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In 1954, Hodges and Lehmann demonstrated that if X and Y are in-
dependently sampled from an identical unimodal distribution, X − Y

will exhibit symmetrical unimodality with its peak centered at zero.
Building upon this foundational work, the current study delves into
the structure of the kernel distribution of U -statistics. It is shown
that the kth central moment kernel distributions (k > 2) derived
from a unimodal distribution exhibit location invariance and is also
nearly unimodal with the mode and median close to zero. This ar-
ticle provides an approach to study the general structure of kernel
distributions.
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The most popular robust scale estimator currently, the1

median absolute deviation, was popularized by Hampel2

(1974) (1), who credits the idea to Gauss in 1816 (2). In 1976,3

in their landmark series Descriptive Statistics for Nonpara-4

metric Models, Bickel and Lehmann (3) generalized a class5

of estimators as measures of the dispersion of a symmetric6

distribution around its center of symmetry. In 1979, the same7

series, they (4) proposed a class of estimators referred to as8

measures of spread, which consider the pairwise differences of9

a random variable, irrespective of its symmetry, throughout its10

distribution, rather than focusing on dispersion relative to a11

fixed point. In the final section (4), they explored a version of12

the trimmed standard deviation based on pairwise differences,13

which is modified here for comparison,14

[(
n

2

)
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(n
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2)γϵ0
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1
2

, [1]15

where (Xi1 −Xi2 )1 ≤ . . . ≤ (Xi1 −Xi2 )(n
2) are the order16

statistics of Xi1 −Xi2 , i1 < i2, provided that
(
n
2

)
γϵ0 ∈ N and17 (

n
2

)
(1 − ϵ0) ∈ N. They showed that, when ϵ0 = 0, the result18

obtained using [1] is equal to
√

2 times the sample standard19

deviation. The paper ended with, “We do not know a fortiori20

which of the measures is preferable and leave these interesting21

questions open.”22

Two examples of the impacts of that series are as follows.23

Oja (1981, 1983) (5, 6) provided a more comprehensive and24

generalized examination of these concepts, and integrated the25

measures of location, dispersion, and spread as proposed by26

Bickel and Lehmann (3, 4, 7), along with van Zwet’s convex27

transformation order of skewness and kurtosis (1964) (8) for28

univariate and multivariate distributions, resulting a greater29

degree of generality and a broader perspective on these sta-30

tistical constructs. Rousseeuw and Croux proposed a popular31

efficient scale estimator based on separate medians of pairwise32

differences taken over i1 and i2 (9) in 1993. However the33

importance of tackling the symmetry assumption has been34

greatly underestimated, as will be discussed later.35

To address their open question (4), the nomenclature used36

in this paper is introduced as follows:37

Nomenclature. Given a robust estimator, θ̂, which has an 38

adjustable breakdown point, ϵ, that can approach zero asymp- 39

totically, the name of θ̂ comprises two parts: the first part 40

denotes the type of estimator, and the second part represents 41

the population parameter θ, such that θ̂ → θ as ϵ → 0. The 42

abbreviation of the estimator combines the initial letters of 43

the first part and the second part. If the estimator is symmet- 44

ric, the upper asymptotic breakdown point, ϵ, is indicated in 45

the subscript of the abbreviation of the estimator, with the 46

exception of the median. For an asymmetric estimator based 47

on quantile average, the associated γ follows ϵ. 48

In REDS I, it was shown that the bias of a robust estimator 49

with an adjustable breakdown point is often monotonic with 50

respect to the breakdown point in a semiparametric distri- 51

bution. Naturally, the estimator’s name should reflect the 52

population parameter that it approaches as ϵ → 0. If multi- 53

plying all pseudo-samples by a factor of 1√
2 , then [1] is the 54

trimmed standard deviation adhering to this nomenclature, 55

since ψ2 (x1, x2) = 1
2 (x1 − x2)2 is the kernel function of the 56

unbiased estimation of the second central moment by using 57

U -statistic (10). This definition should be preferable, not only 58

because it is the square root of a trimmed U -statistic, which 59

is closely related to the minimum-variance unbiased estimator 60

(MVUE), but also because the second γ-orderliness of the 61

second central moment kernel distribution is ensured by the 62

next exciting theorem. 63

Theorem .1. The second central moment kernel distribution 64

generated from any unimodal distribution is second γ-ordered, 65

provided that γ ≥ 0. 66

Proof. In 1954, Hodges and Lehmann established that if X and 67

Y are independently drawn from the same unimodal distribu- 68

tion, X−Y will be a symmetric unimodal distribution peaking 69

at zero (11). Given the constraint in the pairwise differences 70
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that Xi1 < Xi2 , i1 < i2, it directly follows from Theorem 1 in71

(11) that the pairwise difference distribution (Ξ∆) generated72

from any unimodal distribution is always monotonic increasing73

with a mode at zero. Since X −X ′ is a negative variable that74

is monotonically increasing, applying the squaring transfor-75

mation, the relationship between the original variable X −X ′
76

and its squared counterpart (X −X ′)2 can be represented as77

follows: X − X ′ < Y − Y ′ =⇒ (X − X ′)2 > (Y − Y ′)2. In78

other words, as the negative values of X −X ′ become larger79

in magnitude (more negative), their squared values (X −X ′)2
80

become larger as well, but in a monotonically decreasing man-81

ner with a mode at zero. Further multiplication by 1
2 also82

does not change the monotonicity and mode, since the mode is83

zero. Therefore, the transformed pdf becomes monotonically84

decreasing with a mode at zero. In REDS I, it was proven that85

a right-skewed distribution with a monotonic decreasing pdf86

is always second γ-ordered, which gives the desired result.87

In REDS I, it was shown that any symmetric distribution88

is νth U -ordered, suggesting that νth U -orderliness does not89

require unimodality, e.g., a symmetric bimodal distribution is90

also νth U -ordered. In the SI Text of REDS I, an analysis of the91

Weibull distribution showed that unimodality does not assure92

orderliness. Theorem .1 uncovers a profound relationship93

between unimodality, monotonicity, and second γ-orderliness,94

which is sufficient for γ-trimming inequality and γ-orderliness.95

On the other hand, while robust estimation of scale has96

been intensively studied with established methods (3, 4), the97

development of robust measures of asymmetry and kurtosis98

lags behind, despite the availability of several approaches (12–99

16). The purpose of this paper is to demonstrate that, in100

light of previous works, the estimation of central moments101

can be transformed into a location estimation problem by102

using U -statistics, the central moment kernel distributions103

possess desirable properties, and define a convenient approach104

to quantitatively estimate the estimators’ efficiencies.105

Robust Estimations of the Central Moments106

In 1928, Fisher constructed k-statistics as unbiased estimators107

of cumulants (17). Halmos (1946) proved that a functional108

θ admits an unbiased estimator if and only if it is a regular109

statistical functional of degree k and showed a relation of sym-110

metry, unbiasness and minimum variance (18). Hoeffding, in111

1948, generalized U -statistics (19) which enable the derivation112

of a minimum-variance unbiased estimator from each unbiased113

estimator of an estimable parameter. In 1984, Serfling pointed114

out the speciality of Hodges-Lehmann estimator, which is nei-115

ther a simple L-statistic nor a U -statistic, and considered the116

generalized L-statistics and trimmed U -statistics (20). Given a117

kernel function hk which is a symmetric function of k variables,118

the LU -statistic is defined as:119

LUhk,k,k,ϵ,γ,n := LLk,ϵ0,γ,n

(
sort

(
(hk (XN1 , . . . , XNk ))(

n
k)
N=1

))
,120

where ϵ = 1 − (1 − ϵ0)
1
k (proven in Subsection ??),121

XN1 , . . . , XNk are the n choose k elements from the sam-122

ple, LLk,ϵ0,γ,n(Y ) denotes the LL-statistic with the sorted123

sequence sort
(

(hk (XN1 , . . . , XNk ))(
n
k)
N=1

)
serving as an input.124

In the context of Serfling’s work, the term ‘trimmed U -statistic’125

is used when LLk,ϵ0,γ,n is TMϵ0,γ,n (20).126

In 1997, Heffernan (10) obtained an unbiased estimator 127

of the kth central moment by using U -statistics and demon- 128

strated that it is the minimum variance unbiased estimator for 129

distributions with the finite first k moments. The weighted 130

H-L kth central moment (2 ≤ k ≤ n) is thus defined as, 131

WHLkmk,ϵ,γ,n := LUhk=ψk,k,k,ϵ,γ,n, 132

where WHLMk,ϵ0,γ,n is used as the LLk,ϵ0,γ,n in LU , 133

ψk (x1, . . . , xk) =
∑k−2

j=0 (−1)j
(

1
k−j

) ∑ (
xk−j
i1

xi2 . . . xij+1

)
+ 134

(−1)k−1 (k − 1)x1 . . . xk, the second summation is over 135

i1, . . . , ij+1 = 1 to k with i1 ̸= i2 ̸= . . . ̸= ij+1 and 136

i2 < i3 < . . . < ij+1 (10). Despite the complexity, the follow- 137

ing theorem offers an approach to infer the general structure 138

of such kernel distributions. 139

Theorem .2. Define a set T comprising all pairs 140

(ψk(v), fX,...,X(v)) such that ψk(v) = ψk (Q(p1), . . . , Q(pk)) 141

with Q(p1) < . . . < Q(pk) and fX,...,X(v) = 142

k!f(Q(p1)) . . . f(Q(pk)) is the probability density of the k- 143

tuple, v = (Q(p1), . . . , Q(pk)) (a formula drawn after a mod- 144

ification of the Jacobian density theorem). T∆ is a subset 145

of T , consisting all those pairs for which the correspond- 146

ing k-tuples satisfy that Q(p1) − Q(pk) = ∆. The com- 147

ponent quasi-distribution, denoted by ξ∆, has a quasi-pdf 148

fξ∆ (∆̄) =
∑

(ψk(v),fX,...,X (v))∈T∆
∆̄=ψk(v)

fX,...,X(v), i.e., sum over 149

all fX,...,X(v) such that the pair (ψk(v), fX,...,X(v)) is in the 150

set T∆ and the first element of the pair, ψk(v), is equal to 151

∆̄. The kth, where k > 2, central moment kernel distribution, 152

labeled Ξk, can be seen as a quasi-mixture distribution com- 153

prising an infinite number of component quasi-distributions, 154

ξ∆s, each corresponding to a different value of ∆, which ranges 155

from Q(0) −Q(1) to 0. Each component quasi-distribution has 156

a support of
(

−
( k

3+(−1)k
2

)−1
(−∆)k, 1

k (−∆)k
)

. 157

Proof. The support of ξ∆ is the extrema of the func- 158

tion ψk (Q(p1), ··· , Q(pk)) subjected to the constraints, 159

Q(p1) < ··· < Q(pk) and ∆ = Q(p1) − Q(pk). Us- 160

ing the Lagrange multiplier, the only critical point can 161

be determined at Q(p1) = ··· = Q(pk) = 0, where 162

ψk = 0. Other candidates are within the bound- 163

aries, i.e., ψk (x1 = Q(p1), x2 = Q(pk), ··· , xk = Q(pk)), ···, 164

ψk (x1 = Q(p1), ··· , xi = Q(p1), xi+1 = Q(pk), ··· , xk = Q(pk)), 165

···, ψk (x1 = Q(p1), ··· , xk−1 = Q(p1), xk = Q(pk)). 166

ψk (x1 = Q(p1), ··· , xi = Q(p1), xi+1 = Q(pk), ··· , xk = Q(pk)) 167

can be divided into k groups. The gth group has the common 168

factor (−1)g+1 1
k−g+1 , if 1 ≤ g ≤ k − 1 and the final 169

kth group is the term (−1)k−1 (k − 1)Q(p1)iQ(pk)k−i. 170

If k+1−i
2 ≤ j ≤ k−1

2 and j + 1 ≤ g ≤ k − j, the 171

gth group has i
(
i−1

g−j−1

)(k−i
j

)
terms having the form 172

(−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . If k+1−i

2 ≤ j ≤ k−1
2 173

and k − j + 1 ≤ g ≤ i + j, the gth group has 174

i
(
i−1

g−j−1

)(k−i
j

)
+ (k − i)

( k−i−1
j−k+g−1

)(
i

k−j

)
terms having the 175

form (−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . If 0 ≤ j < k+1−i

2 and 176

j+1 ≤ g ≤ i+j, the gth group has i
(
i−1

g−j−1

)(k−i
j

)
terms having 177

the form (−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . If k

2 ≤ j ≤ k and 178

k − j + 1 ≤ g ≤ j, the gth group has (k − i)
( k−i−1
j−k+g−1

)(
i

k−j

)
179

terms having the form (−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . If 180

k
2 ≤ j ≤ k and j + 1 ≤ g ≤ j + i < k, the gth group has 181
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i
(
i−1

g−j−1

)(k−i
j

)
+(k − i)

( k−i−1
j−k+g−1

)(
i

k−j

)
terms having the form182

(−1)g+1 1
k−g+1Q(p1)k−jQ(pk)j . So, if i + j = k, k

2 ≤ j ≤ k,183

0 ≤ i ≤ k
2 , the summed coefficient of Q(p1)iQ(pk)k−i is184

(−1)k−1 (k − 1) +
∑k−1

g=i+1 (−1)g+1 1
k−g+1 (k − i)

(k−i−1
g−i−1

)
+185 ∑k−1

g=k−i+1 (−1)g+1 1
k−g+1 i

(
i−1

g−k+i−1

)
= (−1)k−1 (k − 1) +186

(−1)k+1 + (k − i) (−1)k + (−1)k (i− 1) =187

(−1)k+1. The summation identities are188 ∑k−1
g=i+1 (−1)g+1 1

k−g+1 (k − i)
(k−i−1
g−i−1

)
=189

(k − i)
∫ 1

0

∑k−1
g=i+1 (−1)g+1 (k−i−1

g−i−1

)
tk−gdt =190

(k − i)
∫ 1

0

(
(−1)i (t− 1)k−i−1 − (−1)k+1)

dt =191

(k − i)
(

(−1)k

i−k + (−1)k
)

= (−1)k+1 + (k − i) (−1)k
192

and
∑k−1

g=k−i+1 (−1)g+1 1
k−g+1 i

(
i−1

g−k+i−1

)
=193 ∫ 1

0

∑k−1
g=k−i+1 (−1)g+1 i

(
i−1

g−k+i−1

)
tk−gdt =194 ∫ 1

0

(
i (−1)k−i (t− 1)i−1 − i (−1)k+1)

dt = (−1)k (i− 1).195

If 0 ≤ j < k+1−i
2 and i = k, ψk = 0. If k+1−i

2 ≤ j ≤ k−1
2 and196

k+1
2 ≤ i ≤ k − 1, the summed coefficient of Q(p1)iQ(pk)k−i

197

is (−1)k−1 (k − 1) +
∑k−1

g=k−i+1 (−1)g+1 1
k−g+1 i

(
i−1

g−k+i−1

)
+198 ∑k−1

g=i+1 (−1)g+1 1
k−g+1 (k − i)

(k−i−1
g−i−1

)
, the same as199

above. If i + j < k, since
(

i
k−j

)
= 0, the related200

terms can be ignored, so, using the binomial the-201

orem and beta function, the summed coefficient of202

Q(p1)k−jQ(pk)j is
∑i+j

g=j+1 (−1)g+1 1
k−g+1 i

(
i−1

g−j−1

)(k−i
j

)
=203

i
(k−i
j

) ∫ 1
0

∑i+j
g=j+1 (−1)g+1 (

i−1
g−j−1

)
tk−gdt =204 (k−i

j

)
i
∫ 1

0

(
(−1)j tk−j−1 (

t
t−1

)1−i
)
dt =205 (k−i

j

)
i (−1)j+i+1Γ(i)Γ(k−j−i+1)

Γ(k−j+1) = (−1)j+i+1i!(k−j−i)!(k−i)!
(k−j)!j!(k−j−i)! =206

(−1)j+i+1 i!(k−i)!
k!

k!
(k−j)!j! =

(k
i

)−1 (−1)1+i (k
j

)
(−1)j .207

According to the binomial theorem, the coefficient208

of Q(p1)iQ(pk)k−i in
(k
i

)−1 (−1)1+i (Q(p1) −Q(pk))k is209 (k
i

)−1 (−1)1+i (k
i

)
(−1)k−i = (−1)k+1, same as the above210

summed coefficient of Q(p1)iQ(pk)k−i, if i + j = k.211

If i + j < k, the coefficient of Q(p1)k−jQ(pk)j is212 (k
i

)−1 (−1)1+i (k
j

)
(−1)j , same as the corresponding213

summed coefficient of Q(p1)k−jQ(pk)j . Therefore,214

ψk (x1 = Q(p1), . . . , xi = Q(p1), xi+1 = Q(pk), . . . , xk = Q(pk)) =215 (k
i

)−1 (−1)1+i (Q(p1) −Q(pk))k, the maximum and minimum216

of ψk follow directly from the properties of the binomial217

coefficient.218

219

The component quasi-distribution, ξ∆, is closely related220

to Ξ∆, which is the pairwise difference distribution, since221 ∑ 1
k (−∆)k

∆̄=−( k
3+(−1)k

2
)

−1
(−∆)k

fξ∆ (∆̄) = fΞ∆ (∆). Recall that Theo-222

rem .1 established that fΞ∆ (∆) is monotonic increasing with a223

mode at zero if the original distribution is unimodal, fΞ−∆ (−∆)224

is thus monotonic decreasing with a mode at zero. In general, if225

assuming the shape of ξ∆ is uniform, Ξk is monotonic left and226

right around zero. The median of Ξk also exhibits a strong ten-227

dency to be close to zero, as it can be cast as a weighted mean228

of the medians of ξ∆. When −∆ is small, all values of ξ∆ are229

close to zero, resulting in the median of ξ∆ being close to zero as230

well. When −∆ is large, the median of ξ∆ depends on its skew-231

ness, but the corresponding weight is much smaller, so even232

if ξ∆ is highly skewed, the median of Ξk will only be slightly233

shifted from zero. Denote the median of Ξk as mkm, for 234

the five parametric distributions here, |mkm|s are all ≤ 0.1σ 235

for Ξ3 and Ξ4, where σ is the standard deviation of Ξk (SI 236

Dataset S1). Assuming mkm = 0, for the even ordinal central 237

moment kernel distribution, the average probability density on 238

the left side of zero is greater than that on the right side, since 239
1
2

(k
2)−1(Q(0)−Q(1))k

>
1
2

1
k (Q(0)−Q(1))k . This means that, on aver- 240

age, the inequality f(Q(ϵ)) ≥ f(Q(1 − ϵ)) holds. For the odd 241

ordinal distribution, the discussion is more challenging since 242

it is generally symmetric. Just consider Ξ3, let x1 = Q(pi) 243

and x3 = Q(pj), changing the value of x2 from Q(pi) to 244

Q(pj) will monotonically change the value of ψ3(x1, x2, x3), 245

since ∂ψ3(x1,x2,x3)
∂x2

= −x2
1

2 − x1x2 + 2x1x3 + x2
2 − x2x3 − x2

3
2 , 246

− 3
4 (x1 − x3)2 ≤ ∂ψ3(x1,x2,x3)

∂x2
≤ − 1

2 (x1 − x3)2 ≤ 0. If the 247

original distribution is right-skewed, ξ∆ will be left-skewed, 248

so, for Ξ3, the average probability density of the right side of 249

zero will be greater than that of the left side, which means, 250

on average, the inequality f(Q(ϵ)) ≤ f(Q(1 − ϵ)) holds. In all, 251

the monotonic decreasing of the negative pairwise difference 252

distribution guides the general shape of the kth central mo- 253

ment kernel distribution, k > 2, forcing it to be unimodal-like 254

with the mode and median close to zero, then, the inequal- 255

ity f(Q(ϵ)) ≤ f(Q(1 − ϵ)) or f(Q(ϵ)) ≥ f(Q(1 − ϵ)) holds 256

in general. If a distribution is νth γ-ordered and all of its 257

central moment kernel distributions are also νth γ-ordered, it 258

is called completely νth γ-ordered. Although strict complete 259

νth orderliness is difficult to prove, even if the inequality may 260

be violated in a small range, as discussed in Subsection ??, the 261

mean-SWAϵ-median inequality remains valid, in most cases, 262

for the central moment kernel distribution. 263

Another crucial property of the central moment kernel dis- 264

tribution, location invariant, is introduced in the next theorem. 265

The proof is provided in the SI Text. 266

Theorem .3. ψk (x1 = λx1 + µ, ··· , xk = λxk + µ) = 267

λkψk (x1, ··· , xk). 268

Proof. Recall that for the kth central moment, the kernel is 269

ψk (x1, . . . , xk) =
∑k−2

j=0 (−1)j
(

1
k−j

) ∑ (
xk−j
i1

xi2 . . . xij+1

)
+ 270

(−1)k−1 (k − 1)x1 . . . xk, where the second summation is over 271

i1, . . . , ij+1 = 1 to k with i1 ̸= i2 ̸= . . . ̸= ij+1 and i2 < i3 < 272

. . . < ij+1 (10). 273

ψk consists of two parts. The first part, 274∑k−2
j=0 (−1)j

(
1

k−j

) ∑ (
xk−j
i1

xi2 . . . xij+1

)
, involves a dou- 275

ble summation over certain terms. The second part, 276

(−1)k−1 (k − 1)x1 . . . xk, carries an alternating sign (−1)k−1
277

and involves multiplication of the constant k − 1 with the 278

product of all the x variables, x1x2 . . . xk. Consider each 279

multiplication cluster (−1)j
(

1
k−j

) ∑ (
xk−j
i1

xi2 . . . xij+1

)
280

for j ranging from 0 to k − 2 in the first part. Let each 281

cluster form a single group. The first part can be divided 282

into k − 1 groups. Combine this with the second part 283

(−1)k−1 (k − 1)x1 . . . xk. Together, the terms of ψk can be 284

divided into a total of k groups. From the 1st to k − 1th 285

group, the gth group has
(k
g

)(
g
1

)
terms having the form 286

(−1)g+1 1
k−g+1x

k−g+1
i1

xi2 . . . xig . The final kth group is the 287

term (−1)k−1 (k − 1)x1 ···xk. 288

There are two ways to divide ψk into k groups ac- 289

cording to the form of each term. The first choice is, 290

if k ̸= g, the gth group of ψk has
(k−l
g−l

)
terms having 291
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the form (−1)g+1 1
k−g+1x

k−g+1
i1

xi2 ···xilxil+1 . . . xig , where292

xi1 , xi2 , ··· , xil are fixed, xil+1 , ··· , xig are selected such293

that il+1, ··· , ig ̸= i1, i2, ··· , il and il+1 ̸= . . . ̸= ig. De-294

fine another function Ψk
(
xi1 , xi2 , ··· , xil , xil+1 , ··· , xig

)
=295

(λxi1 + µ)k−g+1 (λxi2 + µ) ··· (λxil + µ)
(
λxil+1 + µ

)
···

(
λxig + µ

)
,296

the first group of Ψk is λkxi1 ···xilxil+1 ···xig , the297

hth group of Ψk, h > 1, has
( k−g+1

k−h−l+2

)
terms hav-298

ing the form λk−h+1µh−1xk−h−l+2
i1

xi2 ···xil . Trans-299

forming ψk by Ψk, then combing all terms with300

λk−h+1µh−1xk−h−l+2
i1

xi2 ···xil , k −h− l+ 2 > 1, the summed301

coefficient is S1l =
∑h+l−1

g=l (−1)g+1 1
k−g+1

( k−g+1
k−h−l+2

)(k−l
g−l

)
=302 ∑h+l−1

g=l (−1)g+1 (k−l)!
(h+l−g−1)!(k−h−l+2)!(g−l)! = 0, since the303

summation is starting from l, ending at h + l − 1, the first304

term includes the factor g − l = 0, the final term includes the305

factor h+ l − g − 1 = 0, the terms in the middle are also zero306

due to the factorial property.307

Another possible choice is the gth group of ψk has308

(k − h)
(

h−1
g−k+h−1

)
terms having the form309

(−1)g+1 1
k−g+1xi1xi2 ···xk−g+1

ij
···xik−h+1xik−h+2 ···xig ,310

provided that k ̸= g, 2 ≤ j ≤ k − h + 1, where311

xi1 , . . . , xik−h+1 are fixed, xk−g+1
ij

and xik−h+2 , ··· , xig312

are selected such that ik−h+2, ··· , ig ≠ i1, i2, ··· , ik−h+1313

and ik−h+2 ̸= . . . ̸= ig. Transforming these terms by314

Ψk
(
xi1 , xi2 , . . . , xij , . . . , xik−h+1 , xik−h+2 , . . . , xig

)
=315

(λxi1 + µ) (λxi2 + µ) ···
(
λxij + µ

)k−g+1 ···
(
λxik−h+1 + µ

) (
λxik−h+2 + µ

)
···

(
λxig + µ

)
,316

then there are k − g + 1 terms having the317

form λk−h+1µh−1xi1xi2 . . . xik−h+1 . Transforming318

the final kth group of ψk by Ψk (x1, . . . , xk) =319

(λx1 + µ) ··· (λxk + µ), then, there is one term having320

the form (−1)k−1 (k − 1)λk−h+1µh−1x1x2 . . . xk−h+1. An-321

other possible combination is that the gth group of ψk322

contains (g − k + h− 1)
(

h−1
g−k+h−1

)
terms having the form323

(−1)g+1 1
k−g+1xi1xi2 ···xik−h+1xik−h+2 ···xk−g+1

ij
···xig .324

Transforming these terms by325

Ψk
(
xi1 , xi2 , . . . , xik−h+1 , xik−h+2 , . . . , xij , . . . , xig

)
=326

(λxi1 + µ) (λxi2 + µ) ···
(
λxik−h+1 + µ

) (
λxik−h+2 + µ

)
···

(
λxij + µ

)k−g+1 ···
(
λxig + µ

)
,327

then there is only one term having the form328

λk−h+1µh−1xi1xi2 . . . xik−h+1 . The above summation S1l329

should also be included, i.e., xk−h−l+2
i1

= xi1 , k = h+ l−1. So,330

combing all terms with λk−h+1µh−1xi1xi2 . . . xik−h+1 , accord-331

ing to the binomial theorem, the summed coefficient is S2l =332 ∑k−1
g=k−h+1 (−1)g+1 (

h−1
g−k+h−1

) (
k − h+ 1 + g−k+h−1

k−g+1

)
+333

(−1)k−1 (k − 1) = (k − h+ 1)
∑k−1

g=k−h+1 (−1)g+1 (
h−1

g−k+h−1

)
+334 ∑k−1

g=k−h+1 (−1)g+1 (
h−1

g−k+h−1

) (
g−k+h−1

k−g+1

)
+335

(−1)k−1 (k − 1) = (−1)k(k − h + 1) + (h − 2)(−1)k +336

(−1)k−1 (k − 1) = 0. The summation identities re-337

quired are
∑k−1

g=k−h+1 (−1)g+1 (
h−1

g−k+h−1

)
= (−1)k and338 ∑k−1

g=k−h+1 (−1)g+1 (
h−1

g−k+h−1

) (
g−k+h−1

k−g+1

)
= (h − 2)(−1)k.339

These two summation identities are proven in Lemma ?? and340

??.341

Thus, no matter in which way, all terms including µ can342

be canceled out. The proof is complete by noticing that the343

remaining part is λkψk (x1, ··· , xk).344

345

A direct result of Theorem .3 is that, WHLkm after stan-346

dardization is invariant to location and scale. So, the weighted347

H-L standardized kth moment is defined to be 348

WHLskmϵ=min (ϵ1,ϵ2),k1,k2,γ1,γ2,n := WHLkmk1,ϵ1,γ1,n

(WHLvark2,ϵ2,γ2,n)k/2 . 349

To avoid confusion, it should be noted that the robust 350

location estimations of the kernel distributions discussed in 351

this paper differ from the approach taken by Joly and Lugosi 352

(2016) (21), which is computing the median of all U -statistics 353

from different disjoint blocks. Compared to bootstrap median 354

U -statistics, this approach can produce two additional kinds 355

of finite sample bias, one arises from the limited numbers of 356

blocks, another is due to the size of the U -statistics (consider 357

the mean of all U -statistics from different disjoint blocks, it 358

is definitely not identical to the original U -statistic, except 359

when the kernel is the Hodges-Lehmann kernel). Laforgue, 360

Clemencon, and Bertail (2019)’s median of randomized U - 361

statistics (22) is more sophisticated and can overcome the 362

limitation of the number of blocks, but the second kind of bias 363

remains unsolved. 364

Congruent Distribution 365

In the realm of nonparametric statistics, the relative differ- 366

ences, or orders, of robust estimators are of primary impor- 367

tance. A key implication of this principle is that when there 368

is a shift in the parameters of the underlying distribution, 369

all nonparametric estimates should asymptotically change in 370

the same direction, if they are estimating the same attribute 371

of the distribution. If, on the other hand, the mean sug- 372

gests an increase in the location of the distribution while 373

the median indicates a decrease, a contradiction arises. It 374

is worth noting that such contradiction is not possible for 375

any LL-statistics in a location-scale distribution, as explained 376

in Theorem ?? and ??. However, it is possible to construct 377

counterexamples to the aforementioned implication in a shape- 378

scale distribution. In the case of the Weibull distribution, 379

its quantile function is QWei (p) = λ(− ln(1 − p))1/α, where 380

0 ≤ p ≤ 1, α > 0, λ > 0, λ is a scale parameter, α is a 381

shape parameter, ln is the natural logarithm function. Then, 382

m = λ α
√

ln(2), µ = λΓ
(
1 + 1

α

)
, where Γ is the gamma func- 383

tion. When α = 1, m = λ ln(2) ≈ 0.693λ, µ = λ, when α = 1
2 , 384

m = λ ln2(2) ≈ 0.480λ, µ = 2λ, the mean increases as α 385

changes from 1 to 1
2 , but the median decreases. In the last 386

section, the fundamental role of quantile average was demon- 387

strated by using the method of classifying distributions through 388

the signs of derivatives. To avoid such scenarios, this method 389

can also be used. Let the quantile average function of a para- 390

metric distribution be denoted as QA (ϵ, γ, α1, ··· , αi, ··· , αk), 391

where αi represent the parameters of the distribution, then, a 392

distribution is γ-congruent if and only if the sign of ∂QA
∂αi

re- 393

mains the same for all 0 ≤ ϵ ≤ 1
1+γ . If ∂QA

∂αi
is equal to zero or 394

undefined, it can be considered both positive and negative, and 395

thus does not impact the analysis. A distribution is completely 396

γ-congruent if and only if it is γ-congruent and all its central 397

moment kernel distributions are also γ-congruent. Setting 398

γ = 1 constitutes the definitions of congruence and complete 399

congruence. Replacing the QA with γmHLM (defined in 400

the following section) gives the definition of γ-U -congruence. 401

Chebyshev’s inequality implies that, for any probability distri- 402

butions with finite second moments, as the parameters change, 403

even if some LL-statistics change in a direction different from 404

that of the population mean, the magnitude of the changes in 405
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Table 1. Evaluation of WSSE of robust central moments for five common unimodal distributions in comparison with current popular methods

Errors x̄ TM H-L SM HM WM SQM BM MoM MoRM mHLM rmexp,BM qmexp,BM

WASAB 0.000 0.107 0.088 0.078 0.078 0.066 0.048 0.048 0.034 0.035 0.034 0.002 0.003
WRMSE 0.014 0.111 0.092 0.083 0.083 0.070 0.053 0.053 0.041 0.041 0.038 0.017 0.018
WASBn=5184 0.000 0.108 0.089 0.078 0.079 0.066 0.048 0.048 0.034 0.036 0.033 0.002 0.003
WSE ∨ WSSE 0.014 0.014 0.014 0.015 0.014 0.014 0.014 0.015 0.017 0.014 0.014 0.017 0.017

Errors HFMµ MPµ rm qm im var varbs Tsd2 HFMµ2 MPµ2 rvar qvar ivar

WASAB 0.037 0.043 0.001 0.002 0.001 0.000 0.000 0.200 0.027 0.042 0.005 0.018 0.003
WRMSE 0.049 0.055 0.015 0.015 0.014 0.017 0.017 0.198 0.042 0.062 0.019 0.026 0.019
WASBn=5184 0.038 0.043 0.001 0.002 0.001 0.000 0.001 0.198 0.027 0.043 0.005 0.018 0.003
WSE ∨ WSSE 0.018 0.021 0.015 0.015 0.014 0.017 0.017 0.015 0.024 0.032 0.018 0.017 0.018

Errors tm tmbs HFMµ3 MPµ3 rtm qtm itm fm fmbs HFMµ4 MPµ4 rfm qfm ifm

WASAB 0.000 0.000 0.052 0.059 0.006 0.083 0.034 0.000 0.000 0.037 0.046 0.024 0.038 0.011
WRMSE 0.019 0.018 0.063 0.074 0.018 0.083 0.044 0.026 0.023 0.049 0.062 0.037 0.043 0.029
WASBn=5184 0.001 0.003 0.052 0.059 0.007 0.082 0.038 0.001 0.009 0.037 0.047 0.024 0.036 0.013
WSE ∨ WSSE 0.019 0.018 0.021 0.091 0.015 0.012 0.017 0.024 0.021 0.020 0.027 0.021 0.020 0.022

The first table presents the use of the exponential distribution as the consistent distribution for five common unimodal distributions: Weibull,
gamma, Pareto, lognormal, and generalized Gaussian distributions. Popular robust mean estimators discussed in REDS 1 were used as comparisons.
The breakdown points of mean estimators in the first table, besides H-L estimator and Huber M-estimator, are all 1

8 . The second and third
tables present the use of the Weibull distribution as the consistent distribution not plus/plus using the lognormal distribution for the odd ordinal
moments optimization and the generalized Gaussian distribution for the even ordinal moments optimization. SQM is the robust mean estimator
used in recombined/quantile moments. Unbiased sample central moments (var, tm, fm), U-central moments with quasi-bootstrap (varbs, tmbs,
fmbs), and other estimators were used as comparisons. The generalized Gaussian distribution was excluded for He and Fung M-Estimator and
Marks percentile estimator, since the logarithmic function does not produce results for negative inputs. The breakdown points of estimators in the
second and third table, besides M-estimators and percentile estimator, are all 1

24 . The tables include the average standardized asymptotic bias
(ASAB, as n → ∞), root mean square error (RMSE, at n = 5184), average standardized bias (ASB, at n = 5184) and variance (SE ∨ SSE, at
n = 5184) of these estimators, all reported in the units of the standard deviations of the distribution or corresponding kernel distributions. W
means that the results were weighted by the number of Google Scholar search results on May 30, 2022 (including synonyms). The calibrations of d
values and the computations of ASAB, ASB, and SSE were described in Subsection , ?? and SI Methods. Detailed results and related codes are
available in SI Dataset S1 and GitHub.

the LL-statistics remains bounded compared to the changes in406

the population mean. Furthermore, distributions with infinite407

moments can be γ-congruent, since the definition is based on408

the quantile average, not the population mean.409

The following theorems show the conditions that a distri-410

bution is congruent or γ-congruent.411

Theorem .4. A symmetric distribution is always congruent412

and U-congruent.413

Proof. As shown in Theorem ?? and Theorem ??, for any414

symmetric distribution, all quantile averages and all γmHLMs415

conincide. The conclusion follows immediately.416

Theorem .5. A positive definite location-scale distribution is417

always γ-congruent.418

Proof. As shown in Theorem .2, for a location-scale distribu-419

tion, any quantile average can be expressed as λQA0(ϵ, γ) + µ.420

Therefore, the derivatives with respect to the parameters λ421

or µ are always positive. By application of the definition, the422

desired outcome is obtained.423

For the Pareto distribution, ∂Q
∂α

= xm(1−p)−1/α ln(1−p)
α2 .424

Since ln(1 − p) < 0 for all 0 < p < 1, (1 − p)−1/α >425

0 for all 0 < p < 1 and α > 0, so ∂Q
∂α

< 0,426

and therefore ∂QA
∂α

< 0, the Pareto distribution is γ-427

congruent. It is also γ-U -congruent, since γmHLM can428

also express as a function of Q(p). For the lognormal dis-429

tribution, ∂QA
∂σ

= 1
2

(
√

2erfc−1(2γϵ)
(

−e
√

2µ−2σerfc−1(2γϵ)√
2

)
+430

(
−

√
2
)

erfc−1(2(1 − ϵ))e
√

2µ−2σerfc−1(2(1−ϵ))√
2

)
. Since the in- 431

verse complementary error function is positive when the 432

input is smaller than 1, and negative when the input is 433

larger than 1, and symmetry around 1, if 0 ≤ γ ≤ 434

1, erfc−1(2γϵ) ≥ −erfc−1(2 − 2ϵ), eµ−
√

2σerfc−1(2−2ϵ) > 435

eµ−
√

2σerfc−1(2γϵ). Therefore, if 0 ≤ γ ≤ 1, ∂QA
∂σ

> 0, the 436

lognormal distribution is γ-congruent. Theorem .4 implies 437

that the generalized Gaussian distribution is congruent and 438

U -congruent. For the Weibull distribution, when α changes 439

from 1 to 1
2 , the average probability density on the left side 440

of the median increases, since
1
2

λ ln(2) <
1
2

λ ln2(2) , but the mean 441

increases, indicating that the distribution is more heavy-tailed, 442

the probability density of large values will also increase. So, 443

the reason for non-congruence of the Weibull distribution lies 444

in the simultaneous increase of probability densities on two op- 445

posite sides as the shape parameter changes: one approaching 446

the bound zero and the other approaching infinity. Note that 447

the gamma distribution does not have this issue, Numerical 448

results indicate that it is likely to be congruent. 449

The next theorem shows an interesting relation between 450

congruence and the central moment kernel distribution. 451

Theorem .6. The second central moment kernal distribution 452

derived from a continuous location-scale unimodal distribution 453

is always γ-congruent. 454

Proof. Theorem .3 shows that the central moment kernel dis- 455

tribution generated from a location-scale distribution is also a 456
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location-scale distribution. Theorem .1 shows that it is posi-457

tively definite. Implementing Theorem 12 in REDS 1 yields458

the desired result.459

Although some parametric distributions are not congruent,460

as shown in REDS 1. In REDS 1, Theorem 12 establishes that461

γ-congruence always holds for a positive definite location-scale462

family distribution and thus for the second central moment463

kernel distribution generated from a location-scale unimodal464

distribution as shown in Theorem .6. Theorem .2 demonstrates465

that all central moment kernel distributions are unimodal-like466

with mode and median close to zero, as long as they are gen-467

erated from unimodal distributions. Assuming finite moments468

and constant Q(0)−Q(1), increasing the mean of a distribution469

will result in a generally more heavy-tailed distribution, i.e.,470

the probability density of the values close to Q(1) increases,471

since the total probability density is 1. In the case of the kth472

central moment kernel distribution, k > 2, while the total473

probability density on either side of zero remains generally474

constant as the median is generally close to zero and much less475

impacted by increasing the mean, the probability density of476

the values close to zero decreases as the mean increases. This477

transformation will increase nearly all symmetric weighted av-478

erages, in the general sense. Therefore, except for the median,479

which is assumed to be zero, nearly all symmetric weighted av-480

erages for all central moment kernel distributions derived from481

unimodal distributions should change in the same direction482

when the parameters change.483

Variance484

As one of the fundamental theorems in statistics, the central485

limit theorem declares that the standard deviation of the lim-486

iting form of the sampling distribution of the sample mean is487
σ√
n

. The principle, asymptotic normality, was later applied488

to the sampling distributions of robust location estimators489

(7, 23–31). Daniell (1920) stated (24) that comparing the490

efficiencies of various kinds of estimators is useless unless they491

all tend to coincide asymptotically. Bickel and Lehmann, also492

in the landmark series (7, 30), argued that meaningful compar-493

isons of the efficiencies of various kinds of location estimators494

can be accomplished by studying their standardized variances,495

asymptotic variances, and efficiency bounds. Standardized496

variance, Var(θ̂)
θ2 , allows the use of simulation studies or em-497

pirical data to compare the variances of estimators of distinct498

parameters. However, a limitation of this approach is the in-499

verse square dependence of the standardized variance on θ. If500

Var
(
θ̂1

)
= Var

(
θ̂2

)
, but θ1 is close to zero and θ2 is relatively501

large, their standardized variances will still differ dramatically.502

Here, the scaled standard error (SSE) is proposed as a method503

for estimating the variances of estimators measuring the same504

attribute, offering a standard error more comparable to that of505

the sample mean and much less influenced by the magnitude506

of θ.507

Definition .1 (Scaled standard error). Let Msisj ∈ Ri×j de-508

note the sample-by-statistics matrix, i.e., the first column509

corresponds to θ̂, which is the mean or a U -central moment510

measuring the same attribute of the distribution as the other511

columns, the second to the jth column correspond to j − 1512

statistics required to scale, θ̂r1 , θ̂r2 , . . ., θ̂rj−1 . Then, the513

scaling factor S =
[
1,

¯θr1
¯θm
,

¯θr2
¯θm
, . . . ,

¯θrj−1
¯θm

]T
is a j × 1 matrix,514

which θ̄ is the mean of the column of Msisj . The normal- 515

ized matrix is MN
sisj

= Msisj S. The SSEs are the unbiased 516

standard deviations of the corresponding columns of MN
sisj

. 517

The U -central moment (the central moment estimated by 518

using U -statistics) is essentially the mean of the central mo- 519

ment kernel distribution, so its standard error should be gen- 520

erally close to σkm√
n

, although not exactly since the kernel 521

distribution is not i.i.d., where σkm is the asymptotic standard 522

deviation of the central moment kernel distribution. If the 523

statistics of interest coincide asymptotically, then the stan- 524

dard errors should still be used, e.g, for symmetric location 525

estimators and odd ordinal central moments for the symmet- 526

ric distributions, since the scaled standard error will be too 527

sensitive to small changes when they are zero. 528

The SSEs of all robust estimators proposed here are often, 529

although many exceptions exist, between those of the sam- 530

ple median and those of the sample mean or median central 531

moments and U -central moments (SI Dataset S1). This is 532

because similar monotonic relations between breakdown point 533

and variance are also very common, e.g., Bickel and Lehmann 534

(7) proved that a lower bound for the efficiency of TMϵ to 535

sample mean is (1 − 2ϵ)2 and this monotonic bound holds true 536

for any distribution. However, the direction of monotonicity 537

differs for distributions with different kurtosis. Lehmann and 538

Scheffé (1950, 1955) (32, 33) in their two early papers provided 539

a way to construct a uniformly minimum-variance unbiased es- 540

timator (UMVUE). From that, the sample mean and unbiased 541

sample second moment can be proven as the UMVUEs for the 542

population mean and population second moment for the Gaus- 543

sian distribution. While their performance for sub-Gaussian 544

distributions is generally satisfied, they perform poorly when 545

the distribution has a heavy tail and completely fail for dis- 546

tributions with infinite second moments. For sub-Gaussian 547

distributions, the variance of a robust location estimator is 548

generally monotonic increasing as its robustness increases, but 549

for heavy-tailed distributions, the relation is reversed. So, 550

unlike bias, the variance-optimal choice can be very different 551

for distributions with different kurtosis. 552

Due to combinatorial explosion, the bootstrap (34), intro- 553

duced by Efron in 1979, is indispensable for computing central 554

moments in practice. In 1981, Bickel and Freedman (35) 555

showed that the bootstrap is asymptotically valid to approx- 556

imate the original distribution in a wide range of situations, 557

including U -statistics. The limit laws of bootstrapped trimmed 558

U -statistics were proven by Helmers, Janssen, and Veraverbeke 559

(1990) (36). In REDS I, the advantages of quasi-bootstrap 560

were discussed (37–39). By using quasi-sampling, the impact 561

of the number of repetitions of the bootstrap, or bootstrap 562

size, on variance is very small (SI Dataset S1). An estimator 563

based on the quasi-bootstrap approach can be seen as a com- 564

plex deterministic estimator that is not only computationally 565

efficient but also statistical efficient. The only drawback of 566

quasi-bootstrap compared to non-bootstrap is that a small 567

bootstrap size can produce additional finite sample bias (SI 568

Text). 569

Discussion 570

Moments, including raw moments, central moments, and stan- 571

dardized moments, are the most common parameters that 572

describe probability distributions. Central moments are pre- 573

ferred over raw moments because they are invariant to trans- 574

lation. In 1947, Hsu and Robbins proved that the arithmetic 575
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mean converges completely to the population mean provided576

the second moment is finite (40). The strong law of large577

numbers (proven by Kolmogorov in 1933) (41) implies that578

the kth sample central moment is asymptotically unbiased.579

Recently, fascinating statistical phenomena regarding Tay-580

lor’s law for distributions with infinite moments have been581

discovered by Drton and Xiao (2016) (42), Pillai and Meng582

(2016) (43), Cohen, Davis, and Samorodnitsky (2020) (44),583

and Brown, Cohen, Tang, and Yam (2021) (45). Lindquist584

and Rachev (2021) raised a critical question in their inspiring585

comment to Brown et al’s paper (45): "What are the proper586

measures for the location, spread, asymmetry, and dependence587

(association) for random samples with infinite mean?" (46).588

From a different perspective, this question closely aligns with589

the essence of Bickel and Lehmann’s open question in 1979590

(4). They suggested using median, interquartile range, and591

medcouple (47) as the robust versions of the first three mo-592

ments. While answering this question is not the focus of this593

paper, it is almost certain that the estimators proposed in this594

series will have a place. Since the efficiency of an L-statistic595

to the sample mean is generally monotonic with respect to the596

breakdown point (7), and the estimation of central moments597

can be transformed into the location estimation of the central598

moment kernel distribution, similar monotonic relations can be599

expected. In the case of a distribution with an infinite mean,600

non-robust estimators will not converge and will not provide601

valid estimates since their variances will be infinitely large.602

Therefore, the desired measures should be as robust as possible.603

Clearly now, if one wants to preserve the original relationship604

between each moment while ensuring maximum robustness,605

the natural choices are median, median variance, and median606

skewness. Similar to the robust version of L-moment (48)607

being trimmed L-moment (16), mean and central moments608

now also have their standard most robust version based on609

the complete congruence of the underlying distribution.610

Methods611

Data and Software Availability. Data for Table 1 are given in612

SI Dataset S1-S4. All codes have been deposited in GitHub.613
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