbiased sample central moment (1), the expected value83

of the sample central moment, mk = 1
n

∑n

k=1 (xk − x̄)k, can84

be deduced, denoted as E[mk]. Let S = {sequence[i]|i ∈ N}85

be a set of number sequences ranging from 0 to 1, where86

sequence[i] represents the ith sequence in the set, and N is87

the set of natural numbers, with i ≤ N . Transform every88

number in S using the quantile function of a parametric dis-89

tribution, P D. The transformed sequences can be denoted as90

SP D. Denote the set of the kth sample central moments91

for these transformed sequences as Mk = {mk,i|i ∈ N}.92

S is consistent with P D for all mk when k ≤ k, if and93

only if the following system of linear equations is consistent,94 

m1,1w1 + . . . + m1,iwi + . . . + m1,N wN = E[m1]
. . .

mk,1w1 + . . . + mk,iwi + . . . + mk,N wN = E[mk]
. . .

mk,1w1 + . . . + mk,iwi + . . . + mk,N wN = E[mk]
w1 + . . . + wi + . . . + wN = 1

, where95

w1, . . ., wi, . . ., wN are the unknowns of the system, with96

N ≥ k+1. w1, . . ., wi, . . ., wN can be determined using a typi-97

cal constraint optimization algorithm. The Monte Carlo study98

can be seen as a special case when w1 = . . . = wi = . . . = wN , 99

and the sequences in S are all random number sequences. The 100

strong law of large numbers (proven by Kolmogorov in 1933) 101

(10) ensures that in this case, when the number of sequences 102

N → ∞ or when the sample size n → ∞, the above system of 103

linear equations is always consistent. 104

Low-discrepancy sequences are commonly used as a re- 105

placement of uniformly distributed random numbers to re- 106

duce computational cost. When considering a sequence to 107

approximate the structure of uniform random variables, the 108

most natural choice is the arithmetic sequence, denoted as 109

{xi}n
i=1 =

{
i

n+1

}n

i=1
. However, the arithmetic central mo- 110

ments estimated from the arithmetic sequence for the Gaus- 111

sian distribution differ significantly from their expected values 112

(Figure 2A). The arithmetic sequence lacks the variability 113

of true random samples which produce additional biases for 114

even order moments. The beta distribution is defined on the 115

interval (0, 1) in terms of two shape parameters, denoted by 116

α and β. When α = β, the beta distribution is symmetric. 117

To better replicate the features of uniform random variables, 118

we introduced beta distributions with a variety of parameters. 119

The arithmetic sequences were transformed by the quantile 120

functions of these beta distributions to form beta-sequences, 121

resulting in sequences that are U-shape (α = β = 0.547), left- 122

skewed (α = 46.761, β = 20.108), right-skewed (α = 20.108, 123

β = 46.761), monotonic decreasing (α = 0.478, β = 38.53), 124

monotonic increasing (α = 38.53, β = 0.478), their left-skewed 125

self-mixtures (α = β = 0.369, α = β = 18.933), their right- 126

skewed self-mixtures (α = β = 0.369, α = β = 18.933), 127

their left-skewed mixture with the arithmetic sequence (α = 128

β = 0.328), their right-skewed mixture with the arithmetic 129

sequence (α = β = 0.328) (Figure 2B). Besides beta sequences 130

with a U-shape, other sequences are paired so an additional 131

constraint is set to ensure equal weight for each pair. Besides 132

these 9 sequences and arithmetic sequences, a pseudo-random 133

sequence is introduced to further approximate the structure 134

and avoid inconsistent scenarios. Finally, a complement se- 135

quence is introduced which if combining all the sequences with 136

corresponding weights, the overall sequence is nearly uniform. 137
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Fig. 2. A. The first four sample central moments for the Gaussian distribution are plotted over a sample size ranging from 2 to 100. The red lines represent the expected values,
while the blue lines depict the values estimated from the arithmetic sequences. B. The histograms of different beta sequences, their self-mixtures, and mixtures with arithmetic
sequences.
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Fig. 3. The first plot shows the weights assigned to different sequences as the sample size increases. The second plot depicts the sample standard deviations estimated
from designed and arithmetic sequences and compares them to the true values. The designed sequences were repeated 10 times to reduce the variation due to the random
sequences.

Results138

The most surprising result in this article is that, by carefully139

selecting/designing sequences in S, even when N and n are140

very small, e.g., less than 20, the above system of linear141

equations can still be consistent, while the weight assigns to142

the random and complement sequences are extremely small143

(<0.01 on average). Using just 12 sequences, when n = 10,144

the constraint optimization algorithm can assign weights to all145

these sequences with errors less than 10−10. This means that146

technically, these sequences are consistent with the Gaussian147

distribution for the first four moments. More importantly, the148

findings suggest that when the sample size is small, the beta149

sequence with a U-shape accounts for approximately 50-60%150

of the finite sample properties of uniform random variables,151

while arithmetic, monotonic beta, beta-beta mixed, skewed152

beta distributions each contribute about 2-10% (Figure 3). As153

the sample size grows, as expected, the weight of the arithmetic154

sequence increases and dominants while the weights of other155

sequences gradually decrease. However, the beta sequence156

with a U-shape still still holds about 10% weight even when157

the sample size is 100 (Figure 3).158

The obtained weights can be used to estimate the finite159

sample behaviour of other related estimators, such as the stan-160

dard deviation and median absolute deviation for the Gaussian161

distribution. We found that by using the 12 well-designed162

sequences, the performance is much better than the arithmetic163

sequence (Figure 3). To further increase precision, we adopted164

a stochastic method. We pseudo-randomly generated twelve165

sequences and evaluated their efficacy in approximating the166

finite sample structure of uniform random variables by solving167

the above system of linear equations for the first four moments.168

Sequences that met the predetermined accuracy threshold (er-169

ror less than 10−5) were retained, while those that did not170

meet the requirement were discarded in favor of a new set.171

Upon identifying twenty qualified sets, these sets were ap-172

plied to assess the finite sample biases in other estimators for173

the Gaussian distribution. The outcomes indicate that using174

merely fifty sets of sequences, totaling 600 sequences, which175

can be executed on a standard PC in a negligible amount of176

time, achieves a precision of approximately 0.005 for the stan-177

dard deviation and median absolute deviation. In contrast,178

attaining the same level of precision using classic Monte Carlo 179

methods would require roughly 0.1 million pseudo-random 180

samples. 181

Data and Software Availability 182

All data are included in the brief report and SI Dataset S1. 183

All codes have been deposited in GitHub. 184
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