

MUSHNOMICS
Unlocking data-driven innovation for improving

productivity and data sharing in mushroom value chain

 Document

Deliverable title Report on MUSHNOMICS AI-algorithms

Related Work package WP2

Responsible editor Dimitrios Argyropoulos (UCD)

Contributors Christos Charisis, Dimitrios Argyropoulos (UCD)

Delivery date M29 (31/07/2023)

Version history

Author Comment Version Date

Christos Charisis Draft 0.1

Sari Nuwayhid Draft 0.3

Dimitrios Argyropoulos Final 1.0

Disclaimer
This document may contain material that is copyright of certain MUSHNOMICS
beneficiaries, and may not be reproduced or copied without permission. All
MUSHNOMICS consortium partners have agreed to the full publication of this document.
The commercial use of any information contained in this document may require a license
from the proprietor of that information.

D2.2 - Report on MUSHNOMICS AI-

algorithms

2
D2.2 | Report on MUSHNOMICS AI-algorithms

The MUSHNOMICS Consortium is the following:

No Beneficiary Name
Short
Name

Country

1 SC HOLISUN SRL HS Romania

2 Department of Plant and Environmental Sciences,
University of Copenhagen

UCPH Denmark

3 Pilze-Nagy Ltd PILZE Hungary

4 University College Dublin UCD Ireland

The information in this document is
provided “as-is” and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and liability.

3
D2.2 | Report on MUSHNOMICS AI-algorithms

Table of contents

1. Introduction 5

2. Description of the DL pipeline for static and dynamic datasets 6

3. Experimental setup and image acquisition 8

4. Image dataset and annotation process 10

5. Instance segmentation architecture of Mask R-CNN 12

6. Performance evaluation metrics 15

7. MUSHNOMICS timelapse tracking algorithm 16

8. Performance of MUSHNOMICS algorithms 17

References 22

4
D2.2 | Report on MUSHNOMICS AI-algorithms

List of Figures
Figure 1: End-to-end deep learning-based instance segmentation pipeline includes image dataset acquisition,
annotation, preprocessing, instance segmentation detector, and performance evaluation.

Figure 2: Mushroom farm (a) with artificial lighting, configuration, and installation of a timelapse camera (b, c).

Figure 3: Examples of mushroom cluster images from the collected dataset at different angles: side (a), front (b), bottom
(c), and top (d) views obtained from a real production environment.

Figure 4: Sample images of the dynamic dataset collected by the timelapse camera installed in the mushroom farm.
Different stages of mushroom cluster growth are exemplarily illustrated.

Figure 5: Annotation of mushroom instances using CVAT (Computer Vision Annotation Tool) tool interface.

Figure 6: Mushroom clusters captured from front (a), side (c), top (e), and bottom (g) views and their respective
annotated masks (b, d, f, h).

Figure 7: Annotated mushroom clusters on images obtained from the dynamic timelapse dataset.

Figure 8: Mask R-CNN architecture, divided into distinct parts.

Figure 9: FPN architecture, divided into distinct parts. The left part of the architecture is a backbone network (usually
ResNet or similar implementation) and the right part is the FPN addition.

Figure 10: IoU visualization on a single oyster mushroom instance in a cluster.

Figure 11: Mask R-CNN based detection of single mushrooms in a cluster on image datasets taken from different angles,
bottom (a, b) and top (c, d).

Figure 12: Mask R-CNN based detection of single mushrooms in a cluster on image datasets taken from different angles,
side (a, b) and front (c, d).

Figure 13: Mask R-CNN based detection of mushroom clusters on image datasets acquired in a time lapse manner.

Figure 14: MUSHNOMICS tracking algorithm at selected timesteps of mushroom growth.

Figure 15: Mushroom cluster tracking predictions and pixel-wise relative growth index

List of Tables
Tabel 1: Performance evaluation metrics for both Mask R-CNN trained models.

5
D2.2 | Report on MUSHNOMICS AI-algorithms

1. Introduction

Accurate mushroom detection is a prerequisite for automated growth tracking in real

production environments and represents a significant challenge. Recent developments in the field

of sensors and computer vision have promoted the application of crop detection systems, leading

to their increasing use in agricultural task automation. Computer-vision models have been widely

used and undergo certain improvements in the field of crop detection and localization in order to

assist crop growth monitoring. Therefore, precision agriculture needs to take advantage of the

latest cutting-edge technologies in computer science in order to perform sustainable and efficient

agronomic management, thus increasing production at a low environmental and economic cost.

This document represents the deliverable 2.2 and details the design and development of

the AI algorithms for the detection and segmentation of mushrooms in the MUSHNOMICS project.

The primary novelty of the MUSHNOMICS AI approach lies in the integration of deep learning (DL)

technology with instance segmentation for the rapid identification of mushrooms in a farm

environment. This integration offers a visually intuitive and contextually informative platform,

bridging the gap between digital predictions and real-world scenarios.

Specifically, an image-based system that captures images of mushrooms in a farm

environment and displays the predicted growth instances by utilizing cutting-edge deep learning

technology was designed and tested for the rapid detection and segmentation of mushrooms at

different growth stages. The algorithms were developed using a comprehensive image dataset of

mushrooms grown on state-of-the-art substrate blocks and validated using images acquired

under several production trials with the MUSHNOMICS buckets (D2.3). Finally, the DL-based

framework for the real-time detection of mushroom instances integrated into MUSHNOMICs

platform (D4.2) and demonstrated as a practical course in (D4.3).

This report provides an overview of the algorithm design, testing and implementation

processes also giving an insight into the key considerations and functions for the planning,

installation of equipment, execution of experiments and production trials in the mushroom farm

(PILZE, Hungary). Based on the outcomes reported here, the MUSHNOMICS AI algorithms were

developed, tested and validated using a series of image datasets acquired from multiple

production units at PILZE premises.

In summary, the novel MUSHNOMICS end-to-end DL-based instance segmentation

pipeline includes six different steps and described in detail in the following chapters:

• Acquisition of image datasets using RGB cameras in a farm environment (Pilze, Hungary);

• Development of a semi-automatic annotation procedure for mushrooms in the images;

• Application of pre-processing techniques to counter possible data defects;

• Selection and testing of suitable deep learning instance segmentation architectures;

• Evaluation of model performance through performance metrics;

• Validation of the MUSHNOMICS algorithms using new image datasets (D2.3).

6
D2.2 | Report on MUSHNOMICS AI-algorithms

2. Description of the DL pipeline for static and dynamic datasets

Nowadays, deep learning is one of the most prominent techniques for digital image

processing and analysis with important applications across a multitude of industry sectors

including agriculture. Existing deep convolutional neural networks (CNNs), the most utilized DL

neural network type, have achieved impressive performance in object detection and semantic

image segmentation. Instance segmentation models, in turn, are based largely on CNNs. Such

models are capable of learning complex patterns and features in the images while extracting fine-

gained information in an automated way.

While commercially cultivated oyster mushrooms are primarily grown in controlled

environments, the spatial variability of clusters within the farm introduces complexities that

challenge the adaptivity of computer vision systems to real-world farming conditions. Digital

images represent important data sources that could provide precise, region-specific information

and address a variety of agricultural problems. However, image datasets for oyster mushrooms

do not exist. An efficient localization and accurate mapping of complex morphology agricultural

products such as the oyster mushrooms can help farmers to tackle this variability and mitigate

the labor-intensive cost associated with harvesting.

The aim of this task (T2.2), therefore, was to design, test and validate a robust DL-based

system to support detection, localization and tracking of mushrooms in a farm environment.

Towards this objective, a comprehensive image dataset from a commercial oyster mushroom

farm under real production conditions was developed. The proposed solution was based on the

segmentation of single mushrooms in a cluster and as whole mushroom cluster from RGB images

using deep convolutional neural networks (Mask R-CNN model).

An end-to-end DL-based instance segmentation pipeline consists of four different steps,

namely (i) data acquisition, (ii) data annotation, (iii) data preprocessing, and (iv) instance

segmentation. After the pipeline is established, the last step is evaluating its performance based

on domain-specific performance metrics (v). The steps of the complete pipeline are shown in the

schematic of Figure 1.

Figure 1. End-to-end deep learning-based instance segmentation pipeline includes image dataset acquisition,
annotation, preprocessing, instance segmentation detector, and performance evaluation.

Data acquisition can be conducted in two different approaches. The first path is to explore

and find existing benchmark datasets, similar to the aims of the project. The availability of such

datasets is usually limited and, in some cases, non-existent (e.g., in our case, oyster mushroom

image datasets are not available). The second path is to collect the necessary data through various

7
D2.2 | Report on MUSHNOMICS AI-algorithms

experiments utilizing various sensors inside the farm installations. The MUSHNOMICS project

followed the second path, scheduling and executing a series of experiments and data collection

procedures in order to create a comprehensive dataset capable of training DL models.

The first step after data collection is to annotate the images in the dataset, making them

compatible with supervised learning architectures. This is a crucial step as supervised learning

requires that the data provided to the model are labeled, guiding the model to learn from the

examples provided to it. If the dataset is already constructed in a benchmark format, usually it is

annotated by the creators. However, in the case of manually collected data, the annotation process

is unavoidable. As the MUSHNOMICS project collected its own dataset, the annotation process was

manually conducted for the preparation of the dataset.

Depending on the quality of the data or the needed input for the DL architectures, data

pre-processing techniques can be employed. Some of the most common techniques are

implemented for data augmentation when the size of the dataset is small, illumination correction

for issues in the lighting conditions, and size reduction by scaling, resizing, cropping, etc. In the

MUSHNOMICS project, the collected data were in no need of extended pre-processing.. The only

pre-processing applied was the default techniques of the DL library for the instance segmentation

architectures, which included resizing, random flipping, and normalization to be compatible with

the pre-trained weights of the model used through the transfer learning approach.

When all the previous steps for dataset preparation are completed, the next stage is the

selection of the DL instance segmentation detector. A great number of different detector

architectures are published in the research community, with many different configurations and

pre-trained components. The three main CNN-based detectors are:

• One-stage: In this category, the detectors calculate bounding boxes, class labels, and

instance masks in a single step inside the model. This family of detectors usually shows

higher processing speed and lower accuracy, as their architectures are characterized by

simplicity in their components. This kind of detector is widely preferred in applications

where real-time results are crucial, such as robotic applications for detecting and

harvesting target crops.

• Two-stage: The detectors of this category divide the detection task into two distinct

stages. The first stage comprises a region proposal component, which is tasked with

locating areas of interest inside the image. These areas are then forwarded to the next

stage which examines the area deciding if an object is present, along with the bounding

box, class label, and instance mask. Typically, a detector of this category can achieve

higher accuracy than a One-stage counterpart, but with lower processing speed. If the

application does not require real-time speed performance, these detectors are the most

popular option.

• Muli-stage: This category is an expansion of the Two-stage, as more than one stage is

present in the architecture before the final proposal of a region of interest. The existence

of more stages usually contributes to even higher accuracy at the expense of more

8
D2.2 | Report on MUSHNOMICS AI-algorithms

processing time and resources. Their use is encouraged when a quick response is not

required but the need for higher accuracy is imperative.

In the following paragraphs, each of the aforementioned parts of the pipeline will be

discussed in detail with respect to the models developed in MUSHNOMICS .

3. Experimental setup and image acquisition

This task involved the creation of a comprehensive image dataset of oyster mushroom

clusters (Pleurotus ostreatus (Jacq. Ex Fr.) P. Kumm) grown on wheat substrate blocks. The dataset

was constructed by collecting several images from commercial mushroom farms. The set of

images was acquired in June 2022 at Pilze-Nagy Ltd, located in Budapest, Hungary. Figure 2 shows

the installation and setting up of a timelapse camera in the farm for acquiring images of

mushrooms at the different growth stages throughout the entire production cycle.

Figure 2. Mushroom farm (a) with artificial lighting, configuration, and installation of a timelapse camera (b, c).

The data collection aim was to create two kinds of datasets. One for detecting single

mushrooms inside a cluster (static) and one for capturing the growth of a cluster until it reaches

the harvesting point (dynamic). For the former, unharvested mushroom clusters were

meticulously captured from multiple angles using the dual 12MP camera system of an iPhone 12

smartphone, which offers a resolution of 4032x3024 pixels. Field photography primarily took

place during daylight hours, utilizing artificial illumination within the controlled environment

capturing in detail the individual mushrooms within a cluster.

A collection of 200 RGB images was obtained, depicting raw oyster mushrooms in clusters

with varying sizes, shapes, and distribution densities. Figure 3 presents four representative

sample images from this dataset. Particular emphasis was placed on acquiring the clusters from

different points of view in a systematic way (front, side, top and bottom views)

9
D2.2 | Report on MUSHNOMICS AI-algorithms

Figure 3. Examples of mushroom cluster images from the collected dataset at different angles: side (a), front (b),
bottom (c), and top (d) views obtained from a real production environment.

Furthermore, the dataset contains clusters including different numbers of individual

mushrooms, with some clusters consisting of fewer than 10 single mushrooms and others

consisting of more than 30 mushrooms. The presence of semi-occluded instances may be

discerned from the images. An important challenge to overcome by the instance segmentation

task is the detection of individual hidden mushrooms due to their very small visible fruiting body

part.

10
D2.2 | Report on MUSHNOMICS AI-algorithms

A timelapse camera was set to capture images of the mushroom clusters growing on a

substrate block every 15 minutes. The Wingscapes TimelapseCam Pro camera [1] captures very

high-resolution images of 6080x3420 pixels, with demonstration samples that can be seen in

Figure 4 collected over a full production cycle. The illumination was artificial from the existing

lights inside the farm, assisted by the flash of the camera, resulting in high-quality images where

the foreground was adequately illuminated while the background remained relatively dark. In

total 4 such time-lapse dynamic image datasets were collected from the mushroom farm, each

containing approximately 4000 images.

Figure 4. Sample images of the dynamic dataset collected by the timelapse camera installed in the mushroom
farm. Different stages of mushroom cluster growth are exemplarily illustrated.

4. Image dataset and annotation process

The raw datasets of oyster mushrooms were obtained and subsequently transformed into

formats suitable for training and evaluating deep neural network architectures. The models were

trained using the supervised learning approach, which required the construction of target label-

masks for the collected images. The process of annotating the images involved accurately defining

the boundaries of each mushroom within the cluster depicted in each image (static dataset), and

the boundaries of each mushroom cluster grown from the substrate (dynamic dataset).

The annotation process involved manual and semi-manual detection and labeling of the

distinct mushroom regions inside the oyster clusters. This was accomplished using an open-

source tool named CVAT (Computer Vision Annotation Tool) [2], which facilitated the annotation

of images and videos. The resulting annotations served as the necessary labels for training,

validation, and testing of the models. The graphical user interface (GUI) of CVAT is depicted in

Figure 5.

11
D2.2 | Report on MUSHNOMICS AI-algorithms

Figure 5. Annotation of mushroom instances using CVAT (Computer Vision Annotation Tool) tool interface.

The region of a mushroom was manually delineated by inserting red dots, as shown in

Figure 5. The annotation approach was found to be time-consuming due to the number of

mushrooms within the clusters, resulting in an average annotation rate of 1.5 images per hour.

Figure 6 presents more examples of annotated single mushroom instances in the static dataset.

Figure 6. Mushroom clusters captured from front (a), side (c), top (e), and bottom (g) views and their respective
annotated masks (b, d, f, h)

12
D2.2 | Report on MUSHNOMICS AI-algorithms

Out of the entire set of 200 images, a total of 3,944 instances of mushrooms were

accurately labeled. This indicates an average of approximately 20 instances of mushrooms per

image. As the purpose of this work is the identification of individual mushrooms inside a cluster,

the 3,944 instances can be regarded as the training inputs rather than the initial 200 images.

In a similar way, the mushroom clusters of the dynamic dataset were annotated using the

same annotation tool. In Figure 7, the annotations of some samples extracted from a dynamic

dataset are presented.

Figure 7. Annotated mushroom clusters on images obtained from the dynamic timelapse dataset.

About 330 images were manually annotated and used for training the deep learning (DL)

models. In total, 3151 mushroom cluster instances were manually annotated, many of them

corresponding to the same mushroom cluster but in different growth stages.

5. Instance segmentation architecture of Mask R-CNN

The state-of-the-art instance segmentation architecture of Mask R-CNN [3] was selected,

trained, and evaluated using the mushrooms dataset. This architecture is widely recognized as a

major breakthrough in the field of DL instance segmentation. It builds upon the object detection

architecture of Faster R-CNN [4] by incorporating a fully convolutional network (FCN) specifically

designed for semantic segmentation, as depicted in the Mask Head component shown in Figure 8.

To the best of our knowledge, very few studies have been conducted on oyster mushrooms,

utilizing DL instance segmentation architecture. In a relevant study by Moysiadis et al. [5], the

object detection YOLOv5 [6] architecture was used to detect and classify oyster mushrooms into

three growth stages. Then, a Mask R-CNN architecture was trained to produce masks of

mushroom clusters and monitor their growth by calculating the change of pixels per instance. The

instance segmentation Mask R-CNN model was applied to images collected from the top of the

https://doi.org/10.48550/arXiv.1506.01497

13
D2.2 | Report on MUSHNOMICS AI-algorithms

substrate, limiting the visible parts of the clusters, while no information on the number of

mushroom instances present in the cluster was extracted. Moreover, no environmental data were

collected and considered throughout the study. On the contrary, the MUSHNOMICS project

collects two kinds of mushroom data static clusters and dynamic clusters, the former from

multiple angles and the latter from the front, which capture clusters from a greater variety of

angles than only the top as it can be seen in Figure 6. Finally, environmental variables of

temperature, humidity, and CO2 are correlated with the actual growth of the mushrooms,

providing valuable insight into the effects of climatic conditions inside the mushroom farm on the

growing clusters.

Various studies have been conducted using Mask R-CNN with different target crops than

mushrooms. Ge et al. [7] used Mask R-CNN to detect strawberries and classify them into four

classes, three for their ripeness state and one for existent deformations. Aiming at growth

monitoring of lettuce, Lu et al. [8] deployed a Mask R-CNN model for lettuce instances detection

inside a greenhouse for 20 days using time-lapse images. Lee et al. [9] explored yield monitoring

in tomatoes, with the use of a pre-trained Mask R-CNN model, examining a correlation between

detected fruit dimensions and actual mass. Ganesh et al. [10] used a Mask R-CNN combining RGB

and HSV images as input datasets for the detection and localization of oranges.

With a deeper examination of the Mask R-CNN architecture, it can be categorized as a two-

stage detector. The first stage is used to identify areas of interest (ROIs) inside the image that may

potentially contain instances of interest, whilst the second stage is responsible for generating the

final predictions of class, bounding box coordinates, and detailed pixel-wise instance masks

within each ROI. In general, the architectural design of Mask R-CNN may be categorized into three

components if the feature extractor component is regarded as a separate entity and not part of

the first stage. This architecture is illustrated visually in Figure 8.

Figure 8. Mask R-CNN architecture, divided into distinct parts (image from Charisis et al. [11]).

 The initial component of the network, referred to as the backbone, functions as a

mechanism to extract features from the input image. This is achieved by using convolutional

neural networks (CNNs) in a fully convolutional network (FCN) architecture. In the case of Mask

R-CNN, the backbone consists of a network composed of ResNet [12] and Feature Pyramid

Network (FPN) [13], which is depicted in Figure 9. The ResNet architecture has demonstrated its

efficacy in addressing the issue of gradient vanishing that often arises in deeper architectures

containing multiple layers. This important characteristic enables the efficient utilization of multi-

layer networks, such as ResNet50 and ResNet101. Furthermore, the ResNet layout follows a

https://doi.org/10.48550/arXiv.1512.03385
https://arxiv.org/abs/1612.03144

14
D2.2 | Report on MUSHNOMICS AI-algorithms

bottom-up approach, wherein it is capable of detecting both low-level characteristics in the initial

layers and high-level features in the last layers. The integration of a top-down architecture is

achieved with the introduction of the FPN, allowing for the effective combination of low- and high-

level features in a multi-scale feature fusion within the backbone.

Figure 9. FPN architecture, divided into distinct parts. The left part of the architecture is a backbone network
(usually ResNet or similar implementation) and the right part is the FPN addition. Depending on the application
one or more of the “predict” stages can be utilized as a feature from the following components of an architecture
(image from [13]).

The feature map generated by the backbone network is utilized as the input for the next

network components, namely the Region Proposal Network (RPN) and Region of Interest (ROI)

Align. The task of RPN involves the identification of instances inside an image, by utilizing

the feature map and a set of predefined boxes, known as anchors, which have a certain size and

scale. The anchors are iteratively passed through the feature map and each position

is evaluated to ascertain whether a potential object is present or absent by comparing it to the

ground truth data. The result derived from the Reverse Polish Notation (RPN) contains a

collection of anchors and two additional attributes: the anchor's classification (foreground or

background) and the coordinates of the anchor's bounding box. To alleviate the computational

cost associated with analyzing all anchors, a selection process is conducted that prioritizes the

identification of anchors with the highest level of confidence in containing an object. The task of

ROI Align involves the extraction of features from the feature map generated by the backbone.

These features correspond to the proposed areas identified by the RPN. The extracted features

are then converted into arrays of fixed sizes to enable standardized processing in the next and

final part of the network.

The fix-sized arrays resulting from the processing of the preceding components are next

fed into two separate branches. One branch generates the final class prediction and bounding box

coordinates (referred to as the box head branch), while the other branch produces the pixel-wise

mask of the detected instance (known as the mask head branch). The class and bounding box

coordinates are generated by the utilization of fully connected networks for classification and

regression, respectively, whereas, for the instance mask, a small CNN component is implemented.

15
D2.2 | Report on MUSHNOMICS AI-algorithms

6. Performance evaluation metrics

The detection performance was measured quantitatively using metrics such as precision

(P) and recall (R). The detection results were divided into four categories: true positive (TP), false

positive (FP), true negative (TN), and false negative (FN). In this context, TP stands for the correct

detection of oyster mushrooms, FP for the incorrect detection of oyster mushrooms, and FN for

the number of raw oyster mushrooms that were not recognized within the cluster. Precision (P)

and recall (R) are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(

(2)

To calculate the performance metrics, equation 3 defines the Intersection over Union

(IoU). The IoU score measures the overlap between a predicted mask and the ground truth mask.

It is a value that falls between 0.0 and 1.0, with a prediction regarded as a solid result if IoU is

greater than 0. Figure 10 shows how these performance metrics were computed, the Intersection

over Union (IoU) was defined in a mushrooms cluster.

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

(

(3)

Figure 10. IoU visualization on a single oyster mushroom instance in a cluster (image from Charisis et al. [11]).

Based on the IoU value, each prediction will be classified as a TP or correct prediction if

the value exceeds a specified threshold or as FP if the value falls below thresholds. The accuracy

of the prediction made from the model increases as the value of these two metrics increases.

The performance was evaluated using standard COCO metrics, by calculating the mean

average precision (mAP) which determines the average precision for each class, namely in this

case, the mushroom class. This is done across 10 IoU thresholds, ranging from 0.5 to 0.95 with an

increment of 0.05. The mAP is computed from the mean of these class-specific average precision

values.

16
D2.2 | Report on MUSHNOMICS AI-algorithms

7. MUSHNOMICS timelapse tracking algorithm

The timelapse application aims to track the growth of mushroom clusters in a series of

time-lapse images. This aim was achieved by first capturing static images containing single or

multiple mushroom clusters. As described earlier, these images were manually annotated to track

the outlines of whole clusters and single mushrooms with the annotated images being used for

the training and validation of Mask-RCNN neural networks which can be used to automatically

recognize whole clusters and single mushrooms in images.

The developed tracking algorithm has enabled the detailed monitoring of the cluster

growth throughout the cultivation process. As the timelapse image data consists of multiple

successive images, a cluster tracking algorithm is required for the clusters to be matched with

themselves in previous timesteps. The algorithm consists of three main array data structures that

keep track of the clusters’ center coordinates that have already been found and the center

coordinates of the new cluster detections. The comparison of the center coordinates is a solid

indicator to determine if a cluster is the same over consecutive images.

The first array structure is the “baseline”, in which the information regarding every

detected cluster is stored and acts as a reference for new instances or instances that were detected

earlier but in the current image are not. It is updated every timestep to include new detections

and update the positions of the existing clusters. The second array, named “previous” structure

contains the information on the center coordinates of clusters of the previous timestep. The third

array, named “current” contains the information on the center coordinates of clusters detected in

the current timestep.

The “current” array is first compared to the “previous” array to match the detected

clusters. It is not expected that the center coordinates of a cluster exhibit great differences

between two successive timesteps. Based on this behavior, most detected clusters correlate in

this first comparison. If not all of the clusters in “current” are correlated with clusters in the

“previous” array, it is due to a new cluster that has been detected and must be recorded. If a

previously detected cluster is not detected in the current timestep, its information is passed on

from the old “baseline” array into the updated “baseline” array.

The image files and their information are imported into the script where they are saved

in separate arrays. The cluster detector Mask R-CNN model is then applied to each of the images

and a list of results for each recognized mushroom cluster in the image is produced. These results

are filtered based on the confidence of the model that the detected object is a cluster and not

background, with only clusters of confidence greater than 90% being considered. The detected

mushrooms are in binary mask format, where pixels in the image that were recognized by the

neural network as “part of a cluster” are saved as “True” whereas the other “non-cluster” pixels

are saved as “False”.

The results of the tracking algorithm can be seen in Figure 14, where 2 representative

timesteps are presented, with the corresponding numbers of the detected clusters at their center.

17
D2.2 | Report on MUSHNOMICS AI-algorithms

8. Performance of MUSHNOMICS algorithms

In Table 1 the performance metrics are presented for the models developed either by

using the static or dynamic-timelapse image datasets. A better understanding of the performance

of each model can be supported by observing the detection results produced by the Mask R-CNN

based MUSHNOMICS algorithms. Hence, some representative prediction results are presented in

the following Figures for both static (Figures 11, 12) and dynamic (Figure 13) image datasets,

allowing for a visual interpretation of the performance of the trained Mask R-CNN models.

Table 1. Performance evaluation metrics for both Mask R-CNN trained models.

 mAP Recall

Static image dataset 0.707 0.755

Timelapse image dataset 0.766 0.786

The timelapse model exhibits better performance as its task is relatively easier than the

static model, which has to tackle with the difficult problem of occluded mushroom instances.

Figure 11. Mask R-CNN based detection of single mushrooms in a cluster on image datasets taken from different
angles, bottom (a, b) and top (c, d).

18
D2.2 | Report on MUSHNOMICS AI-algorithms

Figure 12. Mask R-CNN based detection of single mushrooms in a cluster on image datasets taken from different
angles, side (a, b) and front (c, d).

19
D2.2 | Report on MUSHNOMICS AI-algorithms

Figure 13. Mask R-CNN based detection of mushroom clusters on image datasets acquired in a time lapse
manner.

20
D2.2 | Report on MUSHNOMICS AI-algorithms

Figure 14. MUSHNOMICS tracking algorithm at selected timesteps of mushroom growth.

Each mushroom cluster is marked with a number as shown in Figure 14. The images are

saved with their recognized clusters being outlined on the image and numbered according to their

position in the baseline array. This is carried out to visualize the previous steps and validate their

functions. Figure 15 exemplarily shows an image being sorted with its reference array and pixel

coordinates (to track the changes in the array) together with the growth tracking curves of eleven

mushroom clusters grown on a wheat straw substrate block. After the marked images and the

cluster images are saved the tracking of growth can be carried out. The size of each cluster is

calculated in terms of pixel number to track the growth of each mushroom cluster through the

21
D2.2 | Report on MUSHNOMICS AI-algorithms

different images. The growth rate of the clusters is presented in relative terms and serves as a

proof of concept for tracking mushroom growth digitally. In addition, the clusters are categorized

as small, medium and large providing an overview of how suitable each cluster is for harvest

based on its relative size.

Figure 15. Mushroom cluster tracking predictions and pixel-wise relative growth index.

The deep instance segmentation models based on Mask R-CNN presented here, constitute

the prototype MUSHNOMICS algorithms and are utilized by the MUSHNOMICS platform as

supportive modules for researchers and stakeholder users. The MUSHNOMICS algorithms were

then validated using a new dataset acquired from the production trials carried out in the

MUSHNOMICS module (T3.3) using the novel MUSHNOMICS substrates.

22
D2.2 | Report on MUSHNOMICS AI-algorithms

References

[1] Wingscapes TIMELAPSECAM pro [WWW Document], n.d. . Wingscapes. URL

https://www.wingscapes.com/timelapsecam-pro (accessed 1.16.24).

[2] Cvat [WWW Document], n.d. . CVAT. URL https://www.cvat.ai/ (accessed 1.16.24).

[3] He, K., Gkioxari, G., Dollar, P., Girshick, R., 2017. Mask R-CNN. 2017 IEEE International

Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.322

[4] Ren, S., He, K., Girshick, R., Sun, J., 2017. Faster R-CNN: Towards real-time object

detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine

Intelligence 39, 1137–1149. doi:10.1109/tpami.2016.2577031

[5] Moysiadis, V., Kokkonis, G., Bibi, S., Moscholios, I., Maropoulos, N., Sarigiannidis, P.,

2023. Monitoring mushroom growth with machine learning. Agriculture 13, 223.

doi:10.3390/agriculture13010223

[6] Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-

time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

doi:10.1109/cvpr.2016.91

[7] Ge, Y., Xiong, Y., From, P.J., 2019. Instance segmentation and localization of

strawberries in farm conditions for automatic fruit harvesting. IFAC-PapersOnLine 52, 294–299.

doi:10.1016/j.ifacol.2019.12.537

[8] Lu, J.-Y., Chang, C.-L., Kuo, Y.-F., 2019. Monitoring growth rate of lettuce using deep

convolutional neural networks. 2019 Boston, Massachusetts July 7- July 10, 2019.

doi:10.13031/aim.201900341

[9] Lee, J., Nazki, H., Baek, J., Hong, Y., Lee, M., 2020. Artificial intelligence approach for

Tomato Detection and mass estimation in Precision Agriculture. Sustainability 12, 9138.

doi:10.3390/su12219138

[10] Ganesh, P., Volle, K., Burks, T.F., Mehta, S.S., 2019. Deep orange: Mask R-CNN based

Orange Detection and segmentation. IFAC-PapersOnLine 52, 70–75.

doi:10.1016/j.ifacol.2019.12.499

[11] Charisis, C., Gyalai-Korpos, M., Nagy, A.S., Karantzalos, K., Argyropoulos, D., 2023. 48.

detecting and locating mushroom clusters by a mask R-CNN model in farm environment. Precision

agriculture ’23. doi:10.3920/978-90-8686-947-3_48

[12] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

doi:10.1109/cvpr.2016.90

23
D2.2 | Report on MUSHNOMICS AI-algorithms

[13] Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature

Pyramid Networks for Object Detection. 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). doi:10.1109/cvpr.2017.106

