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The Bipartite Ramsey Numbers b(Cs,,; Ca,)

Rui Zhang,Yongqi Sun,and Yali Wu,

Abstract—Given bipartite graphs H, and Ho, the bipartite Ramsey
number b(H1; H2) is the smallest integer b such that any subgraph G
of the complete bipartite graph K p, either G contains a copy of Hi
or its complement relative to K ; contains a copy of Ha. It is known
that b(Kg,g; Kg,z) = 57 b(Kst; K273) = 9, b(K2,4; K2,4) = 14 and
b(K3,3; K3,3) = 17. In this paper we study the case that both H
and H> are even cycles, prove that b(Cam; Can) > m +n — 1 for
m # n, and b(Cap,; C) = m + 2 for m > 4.
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I. INTRODUCTION

E consider only finite undirected graphs without loops

‘ i or multiple edges. For a graph G with vertex-set V (G)
and edge-set E(G), we denote the order and the size of G by
p(G) = |V(G)] and ¢(G) = |E(G)|. 6(G) and A(G) are the
minimum degree and the maximum degree of G respectively.

Let K, be a complete m by n bipartite graph, that is,
K., » consists of m + n vertices, partitioned into sets of size
m and n, and the mn edges between them. Py is a path on
k vertices, and C}, is a cycle of length k. Let Hy and H, be
bipartite graphs, the bipartite Ramsey number b(Hy; Hs) is
the smallest integer b such that given any subgraph G of the
complete bipartite graph K3 3, either G contains a copy of H;
or there exists a copy of Hs in the complement of G relative
to Ky . Obviously, we have b(Hy; Ho) = b(Ho; Hy).

Beineke and Schwenk!ll showed that b(K22;K22) =
5,b(K2,4; K2,4) =13, b(Kgyg;ngg) =17. In particular, they
proved that b(Ks,,; Ko2,,) = 4n — 3 for n odd and less than
100 except n = 59 or n = 95. Carnielli and Carmelo?!
proved that b(Ks,; Ko,) = 4n — 3 if 4n — 3 is a prime
power. They also showed that b(K32; K1) = n + g for
@ —q+1<mn<gqg, where q is a prime power. Irving©l
showed that b(K,4; K,4) < 48. Hattingh and Henning!¥!
pI'OVCd that b(K272;K373) = 9,b(K272;K474) = 14. They
also determined the values of b(Pm;KLn)[S]. Faudree and
Schelp proved the values of b(Hy; Hy) when both H; and
Hy are two pathsm. It was shown that b(Cs; K22) = 5 and
b(Com; Ka2) =m+ 1 for m >4 in [7].

Let GG; be the subgraph of G whose edges are in the i-th
color in an r-coloring of the edges of G. If there exists an
r-coloring of the edges of G such that H; Q G; for all 1 <
i <r, then G is said to be r-colorable to (Hy, Ha,..., H,).
The neighborhood of a vertex v € V/(G) are denoted by
N@w) ={u € V(G)|uv € E(G)}, and let d(v) = |N(v)|. G¢
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denotes the complement of G relative to K3 ;. G(W) denotes
the subgraph of G induced by W C V(G). Let GU H denote
a disjoint sum of G and H, and nG is a disjoint sum of n
copies of G.

Obviously, if H; and Ho are cycles, then they are both even
cycles. In this paper we study the case that both H; and H; are
even cycles. Firstly, we prove that b(Cayp,; Con) > m+n—1
for m # n and b(Coy,; Com) > 2m. Then setting n = 3,
we prove that b(Cs; Cs) = 6 and b(Cap,; Cs) = m + 2 for
m > 4. For the sake of convenience, let V(K,,,) =X UY,
where X = {z;|]1 < i <m}, Y = {y;|]1 < j < n}, and

II. THE LOWER BOUNDS OF b(Cay; Cg)

Theorem 1: b(Capm; Cap) >i m+n—1, m#n,
2m, m =n.
Proof: If m # n, let G; and G5 be subgraphs of

Koptn—2,m+n—2, Wwhere G is a complete m —1 by m+n—2
bipartite graph, and G is a complete n — 1 by m + n — 2
bipartite graph. And let V(G;) = XUY, whereX; = {z;|1 <
i<m-—1}and Y = {y|]l <i<m+n-2}1V(Ge) =
XoUY, whereXs = {z;im <i<m+4+n-2}, Y ={y]l <
i < m + n — 2}. Then we have F(G1) N E(G2) = () and
E(Gl) U E(Gg) = E(Km+n72,m+n72)c Note that Cs,, g
Gi and Ca, € Gi. So Kyyin—2min—2 is 2-colorable to
(sz, an), that is, b(Cgm; an) >m+n—1.

If m = n, let Gy and G5 be the spanning subgraphs of
K2m7172m71- And let E(Gl) = {.’L’Zyj|1 < Z,] <m— 1} @]
{Zl?iyj|m <47 < 2m— 2} U {x2m—1yj|1 <Jj < 2m-—
1} E(Ge) = {ziy;1 <i<m—-1m < j <2m—2} U
{ziyjim <1 <2m—2,1<j<m—-1}U{zyam-1]1 <i <
2m — 2}. Then we have E(G1) N E(G2) = 0 and E(Gy) U
E(Gg) = E(K2m7172m,1). Note that C5,, g G4 and Cy,y, g
Ga. So Kop—1,2m—1 is 2-colorable to (Cayp, Copy ), that is,

b(Cgm; Cgm) > 2m. | |
Setting n = 3 in Theorem 1, we have
m-+2, m=#3,
Corollary 1: b(Capm; Cs) > { 6 m i 3

III. THE UPPER BOUNDS OF b(Co,,; Cs)(m > 3)

Lemma 1: Let G be a spanning subgraph of K3 3, if Cs €
G¢, then P; C G.

Proof: If P; ¢ G, then G is isomorphic to one graph
of {6P,,4P, U P5,2P; U 2P»,3P>}. In any case, we have
Cs C G°. | |

Lemma 2: b(Cg; Cs) < 6.

Proof: By contradiction, we assume that b(Cs; Cs) > 6,
that is, K¢ is 2-colorable to Cs. Let V(K5 5)=V (K¢,6) —
{z6,y6}. By Theorem 1, K55 is 2-colorable to Cs, and
E(G1(V(K55))) = {wiy;[1 < 0,5 < 2y U{zy[3 <d,j <
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(a) G1(V(Ks,5))
T5 X1 X2 X3 T4

Ys Ys Ya Y1 Y2
(b) G5(V (Ks,5))

Fig. 1. The graphs G| (V(K5,5)) and G4(V (K5,5))

4 UAfasy;|1 < j < 51 E(G(V(Ks5)) = {aiy;]l <
i< 23 <)< 4U{myB<i<4l <<
2}U{z;ys|1 < i < 4}. Besides this, there is one coloring way
without resulting monosubgraph Cj in the 2-coloring edges
of K55, namely G (V(Ks55)) = G1(V(K;55)) — x5y4 and
GL{(V(Ks5)) = Go(V(K5.5)) + zsya(see Figure 1). Now we
consider the vertices ¢ and ys. Since Cs ¢ Ga(or GY), xg
is adjacent to at most one vertex of {y1,y2,y3,ys}. Hence xg
has to be adjacent to at least three vertices of {y1, y2, Y3, ¥4}
in G1(or G}), we have Cg C G;(or G}), a contradiction. So,
Kg 6 is not 2-colorable to Cj, that is, b(Cs; Cs) < 6. [ ]

In order to prove Lemma 3, we need the following claims.
Let Hogt3 and Hogi4 denote the two graphs as shown in
Figure 2, and G be a spanning subgraph of K3 .3 for
k > 3 such that Cy(;41) € G and Cs € G°, then we have

1
T2 Y al

(b) Hapya

Fig. 2. The graphs Hap43 and Hopqa

Claim 1: H2k+3 g G.
Proof: By contradiction, we assume that Hopi3 C G,
and label the vertices of Harys as shown in Fig. 2(a).
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Let xg42, xr+3 and yr.+3 be the remaining vertices of
V(G). Since Cg ¢ G° by Lemma 1, we have P; C
G{Zht1, Tha2, Tht 3, Yh—1, Yk> Ykt3})- Since Copry € G,
ZTrp+1 1S nonadjacent to yr_1 or yr. By symmetry, it
is sufficient to consider the five cases. We may assume
Tht2Yk—1, Thy2¥kt+3 € E(Q), Y—1%k+2, Yo—1Tk+3 € E(G),
Th2Yk—1, Tha2Uk € E(G), Yrt3Trs1, Yrt3Zrr2 € E(G) or
Yk+3Tk+2, Yk+3Tk43 € E(G).

Case 1. Suppose XpioUk—1,Tk+2¥k+3 € E(G). Since
Cotkr1y € G, each vertex of {yri1,yrs+2} is nonadjacent
to any vertex of {z1,xr_1,Zr+2}, and yr13 is nonadjacent
to zx_1. And since Cg ¢ G by Lemma 1, we have
P3 C G({w1,Tr—1, Tha2, Ykt1, Yk+2, Yk+3}). Hence yp. 43 has
to be adjacent to z;. Since Co(41) € G, yx is nonadjacent
to any vertex of {xx_1,Zrs+2}. Hence we have we have
Ps & G{x1, k1, Tkt2, Yk, Yk41, Ykt+2}). By Lemma 1, we
have Cg C G¢, a contradiction.

Case 2. Suppose yi—1Zk+2, Yk—1Zkt3 € E(G). Since Cg €
G¢, by Lemma 1, we have P3 C G{{xp—1, Tk+2, Th+3, Yk+1,
Yk+2, Yk+s})- Since Co(py1) € G, each vertex of {y41,
Yr+2} is nonadjacent to any vertex of {xp_1,Tpt2, Tr+3}
Hence yi13 has to be adjacent to at least one vertex of
{@k+2, Tk+3}. The proof is same as Case 1.

Case 3. Suppose T 42yk—1, Zrt2Uk € E(G). Since Co(i41) €
G, each vertex of {yx+1,yr+2} is nonadjacent to any vertex of
{@1,2K—1,Tk42}. And since Cs € G, by Lemma 1, we have
P3 C G({1,Zr—1, Thy2, Yt1, Ykt2, Yht3}). Hence ypys is
adjacent to at least two vertices of {1, Zx_1, Zx12}. Therefore
since Ca(x11) ¢ G, we have yj;43 has to be adjacent to z;
and xj_1. Similarly, since Cs ¢ G°, by Lemma 1, we have
Py C G{{&k, Tht1, Thg3, Y1, Yks Yr3})- Since Cogepry € G,
x) is nonadjacent to y; or Y43, and xpyq is nonadjacent to
any vertex of {y1,yk,Yr+3}. If xprg is adjacent to yg, the
proof is same as Case 2. If x5 is adjacent to both y; and
Yk+3, we have Cy(;41) € G, a contradiction.

Case 4. Suppose Yri3Tkil,Yrkt+3Trrz € E(G). Since
Cogep1y € G, each vertex of {1,zr_1} is nonadjacent to
any vertex of {yxt+1,Yk+2,Yk+s}. And since Cs € G°, by
Lemma 1, we have P3 C G{{x1, Tk—1, Tht2, Yk+1, Yk+2,
Yr+3}). Hence xpyo is adjacent to at least one vertex of
{Uk+1,Yrs2}, say Zpioyrt1 € E(G) as shown in Fig.
3. And since Cs ¢ G° by Lemma 1, we have P; C
G{x1,Tk—1,Th+3, Yk+1, Yk+2, Yr+3 })- Hence we have x5
is adjacent to at least two vertices of {yx11,Yk+2,Yr+3}- In
any case, since Co(;41) € G, k43 is nonadjacent to any ver-
tex of {yx—2,Yk—1,Yr}. And each vertex of {Tgy1,Tpt2} is
nonadjacent to any vertex of {yx—_2,yx—1,yr }- Hence we have
Py & G({Zks1, Thy2, Ths3, Yo—2, Yk—1, Yk })- By Lemma 1,
we have Cg C G, a contradiction.

Case 5. Suppose Yr+3Tk+2,Yrk+3Tr+s € E(G). Since
C’Q(k.H) g G, T4+ is nonadjacent to yp_; or yi. Since
Cs ¢ G¢, by Lemma 1, we have Py C G({Zp41, Th+2, Thts,
Yk—1,Yk, Yk+1}). If there is one edge between {zy12, Ti+3}
and {yx—_1,yx}, the proof is same as Case 2. Hence yii1
has to be adjacent to at least one vertex of {Zri2,%r+3},
say Yr+1%r+2 € E(G). And since Oy G, y is
nonadjacent to 4o or zpys. Therefore we have Pj SZ
G{®r+1, Th+2, Tht3, Y1, Yk—1, Yk +)- By Lemma 1, we have

153 scholar.waset.org/1307-6892/15580


http://waset.org/publication/The-Bipartite-Ramsey-Numbers-b(C2m;-C2n)/15580
http://scholar.waset.org/1307-6892/15580

International Science Index, Mathematical and Computational Sciences Vol:7, No:1, 2013 waset.org/Publication/15580

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Voal:7, No:1, 2013

Fig. 3. x4 being adjacent to yz41

Cs C G°, a contradiction.
By Cases 1-5, we have Hopy3 € G. |
Claim 2: H2k+4 g G.

Proof: By contradiction, we assume that Ho 4 C G, and
label the vertices of Hay4 as shown in Fig. 2(b). Let x4 2 and
Ti13 be the remaining vertices of V(G). Since Cyj41) € G,
Zg4+1 is nonadjacent to any vertex of {yr—1,yr}. If Tpy1
is adjacent to yki3, then we have Hopy3 C G, a con-
tradiction to Claim 1. And since Cs ¢ G¢ by Lemma
1, we have P3 - G({xk+17Ik+271'k+3aykflyykaykqt?)})- If
Tpyo(or xg43) is adjacent to both y,_; and yi3, we have
Cyk+1) € G, a contradiction. By symmetry, we may assume
ThoUk—1, Th2Uk € E(G), yp—1%p42, Ys—12k43 € E(G) or
Yk+3Th42, Yrr3Zhys € E(G).

Case 1. Suppose =Zpioyk—1,%rioyx € E(G). Since
Co+1y ¢ G, each vertex of {ypi+1,Yxts} is nonad-
jacent to any vertex of {x1,Tp_1,ZTki2}, and yryo is
nonadjacent to any vertex of {zi,zx_1}. Then P3; ¢
G{z1,Tr-1,Tk+2, Yk+1, Yk+2,Yk+3}). By Lemma 1, we
have Cs C G°, a contradiction.
Case 2. Suppose Yr—1Zg+2,Yk—1Zk+3 € E(G). Since
Cog+1y € G, each vertex of {ypi1,Yr43} is nonadjacent
to any vertex of {xpio,ZTrt3}, and yi is nonadjacent to
ZTrt1. If yr is adjacent to one vertex of {Tiy2,Zrts3},
the proof is same as Case 1. If zp11yp+s € F(G), then
Hopys C G, a contradiction to Claim 1. Hence Ps g
G{Ths1s Thi2, This, Yks Yht1, Yks3)). By Lemma 1, we
have Cs C G, a contradiction.
Case 3. Suppose Yki3Tp+2,Yk+sTkts € E(G). Since
Cor+1) € G, each vertex of {y_1,yx} is nonadjacent to any
vertex of {Zj41, T2, T3} And since Cg € G¢, by Lemma
1, we have P3 C G{@ki1,Tht2, Thi3s Yoo1, Yks Yht1))-
Hence yy+1 is adjacent to at least one vertex of {Zxy2, Zr+3}-
In any case, we have Hoi13 C G, a contradiction to Claim 1.

By Cases 1-3, we have Hojiq € G. ]

By an argument similar to the above proofs, we can prove
Claim 3 and 4. However, their proofs are more complicated
than Claim 2.

Claim 3: (Cgk U 04) g G.

Claim 4: (Czk U Ps) 7¢_ G.

Lemma 3: Let G be a spanning subgraph of Ky 3 ;43 for
k>3.1If Cop C G and Cg € G°, then Cy11) € G.

Proof: We may assume that Cyj, 1) ¢ G. Without loss of
generality, let E(Car) = {z1y1, Y122, T2Y2, - - - Tkk, YkT1 }-
Since Cg g G¢, by Lemma 1, we have P; C G{{zkt1, Tito,
Th13, Yh+1s Yk+25 Yk+3 1) Y Tkt 1Uk+1, Th+1Yk+2 € E(G).
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Similarly, since Cs € G, we have Py C G{{xy, Tp+2, Tht3,
Yk+1s Yk+2, Yk+3 ). If xp is adjacent to both yi11 and y4a,
then Hopys C G, a contradiction to Claim 1. If xj is
adjacent to both yx41 and yg43(or both yx1o and yi3), then
Hokiq C G, a contradiction to Claim 2. If there exists one
vertex of {xy+2, Zr43} being adjacent to both yx41 and yi42,
then (Car U C4) C G, a contradiction to Claim 3. If there
exists one vertex of {Z42, k43 } being adjacent to both yg41
and yg4+3(or both yxyo and ygy3), then (Cop U P5) C G, a
contradiction to Claim 4. So, by symmetry, it is sufficient to
consider the four cases as follows.

Case 1. Suppose yj+1Zk, Yk+1Zk+2 € E(G). Since Cg € G©,
by Lemma 1, we have P; C G{{Zk+1, Th+2, Tht3, Yk—1, Yk,
Yrt2}). Since Co(y) ¢ G, each vertex of {zpq1,Tpq2} is
nonadjacent to any vertex of {yx—_1, yx }. If 2512 is adjacent to
Yr-+2, then we have (Cyr, UCy) C G, a contradiction to Claim
3. If x4 3 is adjacent to yj42, then we have (Car, U P5) C G,
a contradiction to Claim 4. Hence zj43 has to be adjacent
to both y,_1 and yj. Similarly since Cg ¢ G, by Lemma
1, we have Ps C G{{Z1,Zr—1,Th+3, Yk+1, Yet2, Ykt+3})-
Since Co(x41) € G, yr+1 is nonadjacent to any vertex
of {&1,Zk_1,Tkt3}, Yk+2 is nonadjacent to any vertex of
{w1, 251} If Ypioxiys € E(G), we have (Cor U P5) C G,
a contradiction to Claim 4. If y,3 is adjacent to both z; and
Tpy3(or both z_; and x43), we have Cy(11) € G, a con-
tradiction too. Hence we have yxy321, yp+32x—1 € E(G) as
shown in Fig. 4. However, since Co(j41) ¢ G, each vertex of
{®k+1,Tk+2} is nonadjacent to any vertex of {y1, Yx—1, Yr+3}
and xp43 is nonadjacent to any vertex of {y1,yr+s}. So,
we have Py & G({Tr41,Tht2: Thtss Y1, Yh—1,Ykt3}). By
Lemma 1, we have Cg C G, a contradiction.

Fig. 4. yp4+3 being adjacent to both 1 and xj_1

Case 2. Suppose Yi+1Zx+2, Yk+12k+3 € E(G). Since Cs ¢
G¢, by Lemma 1, we have P; C G{{Zk+t1, Tk+2, Tht3, Yk,

Yk+2, Yk+3})- If k41 is adjacent to yy, the proof is same as
Case 1. If there exists one vertex of {zjt2,zk+3} being ad-
jacent to yx.y2, then we have (Cq, UC4) C G, a contradiction
to Claim 3. If there exists one vertex of {xy4o2,zk13} being
adjacent to Y3, then we have (Co,UPs) C G, a contradiction
to Claim 4. If y;, is adjacent to both x4 and xx43, we have
Hs13 C G, a contradiction to Claim 1. Hence yi3 has to
be adjacent to 1. Similarly, since Cs ¢ G, by Lemma 1,
we have P3; C G{{z1, Tk, Trt2, Yk+1, Yk+2, Yk+3 ). If there
exists one vertex of {x1, zx } being adjacent to yj41, the proof
is same as Case 1. If there exists one vertex of {1,z } being
adjacent to both yiyo and yi3, then we have Hapr3 C G, a
contradiction to Claim 1. If x4 o is adjacent to yx4+2 OF Y43,
then we have (Co, U Cy) C G, a contradiction to Claim 3. If
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there exists one vertex of {yx+2, yr+3} being adjacent to both
1 and xy, the proof is same as Case 1.

Case 3. Suppose Yi+3Tk,Yk+3Tk+e € E(G). And since
Cs € G¢, by Lemma 1, we have P; C G{{zk, T2, Trt3,
Yk—1, Yk+1, Yk+2 ). If zx is adjacent to yr41 Or Yi+o, then
we have Hopig4 C G, a contradiction to Claim 2. If zj49 is
adjacent to yri1 Or Yr42, then we have (Cap U P5) C G,
a contradiction to Claim 4. If zy43 is adjacent to both
yr+1 and ygyo, then we have (Co, U Cy) C G, a con-
tradiction to Claim 3. Since Cyy1) ¢ G, ygr—1 is non-
adjacent to xy42. Hence xx43 has to be adjacent to yg_;.
Similarly, we have yyz,43 € E(G), since otherwise Py ¢
G{Zk, Thro, Thy3s Yrs Ykt 1, Yrt2))-

Since Cs ¢ G°, by Lemma 1, we have P; C G{{z1, k12,
Tht3s Yk+1, Yk+2, Yk+3}). If there exists one vertex of
{z1,xr4+3} being adjacent to both yiy1 and yi42, then we
have Hori13 C G, a contradiction to Claim 1. If xy4o is
adjacent t0 Yg4+1 OF Yrt2, then we have (Cor U Ps) C G,
a contradiction to Claim 4. Since Cp(;41) ¢ G, yYpgs is
nonadjacent to x; or xpy3. If there exists one vertex of
{Yk+1,Yr+2} being adjacent to both 7 and xj4s, we have
Ca(k+1) € G, a contradiction.

Case 4. Suppose yi43%k+2, Yk+3Tk+3 € E(G). Since Cg ¢
G¢, by Lemma 1, we have P; C G{{x, Tk+2, Th+3, Uk, Yk+1,
Yr+2}). If there exists one edge between {xpi2,Txrr3} and
{Yk+1,Yk+2}, we have (Cor U P5) C G, a contradiction to
Claim 4. If xj is adjacent to yg41 Or Yr+2, the proof is same
as Case 3. If y, is adjacent to xj42 Or x4 3, the proof is also
same as Case 3.

By Cases 1-4, we have Co, 1 C G. [ ]

Let G be a spanning subgraph of Kgg. If C5 € G°, by
Lemma 2, we have Cg C G. Hence we have the following
corollary by Lemma 3.

Corollary 2: b(Cs; Cs) < 6.

Lemma 4: If m > 4, we have b(Capm; Cs) < m + 2.

Proof: We will prove it by induction.

(1) For m = 4, the lemma holds by Corollary 2.

(2) Suppose that b(Cox; Cg) < k + 2 for k > 5. We assume
that b(Cyk11);Cs) > k + 3 for k > 5. Since C5 ¢ G°,
we have Co, C G. By Lemma 3, we have Cy;y1) C G,
a contradiction. So the assumption does not hold, that is,
b(Ca(k+1); Cs) < k + 3. This completes the induction step,
and the proof is finished. ]

IV. CONCLUSION

Setting m = 3 in Corollary 1, we have b(Cs; Cs) > 6. By
Theorem 1, Lemma 2 and Lemma 4, we obtain the values of
b(Capm; Cs) as follows.

6, m =3,

Theorem 2: b(Cap; Cs) = M2 m> 4
Furthermore, we have the following conjecture,

Conjecture 1: b(Caopm; Cap) =m +n — 1 for m > n.
By the results in [7] and Theorem 2, it is true for n = 2 and
3.
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