
 

 

  
Abstract—A challenged control problem is when the 

performance is pushed to the limit. The state-derivative feedback 
control strategy directly uses acceleration information for feedback 
and state estimation. The derivative part is concerned with the rate-
of-change of the error with time. If the measured variable approaches 
the set point rapidly, then the actuator is backed off early to allow it 
to coast to the required level. Derivative action makes a control 
system behave much more intelligently. A sensor measures the 
variable to be controlled and the measured in formation is fed back to 
the controller to influence the controlled variable. A high gain 
problem can be also formulated for proportional plus derivative 
feedback transformation. Using MATLAB Simulink dynamic 
simulation tool this paper examines a system with a proportional plus 
derivative feedback and presents an automatic implementation of 
finding an acceptable controlled system. Using feedback 
transformations the system is transformed into another system. 
 

Keywords—Feedback, PD, state-space, derivative. 

I. INTRODUCTION 
EEDBACK systems play an important role in control 
because the use of feedback can accomplish certain 

desirable results that would not be possible with an open-loop 
system. Consider the closed-loop control system of Fig. 1. 

 

 
Fig. 1 State-space with proportional feedback 

 
The feedback signal is considered to be proportional with 

the state variable x. Therefore the feedback control signal is:  

 u Kx= −               (1) 

 x Ax Bu= +         (2) 

 y Cx=              (3) 
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If matrix F = A - BK then the condition for observability is 
that the matrix [C|CF|CF2|…..|CFn-1] has rank n. 

The system is controllable if matrix [B|BF|BF2|…|BFn-1] has 
rank n. 

For an optimal control we can implement the methodology 
for the Linear Quadratic Regulator (LQR). By trying to 
minimize the cost function J we obtain the elements of the 
matrix K, [1]. 

LQR requires numerous iterations and is time consuming. 
In the case of implementing reconfiguration techniques may 
not be practical, a speeder methodology is required and the 
introduction of a PD feedback may be a reasonable approach. 

 
0

( )T TJ x Qx u Ru dt
∞

= +∫      (4) 

R represents the control effort or the control cost and Q is 
related with tracking error. Q and R are positive defined 
diagonal matrices. The elements of Q and R are chosen, and 
then the K matrix is calculated using Matlab. The process is 
repeated until an acceptable response is achieved.  

II. PROBLEM STATEMENT 
If a derivative component is introduced in the feedback: 
 

 
Fig. 2 State-space with derivative feedback 

 
    u Kx Px= − −                 (5)  
 x Ax BKx BPx= − −              (6)  

 
The state space systems under proportional and derivative 

feedback are analyzed in depth in [2]. 
The problem is to find suitable K and P matrices. A series 

of transformations are performed that will lead to a better 
solution and keeping the controllability as well the efforts at a 
reasonable level. 
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 ( ) ( )I BP x A BK x+ = −            (7)  

 ( ) ( )1x I BP A BK x−= + −           (8)  
If we manage to make the expression similar to  

 ( )x A BK x= −                (9)  
the problem is reduced to a classical state-space system 

control. 

 ( ) ( )1 1[ ]x I BP A I BP BK x− −= + − +      (10)  
By comparing the expressions: 

 ( ) 1a I BP A−= +               (11)  

 ( ) 1Bk I BP BK−= +              (12) 
The last equation is multiplied by B transposed in order to 

find k. 

 ( ) 1T TB Bk B I BP BK−= +           (13)  

 ( ) ( )1 1T Tk B B B I BP BK
− −= +         (14)  

The new transformed system is: 
 ( )x a Bk x= −                 (15) 

Note that if BP=0 the new system will have the same state 
matrix A.  This option is not taken into consideration. 

We choose  

 ( ) 1I BP rI−+ =  ,        .      (16) 

We are going to analyze the behavior of the system in 
relation to the parameter r. 
 a rA=                    (17)  

 ( ) 1
( )T Tk r B B B B K

−
=             (18)  

 k rK=                    (19) 
The matrix P is:  

 ( ) 11 T TrP B B B
r

−−
=             (20)  

The new system with a derivative feedback is transformed 
in a state space-state control system with the matrices:  
a = r*A, B, C, D. The feedback is  
 *k r K=                   (21)  
 

 
Fig. 3 Modified state-space control system 

 
 
 

The observabilty matrix for the modified system has lines 
multiplied by the constants r, r2…rn-1, therefore the rank 
remains unchanged. For the controllability matrix the columns 

are multiply by the factors r, r2…rn-1,, therefore if the 
proportional feedback system is observable and controllable 
the  PD feedback build as described would observable and 
controllable as well. 

III. REFERENCE INPUT 
A reference Ref is added to the control system.  In a steady-

state situation the output y is expected to be equal to the 
reference input Ref, [3]. 
 

 
Fig. 4 Reference input with a single composite gain 

 
The subscript ss stands for steady-state.  
When the reference input reaches the steady level  

 ssRef Ref=  (22) 

the system states become:  

 ssx x=  (23) 

The system output is expected to be  

 ssRefssy y= =  (24) 

In steady-state  

 0x =  (25) 

The system equations become: 

 0 ss ssAx Bu= +  (26) 

 ssRef ssCx=  (27) 

The ssu  and ssx  are derived from the external reference 

signal ssRef  as follows: 

 ssRefss uu N=  (28) 
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 ssRefss xx N=  (29) 

Substitute the ssu  and ssx  in the system equations: 

 ss ss0 Ref Refx uAN BN= +  (30) 

                                  ssRefss xr CN=        (31) 

Solving the system of equations we find: 

 ( ) 1T
xN C C

−
=  (32) 

 ( ) ( )1 1T T T
uN B B B A C C

− −
= −  (33) 

The control signal u is given by the following equation: 

 ( )Ref Refu xu N K x N= − −  (34) 

Re-write the equation in another form: 

 ( )Refu xu N KN Kx= + −  (35) 

 Refu N Kx= −  (36) 

Where  

 u xN N KN= +  (37) 

This leads to the following configuration: 
 

 
Fig. 5 Reference input with a single composite gain 

 
The response of the new system can be plotted using the 

Matlab function Impulse(). 

 Refu N kx= −  (38) 

The system equations are: 

                                   x ax Bu= +                   (39) 

          y Cx Du= +                                 (40) 

Substitute u in the system equations: 

( ) Refx a Bk x BN= − +                       (41) 

 ( ) Refy C Dk x DN= − +   (42) 

The matrices of the new system are: 

 Re fA a Bk= −  (43) 

 Re fB BN=  (44) 

 Re fC C Dk= −  (45) 

 Re fD DN=  (46) 

The Matlab function sys(ARef, BRef, CRef, DRef) defines a 
system and the function impulse(sys,20) shows the evolution 
of the variable x. 

The expected steady response would be  x = 0. 

IV. PRACTICAL EXAMPLE 
An aircraft longitudinal control system described in [4] and 

[5] is used to illustrate the proposed feedback. 
A=[-0.0582,0.0651,0,-0.171;-0.303,-0.685,1.109,0; 
       -  0.0715,-0.658,-0.947,0;0,0,1,0] 
B= [0,1;-0.0541,1;-1.11,0;0,0] 
C= [1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1] 
D= [0,0;0,0;0,0;0,0] 
 
The state variables are  x(t)=[α, β, ψ, θ]T, where α is the 

forward speed, β is the vertical speed, ψ is the pitch rate and θ 
is the pitch angle. The control signals are: η the elevator angle 
and τ the throttle angle. 

From the structure of the matrix C it is easy to see that the 
output variables are forward speed (y1), vertical speed (y2), 
pitch rate (y3) and pitch angle (y4). 

The design starts by choosing a reasonable K matrix for the 
feedback. LQR is used to provide such a matrix. It is not 
essential to use LQR method to find the K matrix. Any other 
method can be implemented. 

The next step is to find the derivative P matrix and the 
following procedure describes that by simple selecting a 
single parameter r. If we decide to use LQR to find K matrix 
we initialize the process by choosing the relative values. 
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2 2 2 2

1 2 1 2

1max 2max 1max 2max0

[ ...... .......]x x u uJ dt
x x u u

∞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫  

 
Where x1max is the maximum desired value of x1 and so forth. 

We select the following diagonal matrices Q and R. 
Q=[1/50^2,0,0,0;0,1/0.25^2,0,0;0,0,1/0.09,0;0,0,0,1/0.3^2] 
R=[1/0.2^2,0;0,1/0.816^2]; 
The simulation is done using Simulink and Matlab. 
Fig. 6 shows the Simulink diagram for the control system 

that cater for  the three matrices K, P and N. 
The matrices of the state-space block are (43), (44), (45), 

(46). 
To make the simulation easier I created a file in Matlab 

called AutoInput.m. 
File: AutoInput.m 
myopts=simset('MaxDataPoints',1000,'Refine',1); 
r=input('Enter the first value for r, r1 = ') 
CalcR 
sim('Der_20Feb_N',20,myopts) 
display41; 
r=input('Enter the second value for r, r2 = ') 
CalcR 
sim('Der_20Feb_N',20,myopts) 
display42 
Other script files are  CalcR.m, display41 and desplay42. 
CalcR.m calculates the matrices K, N and the response of of 

the system. 
File: CalcR.m 
A=[-0.0582, 0.0651, 0, -0.171;-0.303,-0.685,1.109,0; -

0.0715,-0.658,-0.947,0;0,0,1,0]; 
B=[0,1;-0.0541,1;-1.11,0;0,0]; 
C=[1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1]; 
D=[0,0;0,0;0,0;0,0]; 
states={'alpha' 'beta' 'psi' 'theta'}; 
inputs={'elevator' 'throttle'}; 
outputs={'forward speed' 'vertical speed' 'pitch rate' 'pitch 

angle'}; 
Q=[1/50^2,0,0,0;0,1/0.25^2,0,0;0,0,1/0.3^2,0;0,0,0,1/0.3^2]

; 
R=[1/0.2^2,0;0,1/0.816^2]; 
K=lqr(A,B,Q,R); 
Acl=A-B*K; 
sys=ss(Acl,B,C,D,'statename',states,'inputname',inputs,'outp

utname',outputs); 
a=r*A; 
k=r*K; 
Nx=inv(C'*C); 
Nu=-(inv(B'*B))*B'*A*Nx; 
N=Nu+k*Nx; 
Ar=a-B*k; 
Br=B*N; 
Cr=C-D*k; 
Dr=D*N; 
inputs={'alpha_Ref' 'beta_Ref' 'psi_Ref' 'theta_Ref'};  

sys3=ss(Ar,Br,Cr,Dr,'statename',states,'inputname',inputs,'o
utputname',outputs); 

display41.m display the four outputs after the parameter 
r=r1 was entered. 

File: display41.m 
subplot(4,1,1);plot(simout(:,1),simout(:,2), 
'b--'),xlabel('t'),ylabel('alpha'),hold 
subplot(4,1,2);plot(simout(:,1),simout(:,3), 
'b--'),xlabel('t'),ylabel('beta'),hold 
subplot(4,1,3);plot(simout(:,1),simout(:,4), 
'b--'),xlabel('t'),ylabel('psi'),hold 
subplot(4,1,4);plot(simout(:,1),simout(:,5), 
'b--'),xlabel('t'),ylabel('theta'),hold 
display42.m display the four outputs after the parameter 

r=r2 was entered. 
File: display42.m 
subplot(4,1,1);plot(simout(:,1),simout(:,2),'r'),xlabel('t'), 
ylabel('alpha') 
subplot(4,1,2);plot(simout(:,1),simout(:,3),'r'),xlabel('t'), 
ylabel('beta') 
subplot(4,1,3);plot(simout(:,1),simout(:,4),'r'),xlabel('t'), 
ylabel('psi'),legend('r1','r2') 
subplot(4,1,4);plot(simout(:,1),simout(:,5),'r'),xlabel('t'), 
ylabel('theta') 

 

 
Fig. 6 Simulink diagram for longitudinal control system 

 
If r1=1 and r2=10 the response is: 

 

 
Fig. 7 System response for r=1 and r=5 

 
A higher value of r provides a better response. 
The matrices K, P and N are: 
 
K = 
    0.0003    0.0528   -0.5770   -0.5783 
    1.5430    1.4587   -0.8664   -0.3051 
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>> P=((1-r)/r)*(inv(B'*B))*B' 
P = 
   -0.0175    0.0175    0.7199         0 
   -0.4005   -0.3995    0.0195         0 
N = 

   -0.0683   -0.3448   -3.7127   -2.8879 
    7.8936    7.5870   -4.9088   -1.4400 

V. CONCLUSION 
In this paper a simplified method to design a multivariable 

control system using state-space is presented. A fictitious 
state-space matrix a is introduced and the problem is reduced 
to select a parameter r and after calculate the two matrices that 
represent the proportional and derivative matrices.  

A derivative component in the feedback has a positive 
effect on the system response. In [6] is proven that the 
derivative feedback has a net stabilizing effect. 

The exponential solution for the original system (r=1) is: 

 
0

0( ) ( ) ( )
tAt At B

t
x t e x t e e bu dτ τ τ−= + ∫  (47) 

The exponential solution for a system with a derivative 
component in the feedback is: 

 
0 0

( ) ( )
0 0( ) ( ) ( ) ( ) ( )

t tat at B A rt A rt B

t t
x t e x t e e bu d e x t e e bu dτ ττ τ τ τ− −= + = +∫ ∫ (48) 

We notice that the new system is achieving the final value 
much faster ( ( )At A rte e→ ). 
 

The eigenvalues for the original system are: 
 
>> damp(sys1) 
        Eigenvalue            Damping     Freq. (rad/s)   
-2.20e-002 + 1.34e-001i     1.62e-001      1.35e-001     
 -2.20e-002 - 1.34e-001i     1.62e-001      1.35e-001     
 -8.23e-001 + 8.51e-001i     6.95e-001      1.18e+000     
 -8.23e-001 - 8.51e-001i     6.95e-001      1.18e+000     
 
For r =5 the eigenvalues are: 
 
        Eigenvalue            Damping     Freq. (rad/s)   
-1.10e-001 + 6.68e-001i     1.62e-001      6.77e-001     
 -1.10e-001 - 6.68e-001i     1.62e-001      6.77e-001     
 -4.12e+000 + 4.26e+000i     6.95e-001      5.92e+000     
 -4.12e+000 - 4.26e+000i     6.95e-001      5.92e+000     
 
The damping values are the same but the frequencies are 

five times higher. The values of eigenvalues have a linear 
dependence of the values of the matrix A elements. It is easy 
to demonstrate that the damping values remain unchanged but 
the natural frequencies are multiplied by the parameter r.  

This is an easy method of increasing the natural frequency. 
The new system is controllable and observable as long as 

the original system is observable and controllable. 

The method is easy to implement and doesn’t require 
extensive calculations. 

The practical example used a complete state measurement, 
but comparable results are achieved by using an observer.  

A similar methodology may be found to control the 
dampings without changing the natural frequencies. 

In the case of an automatic reconfiguration process a simple 
algorithm is needed to change some parameter values ad-hoc 
since no simulation or design tools are available. We deed 
something that improves the response when no human can 
intervene. 

REFERENCES 
[1]  William J. Palm III, “Modeling, Analysis, and Control of Dynamic 

Systems”, John Willey & Sons, Inc., Second Edition 
[2]     D. Hinrichsend, J. O’Halloran, “Limits of  Generalized State Space 

Systems under Proportional and Dervative Feedback”, Mathematics of 
control signals and systems ISSN 0932-4194, 1997, vol.10, pp 97-124.  

[3]  Gene F. Franklin, J. David Powell, Abbas Emami-Naeini, “Feedback 
Control of Dynamic Systems”, Prentice Hall”, Fourth edition.I. K.. 

[4]  Jin Jiang, “Design of reconfigurable control systems using 
eigenstructure assignments,” Int. J. Control, vol. 59, no.2, pp.359-410. 

[5]  I. K.. Konstantinopoulos, P.J. Antsaklis, An optimization strategy for 
reconfigurable control systems,  Technical report of the ISIS Group at 
the University of Notre Dame, September, 1995. 

[6]  “DAPL Commands as State Observers – A Hydraulic Control 
Application”, http://www.mstarlabs.com/control/hydobs.htm. 

 

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:2, No:5, 2008 

757International Scholarly and Scientific Research & Innovation 2(5) 2008 scholar.waset.org/1307-6892/15937

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, E

le
ct

ro
ni

cs
 a

nd
 C

om
m

un
ic

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

5,
 2

00
8 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
15

93
7

http://waset.org/publication/State-Space-PD-Feedback-Control/15937
http://scholar.waset.org/1307-6892/15937



