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Abstract. In this paper, global-level view-invariant descriptors for hu-
man action recognition using 3D reconstruction data are proposed. 3D
reconstruction techniques are employed for addressing two of the most
challenging issues related to human action recognition in the general case,
namely view-variance and the presence of (self-) occlusions. Initially, a
set of calibrated Kinect sensors are employed for producing a 3D re-
construction of the performing subjects. Subsequently, a 3D flow field is
estimated for every captured frame. For performing action recognition, a
novel global 3D flow descriptor is introduced, which achieves to efficiently
encode the global motion characteristics in a compact way, while also in-
corporating spatial distribution related information. Additionally, a new
global temporal-shape descriptor that extends the notion of 3D shape
descriptions for action recognition, by including temporal information,
is also proposed. The latter descriptor efficiently addresses the inherent
problems of temporal alignment and compact representation, while also
being robust in the presence of noise. Experimental results using public
datasets demonstrate the efficiency of the proposed approach.
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1 Introduction

Efficiently and accurately recognizing human actions has emerged as one of the
most challenging and active areas of research in the computer vision field over
the past decades [1, 11, 20]. This is mainly due to the very wide set of possible
applications with great commercialization potentials that can benefit from the
resulting accomplishments, such as surveillance, security, human computer inter-
action, smart houses, helping the elderly/disabled, gaming, e-learning, to name a
few. For achieving robust recognition performance, the typical requirements for
rotation, translation and scale invariance need to be incorporated. Additional
significant challenges need also to be sufficiently addressed, like the differences
in the appearance of the subjects, the human silhouette features, the execution
of the same actions, etc. Despite the fact that human action recognition consti-
tutes the central point of focus for multiple research groups/projects and that



numerous approaches have already been proposed, significant obstacles towards
fully addressing the problem in the general case still remain.

Two of the most significant challenges in human action recognition in the
general case (i.e. in unconstrained environments) that current state-of-art algo-
rithms face are view-variance and the presence of (self-) occlusions. In order to
simultaneously handle both challenges in a satisfactory way, 3D reconstruction
information is used in this work. This choice is further dictated by the recent
technological breakthrough, which has resulted in the introduction of portable,
affordable, high-quality and accurate motion capturing devices to the market;
these devices have already gained tremendous acceptance in several research and
daily-life application fields.

In this paper, global-level view-invariant descriptors for human action recog-
nition using 3D reconstruction data are proposed. 3D reconstruction techniques
are employed in this work for addressing two of the most significant challenges
in human action recognition in the general case, namely view-variance (i.e. when
the same action is observed from different viewpoints) and the presence of (self-)
occlusions (i.e. when for a given point of view a body-part of an individual con-
ceals an other body-part of the same or an other subject). In the first step, a 3D
reconstruction of the performing subjects is generated using a set of calibrated
Kinect sensors. Subsequently, a 3D flow field is estimated for every captured
frame. A novel global 3D flow descriptor is proposed for performing action recog-
nition. Among the advantages of this descriptor is that it efficiently encodes the
global motion characteristics in a compact way, while also incorporating spatial
distribution related information. Additionally, a new global temporal-shape de-
scriptor that extends the notion of 3D shape descriptions for action recognition,
by including temporal information, is also introduced. The latter descriptor effi-
ciently addresses the challenging problems of temporal alignment and compact
representation, while also being robust in the presence of noise (as opposed to
similar tracking-based methods of the literature). Experimental results as well
as comparative evaluation using datasets from the Huawei/3DLife 3D human re-
construction and action recognition Grand Challenge demonstrate the efficiency
of the proposed approach.

The remainder of the paper is organized as follows: Previous work is reviewed
in Section 2. Section 3 describes the 3D information processing. The descriptor
extraction procedure is detailed in Section 4. Section 5 outlines the adopted
action recognition scheme. Experimental results are presented in Section 6 and
conclusions are drawn in Section 7.

2 Previous work on 3D action recognition

The recent introduction of accurate motion capturing devices, with the Microsoft
Kinect being the most popular one, has given great boost in human action recog-
nition tasks and has decisively contributed in shifting the research focus towards
the analysis in 3D space. This is mainly due to the wealth of information present
in the captured stream, where the estimated 3D depth maps facilitate in over-



coming typical barriers (e.g. scale estimation, presence of occlusions, etc.) of
traditional visual analysis on the 2D plane and hence significantly extending the
recognition capabilities. The great majority of the methods that belong to this
category typically exploit human skeleton-tracking or surface (normal vectors)
information, which is readily available by applying widely-used open-source soft-
ware (e.g. OpenNI API1, Kinect SDK2, etc.). In [24], a depth similarity feature
is proposed for describing the local 3D cuboid around a point of interest with an
adaptable supporting size. Cheng et al. [4] introduce a descriptor of depth infor-
mation, which depicts the structural relations of spatio-temporal points within
action volumes, making use of the distance information in the depth data. Ad-
ditionally, Wang et al. [21] introduce the so-called semi-local random occupancy
pattern (ROP) features, which employ a sampling scheme that explores a large
sampling space. In [22], an actionlet ensemble model is learnt to represent each
action and to capture the intra-class variance. Moreover, Xia et al. [25] utilize
histograms of 3D joint locations (HOJ3D) as a compact representation of human
postures. The spherical angles between selected joints, along with the respective
angular velocities, are calculated in [15].

2.1 Flow descriptors

Although numerous approaches to 3D action recognition have already been pro-
posed, they mainly focus on exploiting human skeleton-tracking or surface (nor-
mal vectors) information. Therefore, more elaborate information sources, like
3D flow, have not received the same attention yet. The latter is mainly due
to the increased computational complexity that inherently 3D flow estimation
involves, since its processing includes an additional disparity estimation prob-
lem. However, methods that emphasize on reducing the required computational
complexity, by adopting several optimization techniques (hardware, algorith-
mic, GPU implementation), have achieved processing rates up to 20Hz [12, 17].
Consequently, these recent advances have paved the way for introducing action
recognition methods that make use of 3D flow information.

Regarding methods that utilize 3D flow information for recognizing human
actions, Holte et al. [9] introduce a local 3D motion descriptor; specifically, an
optical flow histogram (HOF3D) is estimated, taking into account the 4D spatio-
temporal neighborhood of a point-of-interest. In [12], a 3D grid-based flow de-
scriptor is presented, in the context of a real-time human action recognition
system. Additionally, histograms of 3D optical flow are also used in [26], along
with other descriptions (spatio-temporal interesting points, depth data, body
posture). Gori et al. [8] build a frame-level 3D Histogram of Flow (3D-HOF),
as part of an incremental method for 3D arm-hand behaviour modelling and
recognition. In [16], a local-level 3D flow descriptor is introduced, which among
others incorporates spatial and surface information in the flow representation
and efficiently handles the problem of defining 3D orientation at every local

1 http://structure.io/openni
2 http://www.microsoft.com/en-us/kinectforwindows/



neighborhood. Furthermore, Fanello et al. [6] present an approach to simultane-
ous on-line video segmentation and recognition of actions, using histograms of
3D flow.

Although some works have recently been proposed for action recognition us-
ing 3D flow information, most of them rely on relatively simple local/global
histogram- or grid-based representations. Therefore, significant challenges in 3D
flow processing/representation still remain partially addressed or even unex-
plored, like incorporation of spatial information, view-invariance, introduction
of a compact global representation, etc.

2.2 Shape descriptors

Concerning the exploitation of 3D shape information for action recognition pur-
poses, the overpowering majority of the literature methods refers to the temporal
extension of the corresponding 2D spatial analysis (i.e. analysis in the xy+ t 3D
space), which is typically initiated by e.g. concatenating the binary segmen-
tation masks or outer contours of the examined object in subsequent frames.
Consequently, analysis in the ‘actual’ xyz 3D space (or equivalently analysis
in the xyz + t 4D space, if the time dimension is taken into account) is cur-
rently avoided. In particular, Weinland et al. [23] introduce the so called Motion
History Volumes (MHV), as a free-viewpoint representation for human actions,
and use Fourier transforms in cylindrical coordinates around the vertical axis
for efficiently performing alignment and comparison. In [7], human actions are
regarded as three-dimensional shapes induced by the silhouettes in the space-
time volume and properties of the solution to the Poisson equation are utilized
to extract features, such as local space-time saliency, action dynamics, shape
structure and orientation. Additionally, Efros et al. [5] present a motion descrip-
tor based on optical flow measurements in a spatio-temporal volume for each
stabilized human figure and an associated similarity measure.

Towards the goal of performing shape analysis for action recognition in the
above-mentioned xyz + t 4D space, Huang et al. [10] present time-filtered and
shape-flow descriptors for assessing the similarity of 3D video sequences of people
with unknown temporal correspondence. In [2], an approach to non-sequential
alignment of unstructured mesh sequences that is based on a shape similarity
tree is detailed, which allows alignment across multiple sequences of different
motions, reduces drift in sequential alignment and is robust to rapid non-rigid
motions. Additionally, Yamasaki et al. [27] present a similar motion search and
retrieval system for 3D video based on a modified shape distribution algorithm.
The problem of 3D shape representation, which is formulated using Extremal
Human Curve (EHC) descriptors extracted from the body surface, and shape
similarity in human video sequences is the focus of the work in [18].

Despite the fact that some works on temporal-shape descriptions have already
been proposed, their main limitation is that they include in their analysis the
problem of the temporal alignment of action sequences (typically using common
techniques, like e.g. dynamic programming, Dynamic Time Warping, etc.). The
latter often has devastating effects in the presence of noise or leads to cumulative



errors in case of misalignment occurrences. To this end, a methodology that
would alleviate from the burden of the inherent problem of temporal alignment
when performing temporal-shape analysis, while maintaining a compact action
representation, would be beneficial.

3 3D information processing

The 3D information processing step is initiated by the application of a 3D re-
construction algorithm, which makes use of a set of calibrated Kinect sensors.
Output of this algorithm is a uniform voxel grid V Gt = {vt(xg, yg, zg) : xg ∈
[1, Xg], yg ∈ [1, Yg], zg ∈ [1, Zg]}, where each voxel corresponds to a cuboid re-
gion in the real 3D space with edge length equal to 10mm and t denotes the
currently examined frame. It is considered that vt(xg, yg, zg) = 1 if vt(xg, yg, zg)
belongs to the subject’s surface and vt(xg, yg, zg) = 0 otherwise.

For 3D flow estimation, an approach similar to the one described in [9] is
followed, where pixel correspondences (obtained by the application of 2D flow
estimation algorithms) are converted to voxel correspondences. Output of this
procedure is the computation of a flow field F̄3D

t (xg, yg, zg) for every voxel grid
V Gt.

4 Descriptor extraction

4.1 Global flow descriptor

For extracting a discriminative global 3D flow descriptor, the following challenges
need to be addressed: a) the difficulty in introducing a consistent orientation
definition for different action instances, in order to produce comparable low-
level descriptions, and b) the incorporation of spatial distribution information
in a compact way, while maintaining 3D rotation invariance.

The fundamental problem of orientation definition is addressed in this work
by assuming a vertical direction consideration. The latter selection is justified by
the fact that the angle of the principal axis of the 3D human silhouette with the
vertical direction typically does not exhibit significant deviations among different
instances of a given action. Subsequently, the descriptor extraction procedure is
initiated by estimating a vertically aligned minimum bounding cylinder of all
vt(xg, yg, zg) for which a flow vector F̄3D

t (xg, yg, zg) is estimated for all frames t
that comprise the examined action. The center of the cylinder (i.e. the central
point of its axis) is denoted vcg(xcg, ycg, zcg), while its radius is represented
by ζ. Additionally, the upper and lower cylinder boundaries are denoted ycmax
and ycmin, respectively. Then, a set of con-centric ring-shaped areas are defined,
according to the following expressions:

Bκ,λ =


(λ− 1)γ ≤ ξ ≤ λγ
ycmin + (κ− 1)δ ≤ yg ≤ ycmin + κδ

ξ =
√
(xg − xcg)2 + (zg − zcg)2

(1)



where κ ∈ [1,K], λ ∈ [1, Λ], γ = ζ/Λ and δ = (ycmax − ycmin)/K. For describing
the flow information in every Bκ,λ region, a loose representation is required that
will render the respective descriptor robust to differences in the appearance of the
subjects and the presence of noise. To this end, a histogram-based representation
is adopted. In particular, for every Bκ,λ area, a 2D angle histogram is estimated,
taking into account all flow vectors F̄3D

t (xg, yg, zg) during the whole duration
of the examined action that correspond to voxels vt(xg, yg, zg) that lie in that
spatial area. More specifically, for each of the aforementioned F̄3D

t (xg, yg, zg),
the following two angles are calculated:

ψ = tan−1(
zg − zcg
xg − xcg

)− tan−1(
F̄3D
z,t (xg, yg, zg)

F̄3D
x,t (xg, yg, zg)

)

o = cos−1(
⟨(0, 1, 0), F̄3D

t (xg, yg, zg)⟩
∥F̄3D

t (xg, yg, zg)∥
) (2)

where F̄3D
x,t (xg, yg, zg) and F̄3D

z,t (xg, yg, zg) are the x- and z-component of the

flow vector F̄3D
t (xg, yg, zg), respectively. ψ ∈ [−π, π] corresponds to the angle

between the horizontal projection of F̄3D
t (xg, yg, zg) and the projection of the

vector connecting the cylindrical center (xcg, ycg, zcg) with the examined voxel
position (xg, yg, zg) on the horizontal xz plane, while o ∈ [0, π] corresponds to
the angle of F̄3D

t (xg, yg, zg) with the vertical axis. Then, the above-mentioned
2D histogram for area Bκ,λ is computed by partitioning the value ranges of ψ
and o into bψ and bo equal-width non-overlapping bins, respectively. During the
calculations, ∥F̄3D

t (xg, yg, zg)∥ is aggregated to the appropriate histogram bin.
The global flow descriptor is computed by concatenating the estimated angle
histograms of all Bκ,λ areas, while it is subsequently L1 normalized for rendering
the descriptor robust to the difference in the speed with which every action is
executed. From the definitions of the ring-shaped areas Bκ,λ and angle ψ, it can
be justified that the proposed global 3D flow descriptor satisfies the requirement
for rotation invariance, while it also incorporates spatial distribution related
information in the flow representation. In this work, the following parameter
values were selected after experimentation: Λ = 4, K = 4, bψ = 6 and bo = 3.
An example of ring-shaped Bκ,λ areas formation for a ‘push away’ action instance
is given in Fig. 1.

4.2 Global shape descriptor

As described in Section 2.2, current temporal-shape techniques include in their
analysis the problem of the temporal alignment of the action sequences, which
has devastating effects in the presence of noise or leads to cumulative errors
in case of misalignment occurrences. To this end, a temporal-shape descriptor
that encodes the dominant shape variations and avoids the need for exact ac-
tion sequence alignment, while maintaining a compact shape representation, is
proposed in this section.

The biggest challenge in using the temporal dimension for realizing 3D shape-
based action recognition is the temporal alignment of different action executions,



Fig. 1. Example of ring-shaped areas Bκ,λ formation for κ = 3 and λ ∈ [1, 4] for a
‘push-away’ action instance.

which is often misleading and causes devastating aggregated errors. Additionally,
this alignment is more likely to lead to mismatches if high-dimensional vector
representations need to be used, which is the case of 3D shape-based analysis.
For overcoming these obstacles, a frequency domain analysis is followed in this
work for identifying and modeling the dominant shape characteristics and their
variation in time. In this way, the temporal sequence of the action constituent
postures is captured, although this is not a strict temporal alignment of the
respective action frames. In particular, for every frame t that belongs to the ex-
amined action segment an individual global 3D shape descriptor qt is extracted.
More specifically, for every frame t a composite voxel grid V Gcot is computed,
by superimposing all V Gt from the beginning of the action segment until frame
t and estimating their outer surface. qt is then computed by estimating a 3D
shape descriptor for V Gcot . Using V Gcot , instead of V Gt, for descriptor extraction
was experimentally shown to lead to better temporal action dynamics encoding,
as it will be demonstrated in the experimental evaluation. Indicative examples
of V Gcot estimation for different human actions are depicted in Fig. 2.

For producing a compact temporal-shape descriptor, the descriptor vector
sequence qt is initially adjusted to a predefined length H forming sequence qh,
using linear interpolation; the latter accounts for action sequences that typi-
cally consist of a different number of frames. H = 20 based on experimentation.
Subsequently, 1D frequency domain analysis is applied to each of the value se-
quences qs,h that are formed by considering the s-th element of qh each time.
For frequency domain analysis, the Discrete Cosine Transform (DCT) is applied
to qs,h, as follows:

fcs(β) =

H∑
h=1

qs,h cos
π

H
[(h− 1) +

1

2
(β − 1)] (3)

where fcs(β) are the estimated DCT coefficients and β ∈ [1,H]. The reason for
using the DCT transform is twofold: a) its simple form requires relatively reduced
calculations, and b) it is a frequency domain transform that receives as input a
real sequence and its output is also a real set of values. Other common frequency
analysis methods (e.g. Fourier transform) were also evaluated; however, they did



(a)

(b)

t = 0 t = 0.25T t = 0.50T t = 0.75T t = T

Fig. 2. Indicative examples of composite voxel grid V Gcot estimation for actions: (a)
jumping-jacks and (b) tennis-forehand. T denotes the overall duration of the action.

not lead to increased performance compared with the one received when using
DCT. Out of the H fcs(β) coefficients, only the first P are considered, since the
remaining ones were experimentally shown to correspond mainly to noise or did
not add to the discriminative power of the formed descriptor. The P selected
coefficients for each qs,h are concatenated in a single vector that constitutes the
proposed global 3D temporal-shape descriptor. It must be noted that modeling
the correlations between different qs,h sequences during the descriptor extrac-
tion procedure led to inferior recognition performance, mainly due to overfitting
occurrences.

Although the proposed 3D temporal-shape descriptor extraction methodol-
ogy is independent of the particular 3D static shape descriptor to be used, in
this work the ‘shape distribution’ descriptor [14] (3D distance histogram) was
utilized; this was experimentally shown to lead to better overall action recog-
nition performance than other common shape descriptors. In [10], description
and comparative evaluation of different static 3D shape descriptors for action
recognition are given.

5 Action recognition

After extracting the global 3D flow/shape descriptors for every examined human
action (as detailed in Section 4), each descriptor is L1-normalized for incorpo-
rating invariance with respect to the execution speed of different instances of
the same action from the same or different subjects. Action recognition is then
realized using multi-class Support Vector Machines (SVMs).



6 Experimental results

In this section, experimental results from the application of the proposed ap-
proach to the Huawei/3DLife3 datasets for 3D human reconstruction and action
recognition, which were used in the ACM Multimedia 2013 ‘Multimedia Grand
Challenge’ and are among the most comprehensive and broad ones in the litera-
ture, are presented. In particular, the first (dataset D1) and the second (dataset
D2) sessions of the first dataset are used, which provide RGB-plus-depth video
streams from five and two Kinect sensors, respectively. For dataset D2, the data
stream from only the frontal Kinect was utilized. D1 and D2 include captures
of 17 and 14 human subjects, respectively, and each action is performed at
least 5 times by every individual. Out of the available 22 supported actions,
the following set of 17 dynamic ones were considered for the experimental eval-
uation: E = {eg, g ∈ [1, G]} ≡{Hand waving, Knocking the door, Clapping,
Throwing, Punching, Push away, Jumping jacks, Lunges, Squats, Punching and
kicking, Weight lifting, Golf drive, Golf chip, Golf putt, Tennis forehand, Ten-
nis backhand, Walking on the treadmill}. The remaining 5 discarded actions
(namely ‘Arms folded’, ‘T-Pose’, ‘Hands on the hips’, ‘T-Pose with bent arms’
and ‘Forward arms raise’) correspond to static ones that can be easily detected
using a simple representation. Performance evaluation was realized following the
‘leave-one-out’ methodology, where in every iteration one subject was used for
performance measurement and the remaining ones were used for training.

In Fig. 3, quantitative results in terms of the estimated recognition rates and
overall accuracy are given for the proposed global flow and shape descriptors.
From the presented results, it can be seen that both descriptors achieve high
recognition rates in both datasets; namely, the flow (shape) descriptor exhibits
recognition rates equal to 81.27% and 78.99% (76.53% and 69.83%) in D1 and
D2, respectively. From these results, it can be observed that the global flow
descriptor outperforms the respective shape one in both utilized datasets; this
is mainly due to the more detailed and discriminative information contained
in the estimated 3D flow fields. Due to the latter factor, the flow descriptor
is advantageous for actions that incorporate more fine-grained body/body-part
movements (e.g. ‘Hand waving’, ‘Knocking the door’, ‘Punching and kicking’
and ‘Weight lifting’). On the other hand, the cases that the shape descriptor is
better involve body movements with more extensive and distinctive whole body
postures (e.g. actions ‘Clapping’ and ‘Squats’).

In order to investigate the behavior of the proposed global temporal-shape
descriptor, comparison with the following benchmarks is performed: a) global
static shape descriptor: A static shape descriptor (the ‘shape distribution’ de-
scriptor described in Section 4.2) is extracted for the composite voxel grid V Gcot
for t = T, i.e. when all constituent voxel grids V Gt of an action are superim-
posed. This can be considered as the counterpart of the respective volumetric
descriptions for the 2D analysis case, i.e. methods that estimate a 3D volumetric
shape of the examined action from the 2D video sequence and subsequently esti-

3 http://mmv.eecs.qmul.ac.uk/mmgc2013/



a)

b)

Fig. 3. Action recognition results for a) D1 and b) D2 datasets.

mating a 3D shape descriptor of the generated volume (like in [7] [23]). b) variant
of the proposed temporal-shape descriptor, where voxel grids V Gt are used in-
stead of the composite ones V Gcot during the descriptor extraction procedure.
From the results presented in Fig. 3, it can be seen that the proposed temporal-
shape descriptor significantly outperforms the static one in both datasets. This
fact highlights the significant added value of incorporating temporal information
in the global 3D representation. Additionally, it can be observed that the use
of the composite voxel grids V Gcot is advantageous compared with when using
the voxel grids V Gt. The latter implies that superimposing information from
multiple frames during the descriptor extraction procedure can lead to more
discriminative shape representations.

6.1 Parameter selection

In order to apply and evaluate the performance of the proposed descriptors, par-
ticular values inevitably need to be selected for the defined parameters. In this
section, quantitative evaluation results are given for the most crucial parameters,
aiming at shading light on the behavior of the respective descriptors. It must be
noted that in the followings experimental results are given only for D1, while
similar behavior of the proposed descriptors has been observed in D2. In par-
ticular, the descriptor behavior for different values of the following parameters,
along with justification where particular values were selected, is investigated:



Table 1. Global flow descriptor parameter selection

Parameters Accuracy

K=3, Λ=3, bψ=6, bo=3 75.44%

K=4, Λ=4, bψ=6, bo=3 81.27%

K=5, Λ=5, bψ=6, bo=3 80.88%

K=4, Λ=4, bψ=6, bo=3 81.27%

K=4, Λ=4, bψ=4, bo=3 79.97%

K=4, Λ=4, bψ=6, bo=3 81.27%

K=4, Λ=4, bψ=6, bo=6 77.22%

– Parameters K, Λ, bψ, bo: K and Λ control the partitioning of the longitu-
dinal and the polar axis, when defining the ring-shaped areas Bκ,λ (Section
4.1), respectively. Additionally, bψ and bo define the number of bins of the
histograms calculated with respect to angles ψ and o (Section 4.1), respec-
tively. In Table 1, action recognition results from the application of the pro-
posed global flow descriptor for different sets of values of the aforementioned
parameters are given. From the first group of experimental results, it can
be seen that the ring-shape partitioning using K = 4 and Λ = 4 leads to
the best overall performance. Additionally, the second group of experiments
shows that using more bins in the histogram representation with respect to
angle ψ, which corresponds to the angle between the horizontal projection
of F̄3D

t (xg, yg, zg) and the projection of the vector connecting the cylindri-
cal center (xcg, ycg, zcg) with the examined voxel position (xg, yg, zg) on the
horizontal xz plane, is advantageous. On the other hand, using a decreased
number of bins in the histogram representation with respect to angle o, which
corresponds to the angle of F̄3D

t (xg, yg, zg) with the vertical axis, leads to
increased performance (third group of experiments).

– ParameterH: This adjusts the length of the shape descriptor vector sequence
qh (Section 4.2). In the current implementation,H was set equal to 20, which
is close to the average action segment duration in frames in the employed
datasets.

– Parameter P : This defines the number of selected DCT coefficients to be used
in the produced global shape representation (Section 4.2). The performance
obtained by the application of the proposed temporal-shape descriptor for
different values of P is given for both datasets in Table 2. From the presented
results, it can be seen that the best performance is achieved when only rel-
atively few frequency coefficients are used; these are shown to be adequate
for accomplishing a good balance between capturing sufficient temporal in-
formation and maintaining the dimensionality of the overall descriptor low.

6.2 Comparative evaluation

Comparative evaluation results of the proposed descriptors (and their combina-
tion) with similar literature approaches are reported in this section. In particular,



Table 2. Temporal-shape descriptor parameter selection

Parameter P
Dataset 5 10 15 20

D1 76.53% 71.68% 68.11% 66.64%

D2 69.83% 66.12% 61.64% 57.82%

in Fig. 4, quantitative results in terms of the estimated recognition rates and
overall accuracy are given for the following cases: i) The HOF3D descriptor with
‘vertical rotation’ [9], which is a local histogram-based 3D flow descriptor that
does not incorporate spatial information. ii) The local 3D flow descriptor of [16],
which is again a local histogram-based 3D flow descriptor; however, it incorpo-
rates spatial and surface information in the flow representation. iii) The proposed
global flow descriptor. iv) The LC-LSF local 3D shape descriptor of [13], which
employs a set of local statistical features for describing non-rigid 3D models. v)
The global 3D temporal-shape descriptor of [10], where a self-similarity matrix
is computed for every action (by means of static shape descriptor extraction
for every frame) and subsequently a temporal-shape descriptor is estimated by
applying a time filter to the calculated matrix. vi) The proposed global shape
descriptor. vii) The overall proposed approach, which combines the proposed
global flow and shape descriptors, by means of simple concatenation in a single
feature vector. viii) The skeleton-tracking-based methods of [15] [19] [3], which
estimate human posture representations at every frame, making use of the de-
tected human joints (for the methods of [19] and [3], only the reported overall
classification accuracy in D2 is provided in Fig. 4).

From the presented results, it can be seen that the proposed global flow de-
scriptor performs significantly better than the local flow ones of [9] and [16].
This is mainly due to the inefficiency of the local descriptors in fully addressing
the problem of defining a consistent orientation, during the analysis in local 3D
neighborhoods for descriptor extraction. The aforementioned difference in per-
formance is more pronounced and clear in D1, i.e. the most challenging dataset
due to the relatively increased presence of noise in the provided depth maps,
which is in turn mainly due the increased interference among the higher number
of Kinect sensors used in D1. Similar observations can be made for the case
of the proposed global shape descriptor, which performs equally or significantly
better than the local 3D shape descriptor of [13] for the same reasons described
above. It worths noticing that the proposed global shape descriptor outperforms
the local flow ones by a large margin, despite the fact that 3D flow is a more
discriminative information source. Additionally, the proposed temporal-shape
descriptor is also shown to outperform the temporal-shape method of [10]. This
denotes the increased efficiency of the frequency domain analysis on top of the
per-frame extracted shape descriptors in capturing and modeling the human
action dynamics, compared with the case of estimating the self-similarity ma-
trix of the same descriptors and applying time filtering techniques. Moreover,
the overall proposed approach (which consists of simple concatenation of the



a)

b)

Fig. 4. Comparative evaluation results for a) D1 and b) D2 datasets.

proposed global flow and shape descriptors in a single feature vector) achieves
increased performance, compared with the cases of using each individual descrip-
tor alone. The latter demonstrates the complementarity of the introduced de-
scriptors and dictates that a robust human action recognition framework should
incorporate multiple information sources for accomplishing increased recognition
performance. Furthermore, it is shown that the proposed approach outperforms
the skeleton-tracking-based methods of [15] [19] [3]. This difference in perfor-
mance demonstrates the superiority of the proposed method in capturing the
action dynamics more efficiently, mainly due to the combination of multiple and
complementary information sources (i.e. flow/shape information). On the other
hand, the methods of [15] [19] [3] suffer from the limitations of the employed
skeleton tracker, which is reported not to perform well in case of fast movements
and in the presence of noise in the captured depth maps. Another interesting
observation is that the performance difference between the proposed approach
and the method of [15] is higher in D1 (i.e. the dataset with increased presence
of noise) than in D2; this again highlights the robustness in the presence of noise
of the proposed method, while the method of [15] is significantly affected by the
limitations of the employed skeleton tracker (as described above). It needs to
be highlighted that an additional advantageous characteristic of the proposed
approach is that it does not make the assumption of human(s) being present in
the scene, i.e. it does not use domain-specific knowledge and it can be applied
with any other type of object being captured.



7 Conclusions

In this work, the problem of human action recognition using 3D reconstruction
data was examined and novel global 3D flow/shape descriptors were introduced.
Exploitation of 3D reconstruction techniques facilitates towards addressing two
of the most challenging issues in human action recognition, namely view-variance
and the presence of (self-) occlusions. This choice is further endorsed by the
recent introduction of low-cost, portable, high-quality and accurate motion cap-
turing devices. The proposed global 3D flow descriptor efficiently encodes the
global motion characteristics in a compact way. It was observed that this de-
scriptor led to the best action recognition results. Additionally, the proposed
global temporal-shape descriptor efficiently addresses the inherent problems of
temporal alignment and compact representation. The proposed descriptors were
experimentally shown to outperform similar methods of the literature, using
publicly available datasets for the evaluation. Moreover, the comparative evalu-
ation of the overall proposed approach (concatenation of the introduced global
3D flow/shape descriptors) was shown to outperform action recognition methods
that rely on human skeleton-tracking methodologies.
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