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Robust Commutation Design: Applied to Switched Reluctance Motors

Max van Meer1, Gert Witvoet1,2, Tom Oomen1,3

Abstract— Switched Reluctance Motors (SRMs) are cost-
effective electric actuators that utilize magnetic reluctance to
generate torque, with torque ripple arising from unaccounted
manufacturing defects in the rotor tooth geometry. This pa-
per aims to design a versatile, resource-efficient commutation
function for accurate control of a range of SRMs, mitigating
torque ripple despite manufacturing variations across SRMs
and individual rotor teeth. The developed commutation function
optimally distributes current between coils by leveraging the
variance in the torque-current-angle model and is designed with
few parameters for easy integration on affordable hardware.
Monte Carlo simulations and experimental results show a
tracking error reduction of up to 31% and 11%, respectively.
The developed approach is beneficial for applications using a
single driver for multiple systems and those constrained by
memory or modeling effort, providing an economical solution
for improved tracking performance and reduced acoustic noise.

I. INTRODUCTION

Switched Reluctance Motors (SRMs) have gained indus-
trial interest due to their compelling advantages in energy
efficiency, simplicity of design, and lack of permanent mag-
nets, especially for low-cost applications that involve mass
production [1], [2]. The working principle of SRMs involves
the controlled switching of currents to different coils to
produce magnetic attraction, a process that, if carried out
imperfectly, can give rise to torque ripple.

Torque ripple is a common challenge in the implemen-
tation of SRMs, and it has a range of different causes
such as sampling [3], magnetic hysteresis [4] and magnetic
saturation [5], and the most important is imperfect commu-
tation. The mechanism through which currents are applied
to different coils to produce torque is specified by a user-
defined commutation function [3], [6], [7], [8]. The design of
such a function relies on a model of the torque-current-angle
(TCA) relationship of the SRM. Any mismatch between this
simplified model and the true system leads to a position-
dependent error between the desired torque and the achieved
torque, degrading the tracking performance of the system
and introducing acoustic noise. Reasons for model mismatch
include manufacturing tolerances and assembly variations.
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The rotor of an SRM features a large number of teeth, each
of which is slightly different due to imperfections in the man-
ufacturing process, resulting in significant tooth-dependency
in the TCA relationship of an SRM [9], see Figure 1.
Similarly, in mass production, manufacturing tolerances lead
to variations in the rotor teeth across different SRMs as well.
Modeling all these variations requires a tremendous effort
when compared to using a commutation function which is
designed using a low-order model of only one ‘average’
tooth. Indeed, in low-cost applications that involve mass
production, it is economically desirable to ship each SRM
with the same driver, each of which has sufficient memory
to store the TCA relationship of only one average tooth.

Torque ripple is inevitable when variations across teeth
or SRMs are ignored for economic reasons, and yet the
magnitude of the torque ripple is affected by the choice of the
commutation function, see Figure 2. At the same time, there
is a high degree of freedom in the design of commutation
functions [3], because multiple coil currents together lead to
a single torque on the rotor. It is therefore hypothesized that
there exists a low-order commutation function that mitigates
torque ripple across many teeth and SRMs while relying on
a low-order model of only one average tooth.

Measurement data should be exploited to understand how
manufacturing defects affect the TCA relationship of SRMs.
In, [10], a data-driven identification approach is presented
that yields accurate TCA models for use in commutation
design, without relying on separate dedicated torque sensors.
Importantly, this method not only yields an estimated model
but also the variance of the model parameters. This variance
reflects the tooth-by-tooth variations, or, when data from
different SRMs is used, SRM-to-SRM variations.

Although existing approaches to commutation function
design are effective in the presence of a perfect model of
every single tooth for each SRM, these methods lead to
significant torque ripple in case of model mismatch. To
require detailed, high-order models of SRMs defeats the
purpose of using an SRM in many low-cost applications,
not only because this requires expensive modeling effort,
but also because it leads to high requirements on the driver
hardware. Therefore, this paper aims to develop a universal,
resource-efficient commutation function that leverages the
model variance to reduce torque ripple across different rotor
teeth and SRMs. This is achieved by using the parameter
variance matrix resulting from [10] to pose an optimization
problem that minimizes the expected norm of the anticipated
torque ripple. The contributions of this paper are threefold:
C1: A method for the design of robust commutation func-

tions is developed. Through convex optimization, torque
ripple is minimized despite manufacturing defects.
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Fig. 1. Schematic overview of an SRM with three coils. Sequentially
applying currents to the coils attracts rotor teeth, generating torque. When
control designs involve commutation functions that rely on incorrect or
incomplete models, torque ripple occurs, degrading tracking performance.

f(T ∗, ϕ) g(ϕ,u) G

T ∗

zoh

u
P

T ϕ
C

er

Fig. 2. Control scheme for an SRM P : The SRM’s nonlinear dynamics are
linearized using a commutation function f to achieve ĝf = ±1, enabling
the use of a linear feedback controller C(z). Solid lines and dashed lines
depict continuous-time and discrete-time signals, respectively.

C2: Monte Carlo simulations show that a single robust
commutation function leads to increased tracking per-
formance accross various mass-produced SRMs.

C3: Experimental results show that robust commutation
functions effectively reduce torque ripple due to vari-
ations in individual SRM teeth.

This paper is structured as follows. In Section II, the problem
formulation is given. Next, in Section III, the design method
is detailed. Subsequently, simulation results and experimental
results are presented in Section IV and V respectively.
Finally, conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

This section presents the problem formulation, covering
the nonlinear dynamics and control of SRMs, followed by
defining the commutation design problem.

A. Dynamics of Switched Reluctance Motors

SRMs feature a nonlinear relationship between torque,
current, and rotor angle. Neglecting magnetic saturation, an
SRM with nt teeth and nc coils is modeled as:

Tc(ϕ, ic) =
1

2

dLc(ϕ)

dϕ
i2c , (1)

where Tc represents the torque applied to the rotor by
magnetizing coil c ∈ {1, . . . , nc} with a current ic. Lc(ϕ)
denotes the phase inductance, which varies periodically with
the rotor position ϕ, having a spatial period of 2π

nt
. Both

the torque T and inductances Lc are unmeasured and hence
unknown. The total torque applied to the rotor at time t is

T (t) = g(ϕ(t))u(t), (2)
where g(ϕ) is defined as:

g(ϕ) :=
1

2

d
dϕ

[L1(ϕ(t)), . . . , Lnc
(ϕ(t))], (3)

and u(t) represents the squared coil currents:
u(t) := [i21(t), . . . , i

2
nc
(t)]⊤. (4)

The following section addresses how a desired torque T ∗ is
realized, using a model ĝ ≈ g.

B. Commutation: linearization of SRM dynamics

To achieve a desired torque T ∗ in SRMs, we invert
the nonlinear TCA relationship (2) through a commutation
function u = f(ϕ, T ∗) as follows. First, f is structured as

f(ϕ, T ∗) :=

{
f+(ϕ)T ∗ T ∗ ≥ 0,

−f−(ϕ)T ∗ T ∗ < 0,
(5)

where f+(ϕ), f−(ϕ) : R → Rnc satisfy
ĝ(ϕ)f+(ϕ) ≈ 1, ĝ(ϕ)f−(ϕ) ≈ −1, (6)

such that when f+ or f− is multiplied with a desired torque
T ∗, the resulting currents lead to T ≈ T ∗, see (2). Moreover,
as f produces squared currents, it must be ensured that

f+(ϕ) ≥ 0, f−(ϕ) ≥ 0. (7)
It is important to note that multiple functions f(ϕ, T ∗) satisfy
these requirements due to g and f being row and column
vector functions, respectively. By applying the control law

u(t) = f(ϕ(t), T ∗(t)), (8)
the squared currents for each coil to achieve the desired
torque T ∗ are determined, as visualized in Figure 2. Com-
bined with (2), the resulting torque is:

T (ϕ(t)) = g(ϕ(t))f(ϕ(t), T ∗(t)), (9)
or equivalently,

T (ϕ(t)) =b± (ϕ(t))T ∗ sign(T ∗),

b±(ϕ) :=g(ϕ)f±(ϕ),

b̂±(ϕ) :=ĝ(ϕ)f±(ϕ).

(10)

Here, ± := sign(T ∗), e.g., f± refers to either f+ or f−,
depending on the sign of T ∗. Additionally, b±(ϕ) denotes the
true relative torque mismatch T/T ∗ while b̂±(ϕ) represents
the expected mismatch, which is ±1 as per design, see (6).

Ideally, if ĝ(ϕ) = g(ϕ), and f meets the requirements
in (6), then T = T ∗. However, if ĝ(ϕ) ̸= g(ϕ), torque ripple
occurs, degrading the tracking performance [11]. The next
subsection defines the problem of designing commutation
functions f that counteract such model imperfections.

C. Problem definition

Our purpose is to design a commutation function f(ϕ, T ∗),
structured as in (5), that mitigates torque ripple arising from
modeling errors ĝ(ϕ) ̸= g(ϕ). Specifically, the objective is
to minimize the true relative torque error

ε±T (ϕ) := b±(ϕ)∓ 1,

= g(ϕ)f±(ϕ)∓ 1,
(11)

where ∓ := −sign(T ∗). We consider the following cost:
J = ∥ε+T (ϕ)∥

2
2,Φ + ∥ε−T (ϕ)∥

2
2,Φ,

with Φ = {ϕ | 0 ≤ ϕ < 2π}.
(12)

Since g is unknown, the torque error ε±T (ϕ) is unknown,
so this cost function cannot be evaluated directly. Therefore,
it is assumed that the model ĝ(ϕ,θ) with parameters θ ∈
Rnθ is probabilistic, indicating that some information about
the modeling errors is available. More precisely, θ is a



multivariate Gaussian with
θ ∼ N (θ̂,Σθ). (13)

Identification of θ̂ and Σθ is addressed in [10]. In this
paper, θ̂ and Σθ are assumed to be known, with θ̂ generally
unequal to θtrue and Σθ positive definite. The objective is
then to minimize the following cost function:

Ĵ = E
[
∥ε̂+T (ϕ)∥

2
2,Φ′ + ∥ε̂−T (ϕ)∥

2
2,Φ′

]
,

with Φ′ = {ϕ | 0 ≤ ϕ < 2π/nt},
(14)

where Φ′ spans only a single tooth because we desire a
resource-efficient commutation function that is the same
for every tooth, using a model ĝ(ϕ,θ) that is also tooth-
invariant, albeit probabilistic. In the next section, the model
variance Σθ is exploited in the design of f , to minimize
torque ripple arising from modeling errors ĝ(ϕ,θ) ̸= g(ϕ).

III. ROBUST COMMUTATION FUNCTION DESIGN

This section covers the design of robust commutation
functions, including the SRM model structure, torque ripple
caused by model mismatch, and the optimization problem.

A. Parametrization of commutation functions and dynamics

The given SRM model, denoted by ĝ(ϕ,θ), as well as
f±(ϕ,α), are both parametrized linearly in their parameters.
The structure of the provided SRM model is given by

ĝ⊤(ϕ,θ) = ψg(ϕ)θ, (15)
where ψg : R → Rnc×nθ serves as the basis of ĝ(ϕ,θ). Sim-
ilarly, the commutation functions f+ and f− are parametrized
as follows. Both f+ and f− are designed with nα parameters
per coil, i.e., α+

c,i and α−
c,i denote the ith parameter of

coil c ∈ {1, . . . nc} of commutation functions f+ and f−

respectively. We then define f+ and f− as
f±(ϕ,α) = ψf (ϕ)α

±, (16)

where α± = [α±⊤
1 , . . . ,α

±⊤
c , . . . ,α

±⊤
nc
]⊤ stacks the pa-

rameters of all coils and α±
c = [α±⊤

c,1, . . . , α
±⊤
c,nα

]⊤ are
the parameters of coil c. Moreover, α = [α+⊤,α−⊤]⊤, and

ψf (ϕ) = Inc
⊗ γ(ϕ), (17)

with γ(ϕ) the basis for f± and ⊗ the Kronecker product. In
the current paper, commutation functions are defined by the
following basis. Given a grid ϕγ ∈ Rnα with rotor positions
ϕγ,i spaced between 0 and 2π/nt, we define

γ(ϕ) =
[
k(ρ1(ϕ)), . . . , k(ρnα(ϕ))

]
, (18)

where

ρi(ϕ) =
1

ℓ

√
(x1,i − x2(ϕ))⊤(x1,i − x2(ϕ)) (19)

with length scale ℓ > 0, and

x1,i =

[
sin(ϕγ,int)
cos(ϕγ,int)

]
, x2(ϕ) =

[
sin(ϕnt)
cos(ϕnt)

]
. (20)

Moreover, the kernel function k in (18) is given by

k(ρ) = exp
(
−
√

2µ+ 1ρ
) µ!

(2µ)!

·
µ∑

n=0

(µ+ n)!

n!(µ− n)!

(
2
√

2µ+ 1ρ
)µ−n

.

(21)

This model structure draws inspiration from Gaussian Pro-
cess (GP) regression, where k is recognized as a Matèrn
kernel. These choices are new in the design of commutation
functions. The kernel enforces periodicity and smoothness
and is very successful in GP regression [3]. Specifically, (20)
ensures that f± exhibits periodic behavior corresponding to
the spatial period of a rotor tooth. Moreover, the designer
can control the smoothness of f± by adjusting the length
scale ℓ or the parameter µ ∈ N.

B. Torque ripple quantification in commutation design

The objective is designing f±(ϕ,α) to minimize the
expected torque ripple over all possible realizations of the
random model ĝ. To achieve this, we first define the esti-
mated relative torque error ε̂±T (ϕ,θ,α) ≈ ε±T (ϕ,α) as

ε̂±T (ϕ,θ,α) := b̂±(ϕ)∓ 1,

= ĝ(ϕ,θ)f±(ϕ,α)∓ 1.
(22)

Substitution of (15) and (16) yields
ε̂±T (ϕ,θ,α) = θ

⊤ψ⊤
g (ϕ)ψf (ϕ)α

± ∓ 1. (23)
For reasons that become apparent later, a vector ε̂T is defined
that stacks ε̂±T (ϕ) as follows:
ε̂T = [ε̂+T (ϕε,1), . . . , ε̂

+
T (ϕε,N ), ε̂−T (ϕε,1), . . . , ε̂

−
T (ϕε,N )]⊤.

(24)
Here, ϕε ∈ RN is an evenly spaced grid of rotor angles ϕε,i

between 0 and 2π/nt. The expression for the vector ε̂T of
estimated torque errors is then given by

ε̂T = X(α)θ +

[
−1N

1N

]
, (25)

with
X(α) = F(α)Ψg, (26)

where Ψg = 12 ⊗ [ψ⊤
g (ϕε,1), . . . ,ψ

⊤
g (ϕε,N )]⊤ and

F(α) =

2N∑
i=1

Eii ⊗ (αΩi⊤ψ⊤
f (ϕε,i)),

with Ωi :=

{
+ 1 ≤ i ≤ N,

− N < i ≤ 2N.

(27)

Here, Eii ∈ B2N×2N denotes a matrix unit, which has only
one nonzero entry at the ith row and column.
In summary, (25) yields a vector ε̂T of estimated torque
errors, evaluated on a grid ϕε. Since this vector is linear in
the random SRM model parameters θ, see (13), we can write

ε̂T ∼ N (µε,Σε) ,

µε = X(α)θ̂ +

[
−1N

1N

]
,

Σε = X(α)ΣθX
⊤(α).

(28)

In this way, the estimated torque error is expressed in terms
of the variance Σθ of the SRM model parameters θ. Two key
observations can be made from (28). First, more uncertainty
in the model parameters leads to a larger variance of ε̂T ,
i.e., potentially more torque ripple, even if α is designed
such that ε̂T is zero-mean. Second, the variance of ε̂T is
quadratically dependent on α, indicating that α can be tuned
to obtain robust commutation functions f(ϕ,α) that have



minimal variance Σε of the expected torque ripple ε̂T . The
next section describes how this can be achieved.

C. Optimization problem formulation

The objective is to find the optimal α that minimizes the
estimated torque ripple, ε̂T . The cost function is defined as:
J̃ (α) =E

[
∥ε̂+T (ϕ,θ,α

+)∥22,Φ′ + ∥ε̂−T (ϕ,θ,α
−)∥22,Φ′

]
=E

[∫ 2π/nt

0

(ε̂+T (ϕ,θ,α
+))2 + (ε̂−T (ϕ,θ,α

−))2dϕ

]
≈ 2π

ntN
E
[
∥ε̂T ∥22

]
.

(29)
We henceforth drop the scaling factor 2π

ntN
as it does not

affect the optimizer. Since ε̂T is random, see (28), we have

Ĵ (α) =E
[
ε̂⊤T ε̂T

]
= tr

(
E
[
ε̂⊤T ε̂T

])
= E

[
tr
(
ε̂T ε̂

⊤
T

)]
=tr(Σε) + µ

⊤
ε µε,

=tr
(
X(α)ΣθX

⊤(α)
)
+ θ̂

⊤
X⊤(α)X(α)θ̂

− 2
[
−1⊤

N 1⊤
N

]
X(α)θ̂ + 2N,

(30)
see [12, Section 3.2b] for details. This results in a cost
function that is quadratic in α, and convex since Σθ is
positive definite. Moreover, to ensure that the designed
commutation functions yield positive squared currents for all
gridded rotor angles, the following constraints are defined:[
f+(ϕε,1,α)

⊤, . . . , f+(ϕε,N ,α)⊤,

f−(ϕε,1,α)
⊤, . . . , f−(ϕε,N ,α)⊤

]⊤ ≥ 0,
(31)

which are expressed linearly in α as
Bα ≥ 0, (32)

where

B =

2N∑
i=1

((ei ⊗ Inc
)⊗ ιi)⊗ γf (ϕε,i),

with ιi :=

{
[1, 0] 1 ≤ i ≤ N,

[0, 1] N < i ≤ 2N.

(33)

Here, ei ∈ B2N is a unit vector with one nonzero entry at
the ith element. Finally, the convex optimization problem for
robust design of commutation functions is posed as

minα J̃ (α),
subject to Bα ≥ 0.

(34)

This problem with 2ncnα design variables and 2ncN linear
constraints is readily solved with a convex solver, e.g.,
CasADi, see [13]. Note that in this framework, other terms
can be easily included in the cost function and constraints,
e.g., to mitigate power consumption, peak currents, maxi-
mum slew rates, or sampling-induced torque ripple [3].

IV. SIMULATION RESULTS

This section shows how the robust commutation design
framework improves tracking despite model mismatches,
using Monte Carlo simulations.

Fig. 3. Torque-current-angle relationships g(ϕ,θi) of the simulated SRMs
(λ = 1). The average g(ϕ,θ◦) is shown in bold.

A. Simulation setup

A series of M = 100 different SRMs is considered, each
featuring nt = 131 identical teeth and nc = 3 coils. The
linear dynamics of each SRM are represented as:

G(s) :=
ϕ(s)

T (s)
=

1

s(s+ 1)
, (35)

and a PID controller C(s) is designed to have a bandwidth
of 20 Hz. The nonlinear TCA relationship of the SRMs is

g⊤(ϕ,θi) = ψg(ϕ)θi, i ∈ {1, . . . ,M}, (36)
where the variation across the SRMs follows from

θi ∼ N (θ◦, λΣθ), (37)
with λ > 0, θ ∈ R90, and the structure ψg comprises of
radial basis functions, see Figure 3. The rotor angle ϕ is
sampled at a rate of 5 kHz. At this rate, sampling-induced
torque ripple is negligible at only 1% of the total torque
ripple [3], i.e., the tracking error is approximately zero when
a commutation function fi is designed to perfectly invert gi.

In this simulation study, the true systems gi are unknown,
and a single probabilistic model ĝ with structure (15) and
θ ∼ N (θ◦, λΣθ) is used. This unbiased model, with the
same structure as the true systems, is used to design a single
robust f . In this example, we choose θ̂ = θ◦ to focus
specifically on the effect of minimizing the variance term
tr(Σε) in (30), but θ̂ may be unequal to θ◦ in general.
Because of the variation across SRMs, it is inevitable that
each SRM will suffer from torque ripple.

B. Benchmark: conventional commutation functions

The performance of the robust commutation function f is
compared to the performance obtained using a commonly
used conventional function fconv. This function is given by

fconv,c (ϕ, T
∗) =fTSF,c

(
ϕ+

2π(c− 1)

nc
, T ∗

)
· sat (1/ĝc (ϕ,θ◦))T ∗,

(38)

where fconv,c denotes the cth element of fconv. Additionally,
the saturation function sat(x) is defined as:

sat(x) :=


xmin x < xmin,

x xmin ≤ x ≤ xmax,

xmax x > xmax.

(39)

Moreover, fTSF(ϕ, T
∗) : R × R → Rnc represents a torque

sharing function that distributes a desired torque to different



Fig. 4. The developed robust commutation functions f− (solid) and
conventional functions f−conv (dot-dashed). The developed commutation
functions exhibit much more overlap, leading to careful switching of the
currents in the face of model uncertainty.

Fig. 5. Torque ripple of all SRMs. Commutation functions f− and fconv
are designed to invert g(ϕ,θ◦) so the torque ripple is expected to be low
with both f− ( ) and fconv ( ) for the average SRM. However, since
each simulated SRM is different with θi ̸= θ◦, each SRM exhibits torque
ripple. The robust f− exhibits significantly less torque ripple ( ) than fconv
( ) because the model uncertainty is taken into account in the design.

coils. As detailed in [7], fTSF(ϕ, T
∗) is designed to satisfy

nc∑
c=1

fTSF,c(ϕ, T
∗) =

{
1 T ∗ ≥ 0,

−1 T ∗ < 0.
(40)

At values of ϕ where gc(ϕ) = 0, fTSF,c(ϕ, T
∗) = 0 by

design, such that (38) is well defined for all ϕ.

C. Results and analysis

The developed framework is applied as follows. f is
parametrized as in (5) and (16), with nα = 50, ℓ = 0.3
and µ = 3. With N = 100, problem (34) has 300 design
variables and 600 constraints. Using CasADi with MATLAB
on a personal computer, the problem is solved in 300 s.

The resulting function is shown in Figure 4. For brevity,
we focus on f− only. The resulting f− exhibits more
overlap than fconv, which can be interpreted as switching
the currents carefully: near the angles ϕ where the currents
are switched to the next coil, a sharp change in current at
a slightly incorrect angle induces significant torque ripple.
The conventional fconv is designed purely for minimal power
given some constraints on the slew rate and thus switches
more abruptly, inducing torque ripple.

To see how f mitigates torque ripple, consider Figure 5.
Both f and fconv are designed to have approximately zero
torque error for the nominal model ĝ(ϕ,θ◦). However, when
an SRM with dynamics g(ϕ,θi) has parameters θi ever so
slightly different from θ◦, significant torque ripple occurs: up
to 70%. Indeed, f leads to significantly less torque ripple than
fconv, indicating that the designed commutation functions
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Fig. 6. RMS tracking error as a function of the variance λ, where higher
values of λ corresponds to more model mismatch. The robust commutation
functions f result in a smaller error ( ) than the conventional functions
fconv ( ) when even the slightest modeling errors are present.

truly are more robust to model uncertainty. Note that torque
ripple is always expected when ĝ ̸= g.

Next, four closed-loop simulations are carried out for
all M SRMs. First, a reference is tracked with a constant
velocity of 0.3 teeth/s for a duration of 5 teeth, using fconv.
Next, the simulation is repeated using f , and finally, both
simulations are repeated in the other direction. We define

e±RMS :=

√√√√ 1

Nf −Ns

Nf∑
k=Ns

(e±(tk))2,

eRMS :=

√
1

2

(
(e+RMS)

2 + (e−RMS)
2
)
,

(41)

with Ns corresponding to the sample at which the rotor is
at the second last tooth, and Nf the last sample. Robust
commutation reduces the median e−RMS from 91 nrad to 63
nrad (-31%) for λ = 1. The maximum reduction is 84% in
case of particularly large model mismatch.

Finally, we study how performance depends on the vari-
ance magnitude λ, as per Equation (37). For λ = 0, a single
SRM with g = g(ϕ,θ◦) is simulated. For other λ values,
M = 100 models θi are sampled from θ using the same
seed, resulting in ĝi differing by a scaling factor across λ
values, shown in Figure 6. At λ = 0, there is no model
mismatch and conventional commutation functions yield
lower error due to their parametrization, see (38). Conversely,
even with minimal variance (λ = 0.1) robust commutation
significantly improves performance, as illustrated in Figure 6.
For substantial model mismatch, conventional commutation
leads to large tracking error outliers, whereas robust com-
mutation exhibits greater robustness to model discrepancies.

V. EXPERIMENTAL RESULTS

This section demonstrates experimentally that robust com-
mutation reduces torque ripple from variation in rotor teeth.

A. Experimental setup and method

A single SRM is considered with nt = 131 teeth and
nc = 3 coils, see [2]. A PID controller with a bandwidth of
20 Hz is given and the sampling frequency is 10 kHz. Four
constant-velocity tracking experiments are carried out with
ṙ = 15 teeth per second for one rotation. We use:



Fig. 7. Experimental data of the tracking error, showing considerable tooth-
by-tooth variation. When using a model ĝsine, the robust function f (E2, )
results in less tracking error than the conventional fconv (E1, ). A similar
improvement of the robust functions (E4, ) compared to conventional
functions (E3, ) is seen for a model ĝ that is identified using [10].

E1: a conventional fconv, constructed based on a ĝsine that
consists of three sinusoids, shifted 120◦ in phase.

E2: a robust f , constructed for this sinusoidal model. The
variance is chosen as Σθ = 5 · 10−3I and a model
structure is a Fourier basis with 5 harmonics.

E3: a conventional fconv, constructed based on a ĝ which is
identified using [10].

E4: a robust f , constructed for this identified model. The
variance Σθ thus follows from experimental data.

Both robust commutation functions are created by solv-
ing (34) using nα = 50, ℓ = 0.3, N = 100 and µ = 3.
To mitigate the effect of parasitical disturbances that do
not relate to commutation, e.g., bearing imperfections, we
average the tracking error over 25 experiments, each with a
2π offset added to the starting position.

B. Results and analysis

Figure 7 displays the error, showing significant tooth
variation. Although commutation functions target the ‘aver-
age tooth’, actual teeth differ greatly, causing torque ripple.
Robust commutation reduces the median RMS error per tooth
from 54.6 to 50.0 µrad for the sinusoidal model (-8%) and
from 15.4 to 13.7 µrad for the identified model (-11%).
The reduced performance increase compared to simulations
may result from unmodeled effects like sensor noise and
magnetic saturation, which also induce torque ripple, thereby
increasing RMS error for all commutation methods.

Combining the identification method of [10] with this pa-
per’s robust commutation functions creates a framework that
starts with a simple sinusoidal model ĝsine (E1), identifies a
precise random model ĝ, and then applies our commutation
design method to achieve low torque ripple (E4) across all
model realizations. This approach eliminates the need for
torque sensors and physical modeling, providing a low-order,
adaptable commutation function suitable for various SRMs
of the same design without requiring individual adjustments
for manufacturing differences.

VI. CONCLUSIONS AND FUTURE WORK

A framework is developed for the offline design of ro-
bust commutation functions to achieve accurate closed-loop

control of SRMs, addressing unknown variations in rotor
teeth or across different SRMs. This approach uses the model
variance in the torque-current-angle relationship to create a
commutation function that optimally switches current be-
tween coils, reducing torque ripple due to manufacturing
deviations. This reduction is significant for both large and
small modeling errors, as shown by Monte Carlo simulations
and experimental validation. This method is particularly
suited for low-cost applications requiring a universal driver,
enhancing tracking performance and reducing acoustic noise.

Future work will focus on commutation with fewer pa-
rameters, redefining the cost function and constraints on
a continuous domain to remove discretization errors, and
examining scenarios where the true system is outside the
model class.
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