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Abstract. Rapid emergency response and early detection of hazards
caused by natural disasters are critical to preserving the lives of those in
danger. Deep learning can aid emergency response authorities by au-
tomating UAV-based real-time disaster recognition. In this work, we
provide an extended dataset for aerial disaster recognition and present
a comprehensive investigation of popular Convolutional Neural Network
models using transfer learning. In addition, we propose a new lightweight
model, referred to as DiRecNet, that provides the best trade-off between
accuracy and inference speed. We introduce a tunable metric that com-
bines speed and accuracy to choose the best model based on application
requirements. Lastly, we used the Grad-CAM explainability algorithm
to investigate which models focus on human-aligned features. The ex-
perimental results show that the proposed model achieves a weighted
F1-Score of 96.15% on four classes in the test set. When utilizing met-
rics that consider both inference time and accuracy, our model surpasses
other pre-trained CNNs, offering a more efficient and precise solution for
disaster recognition. This research provides a foundation for developing
more specialized models within the computer vision community.
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1 Introduction

Natural disasters have been on the rise worldwide in recent years, with ecological
and socioeconomic consequences. According to the United Nations Office for
Disaster Risk Reduction, there were 7,348 disaster incidents between 2000 and
2019, resulting in 1,23 million deaths and US $3 trillion in economic losses [22].
The World Meteorological Organization, claims that over the last 50 years, a
disaster related to weather, climate, or water hazard has occurred every day,
killing 115 people and inflicting US $202 million in losses [4].

Unmanned Aerial Vehicles (UAVs) such as drones have emerged as effective
tools for the early identification of these disasters due to their low cost, wide
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coverage area, and low risk to personnel. However, on-board processing presents
its own set of issues, due to limited computational resources and low-power limits
imposed by UAVs. As a result, the operational performance of the underlying
computer vision algorithm is critical for autonomous UAVs to detect disasters
in real-time. With the combination of Deep Learning, drones can be used for
disaster classification, which can quickly and accurately identify affected areas,
assess damage severity, and prioritize response efforts.

One crucial aspect of the successful implementation of deep learning models is
the availability of a sufficient amount of dataset, which plays a significant role in
their overall performance. However, gathering data, in the event of an emergency,
is time-consuming and expensive, as it frequently involves human data process-
ing and expert evaluation. The potential for evaluating deep learning models in
such situations is constrained by the dearth of comprehensive datasets related
to natural disasters. Furthermore, while there has been considerable research on
algorithms for natural disaster detection in aerial images, explainable AI has
not been extensively investigated for this domain in the existing literature. By
providing an explainable visual representation of the image regions on which the
model is focusing, image explainability algorithms can help emergency respon-
ders quickly identify the location and extent of a natural disaster, allowing them
to respond more effectively and efficiently.

This work addresses these gaps by extending aerial image datasets for disas-
ter recognition, including four classes; normal, earthquakes, floods, and wildfires
encompassing a total of 16,723 images. We propose the DiRecNet CNN model
and compared it to widely known pre-trained models such as EfficientNet-B0
[21], MobileNet-V2 [17] ResNet50 [8], VGG16 [19], DenseNet121 [9], Inception-
ResNetV2 [20] NASNetMobile [23] and Xception [5] using transfer learning. The
proposed CNN achieved a weighted F1-score of 96.15% in the test set and outper-
formed other pre-trained CNNs when considering inference time. In our study,
we also conducted experiments on the explainability of the image using Gradient-
weighted Class Activation (Grad-Cam) technique, with the objective of improv-
ing the explainability of the model. Using Grad-CAM, we better understood
common failures or errors by emphasizing the significant areas of an image that
contribute to a certain prediction. Overall, CNN-based deep learning models
exhibit strong potential for real-time natural disaster detection.

2 Background and Related Work

Several innovative solutions have been developed for visual disaster recognition in
recent years, which can be crucial for rapid response operations. Gadhavi et al. [7]
proposed a model that uses transfer learning to recognize natural disasters using
a video dataset. Aamir et al. [1] developed a binary model to detect the existence
of a disaster and a classification model to identify different types of disasters.
Agrawal and Meleet [2] fine-tuned the ResNet-50 model for disaster recognition
and tested it on real-time and pre-recorded videos. Alam et al. [3] used transfer
learning with various pre-trained CNN models to classify the MEDIC dataset.
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Li et al. [14] used YOLOv3 for detection and various neural networks, including
VGG, ResNet, and MobileNet, for classification on the LADI dataset [15].

The current state-of-the-art methods for disaster detection typically focus on
identifying a single type of disaster. Some recent techniques aim for multi-class
disaster detection, but their models are too large and have too many parameters
for effective execution on unmanned aerial vehicles (UAVs) onboard hardware.
Therefore, developing custom models that are tailored to the specific constraints
and requirements of embedded systems on drones is crucial to achieving efficient
and effective disaster recognition. It should be noted that most existing models
may not incorporate explainable AI techniques, which can limit their usefulness
in providing valuable insights to first responders in the field.

Previous studies have suffered from a lack of diversity in their datasets, some
containing limited images or not aligning well with UAV viewpoints. Our work
aims to address these limitations and establish a benchmark. Moreover, the lack
of aerial perspective images in current datasets hinders natural disaster recog-
nition. Some datasets focus exclusively on a single type of disaster, failing to
represent the full spectrum of real-world scenarios. Geographic or temporal bias
can further compromise representativeness, as certain datasets can draw from a
restricted range of locations or events. Our proposed methodology aims to mit-
igate the limitations of biased datasets by incorporating diverse aerial imagery
and promoting transparency in the decision-making process of our models. Fur-
thermore, our model is optimized for deployment in embedded systems, such as
drones, and achieves a favourable balance between speed and accuracy.

3 Proposed Approach

3.1 Dataset for Disaster Recognition using UAVs

Our aim was to create a benchmark for aerial natural disaster recognition suit-
able for UAV applications. To do so we start initially from the AIDER database
[12,13] which had a similar purpose but a smaller number of images per disaster
class which can result in overfitting, and poor generalization. In addition to these
samples, we extracted images as frames of videos downloaded from YouTube
searched using queries like "aerial" + "disaster","flood","collapsed building".

The data collection process involved scanning images to match the visual per-
spective of the UAV, and filtering out any irrelevant images, such as those that
were blurred or not related to the disaster. The mean resolution (width×height)
for each class is; earthquake 667×1018, flood 595×884, normal 553×395, wildfire
1557× 834. Overall, the images collected belong to commonly occurring natural
disasters, earthquakes/collapsed buildings, floods, and wildfire/fire with an ad-
ditional class, the normal case. Normal images do not reflect events, disasters, or
any other aspects that could be related to catastrophic events. Fig. 1 shows sam-
ples from the dataset, while the summary of the data is explained in the Tab. 1.
As a result, our contribution compared to the state-of-the-art is a newer, larger
dataset containing a set of images of natural disasters that are also suitable for
use in UAV applications for aerial disaster recognition.
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Earthquakes Floods Wildfire/Fire Normal Total

Train 1927 4063 3509 3900 13399
Validation 239 505 439 487 1670

Test 239 502 436 477 1654
Total 2405 5070 4384 4864 16723

Table 1. Proportion of images in each class within the train, validation, and test set.

Fig. 1. Overview of aerial images from the Database.

3.2 Disaster Recognition Network Architecture

To enhance the operation of a UAV in emergency response, it is necessary to have
lightweight algorithms that provide a good trade-off of complexity and accuracy.
To this end and to motivate more work towards this area, we proposed the design
of a custom CNN designed from scratch to be efficient by tailoring the use of
convolutional layers and kernel sizes.

The custom CNN called DiRecNet consists of four main blocks, making it
feasible for the model to learn hierarchical feature representations without re-
ducing the feature map resolution too much. On the first two blocks, we use
normal convolutional layers to extract richer low level features, while on the
last two blocks we utilized separable convolutions to account for the fact that
the channel size increases and has more efficient computations with a reduced
number of operations and parameters.

In more detail, the model first passes the scaled images onto two consecutive
normal convolutional layers. The former with a kernel size of 7 × 7 pixels and
16 filters, while the latter with 5 × 5 pixels and 16 filters. This follows modern
network trends that apply larger kernels [16]. The smaller channel number is
used to offset the larger kernel size. Batch normalization is applied just after
these convolutions, with a max-pooling operation of stride 2× 2 after that. The
data points are then passed to the next block of two convolutional layers with
kernel size of 3 × 3. The first convolution involves 32 filters, while the second
has 64 convolution filters. Again, batch normalization is applied before the next
max pooling layer. The third block involves two separable convolutions with 128
and 256 filters respectively and 3 × 3 size, followed by a batch normalization
layer. A max-pooling operation is also applied with a pool size of 2× 2. The last
block is designed with two identical separable convolutions of the 512 filter and
the size 3 × 3. Finally, a global average pooling layer is applied to flatten the
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Fig. 2. Proposed Convolutional Neural Network Architecture.

features. These are then passed to a fully connected layer of 1024 neurons, before
a dropout of 0.7. Another fully connected layer is applied with 512 neurons with
a dropout of 0.5. The last layer of the model is a fully connected layer of size 4
as the number of classes. An overview of the model is depicted in Fig. 2.

3.3 Baseline Designs

To provide a useful benchmark for the constructed dataset, we compare the per-
formance of various CNN models. We use transfer learning approach to modify
and fine-tune CNNs trained on the ImageNet large scale dataset [11] to perform
image disaster recognition. The transfer learning CNN models investigated in
this work are: EfficientNet-B0 [21], MobileNet-V2 [17], ResNet-50 [8], VGG-16
[19], DenseNet-121 [9], InceptionResNet-V2 [20], NASNetMobile [23] and Xcep-
tion [5]. These models capture a wide range of architectural design choices.

During the experiments, we freeze some layers of the pre-trained models and
add some others to be trained. Specifically, in our experiments, we remove the
last fully connected (FC) layer of each model and Global Average Pooling (GAP)
was attached. On top of that, we added three fully connected layers with two
dropouts in between. In general, the classification head architecture attached to
the transfer learning models is the same as in the proposed model. For each pre-
trained model, a pre-processing function was implemented using the TensorFlow
library to standardize the input images based on the ImageNet dataset [6].

3.4 Data Pre-Processing and Training Process

The images in our data collection were scaled to 224× 224× 3 and standardized
for DiRecNet therefore to change the distribution to have a mean of zero and a
standard deviation of one. Random augmentations were applied to expand the
diversity of the dataset and combat overfitting. Specifically, we applied rotation,
zoom, horizontal shift, vertical shift, horizontal flip, and shear. We experimented
with different color spaces, but chose RGB for the final experiments. We used
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Models PARAMS Weighted F1 FPS Score 1 Score 1 Score 1 Score 2
(M) (%) (1/s) Biased FPS Biased F1 Balanced

EfficientNet-B0 [21] 5.89 95.82 11.72 0.74 0.82 0.78 819.64
MobileNet-V2 [17] 4.10 93.77 15.37 0.90 0.77 0.84 259.57
ResNet50 [8] 26.21 96.98 6.87 0.47 0.77 0.62 1073.61
VGG16 [19] 15.77 94.50 5.22 0.29 0.55 0.42 146.22
DenseNet121 [9] 8.61 95.07 7.46 0.45 0.65 0.55 310.21
InceptionResNetV2 [20] 56.43 88.09 5.48 0.12 0.11 0.11 1.81
NASNetMobile [23] 5.88 90.65 12.96 0.66 0.49 0.57 25.18
Xception [5] 23.49 92.44 5.48 0.25 0.42 0.33 36.81
DiRecNet (Proposed) 1.53 96.15 14.05 0.89 0.91 0.90 1235.12

Table 2. Performance evaluations for disaster predictions.

slightly different training regimes for the pre-trained models and the DiRecNet
model. The pre-trained models were frozen until the feature extraction layer,
before attaching the global average pooling layer and fully connected layers.
This implies that the initial layer weights are fixed and cannot be changed so
as to preserve learned features. Then they were fine-tuned for 40 epochs with
a learning rate of 1e − 3 and weight initialization based on ImageNet ILSVRC
Challenge [11]. On the contrary, the proposed DiRecNet was trained from scratch
for 300 epochs, with a reduced learning rate of 1e− 4. The batch size was set to
32, and Adam optimizer was selected for both DiRecNet and pre-trained models.

3.5 Explainability through Grad-CAM

Understanding how a deep learning model works and why it predicts a specific
classification outcome is highly important for critical applications such as emer-
gency management. Consequently, we move beyond the "black box" of CNN pre-
dictions and acquire a deeper understanding of how these models arrive at their
decisions. This was achieved through experimentation with an explainable AI
technique, known as Gradient-weighted Class Activation Mapping (Grad-CAM)
[18]. The algorithm creates a coarse localization map that highlights key areas
in the image for class prediction, by using the gradients of each target as they
flow into the final convolutional layer. In this way, we can identify classes that
are more challenging for the different models and understand whether additional
context is needed and whether current state-of-the-art methods are suitable for
the application of disaster recognition.

4 Experimental Evaluation and Results

4.1 Configuration and Evaluation Metrics

The experiments were carried out on the Linux operating system using the Tesla
V100 Graphics Processor Unit, with 64GB RAM and CUDA version 10.2. We
use TensorFlow 1 2.4.1 as the deep learning framework along with Python 2

1 http://www.tensorflow.org
2 http://www.python.org

http://www.tensorflow.org
http://www.python.org
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Fig. 3. Results of Grad-Cam algorithm for the different models. The heat-maps show
that the classification’s importance is dominated by the pixels associated with the
disastrous occurrence.

version 3.8.0. To evaluate the performance of the models, we investigated two
key performance indicators. These are the weighted F1 score and frames per
second (FPS). This is particularly important because both performance and
speed are crucial to detect natural disasters in real-time.

We then formulated a parametrizable score function as shown in Eq. 1 in a
way to allow for choosing the trade-off between accuracy and speed. By setting
the λ value, we can identify the model that performs best for a particular set-
ting. In this work, we have chosen λ to be 0.7 to bias towards more accurate
models, and 0.3 to bias towards speed. Additionally, to provide a more extensive
evaluation we benchmark the models using a modified version of the scoring for-
mula proposed in [10] for evaluating the combined effect of speed and accuracy
as shown in Eq. 2, where we set the normalizing constant C to 1e27.

Score1 = λ× F1norm + (1− λ)× FPSnorm (1)

Score2 =
2F1 × FPS

C
(2)

However, prior to this, since the values of FPS and F1 have different ranges,
we normalize them across all models by using the formula in Eq. 3, where values
in x are squeezed into the range [a, b] where a was set to 0.1 and b at 1, thus
making the variables comparable to each other.

xnorm = (b− a)
x−min(x)

max(x)−min(x)
+ a (3)

4.2 Disaster Classification Evaluation

The general evaluation of the disaster classification performance of the models
is shown in Tab.2. In summary, the models’ weighted F1-Score ranges between
88% and 97%. ResNet-50 demonstrates optimal performance in terms of ac-
curacy, while MobileNet-V2 exhibits the highest FPS, rendering it appropriate
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for processing multiple streams concurrently. By evaluating the performance of
the models using a balanced approach that considers both speed and accuracy
(λ = 0.5) according to the metric score in Eq. 1, our proposed model surpasses
other models, achieving a score of 0.9, with MobileNet-V2 ranking second at
0.84. When biasing for FPS or F1, the proposed model remains the first or
a very close second. Specifically, when prioritizing FPS (λ = 0.3), MobileNet-
V2 achieves a score of 0.9, while the proposed model reaches 0.89. Conversely,
when emphasizing F1, the proposed model leads with a score of 0.91, followed
by EfficientNET-B0 at 0.82. Additionally, with respect to the metric presented
in Eq. 2, the proposed model demonstrates superior performance compared to
other methods. The proposed model achieves an overall score of 1235.12, while
the second-best performing model, ResNet50, achieves a score of 1073.61. This
shows that the heterogeneous design of mixing normal and separable convolu-
tions provides a well-balanced solution with fewer parameters than other models.

4.3 Gram-CAM Evaluation

We interpret the decision of each model using Grad-CAM. In Fig. 3, all models
predict the right class, and the heat-map produced by Grad-Cam is displayed.
First, comparing the pre-trained models, we observe that the majority create a
coarse grain heat map except for the VGG model. In contrast, while the pro-
posed model correctly predicts the disaster type, it does so with a much sparser
heat map. For example, in the collapsed building image, the region focuses more
on the rubble rather than the building structure, while in the flood image, the
model seems to distinguish the flood class based on the presence of surrounding
buildings. In most pre-trained models, larger regions are emphasized, but for
fire-related decisions, models exhibit more similar characteristics. The experi-
ment exposed Grad-CAM’s limitations, as highlighted regions may not always
clarify disaster presence, like in collapsed building cases. In collapsed buildings,
highlighting adjacent structures does not effectively explain the disaster’s pres-
ence. We expect that this research can drive more efforts toward specialized
explainability techniques for such applications.

5 Conclusion and Future Work

In this work, we presented a new larger dataset, offering 16,723 images, for
aerial image recognition of disasters. We have explored the direct application
of various existing CNN pre-trained models on this dataset to provide an ini-
tial benchmark. More importantly, we have shown that a heterogeneous CNN
with mixed normal and separable convolutions can provide adequate trade-off
between accuracy and speed and can thus be an optimal choice for these kinds
of applications. Through this process, we have formulated a tunable metric to
evaluate models. Based on the various scoring schemes, the proposed model still
outperforms traditional pre-trained CNNs. Lastly, the gradient-weighted class
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activation mapping (Grad-CAM) method was used to visualize the input re-
gions crucial for class predictions, demonstrating that different models provide
a varying degree of granularity in explanations.

The experimental findings indicate that we were able to obtain classifica-
tion outcomes that offered promising results for real-time disaster recognition
from aerial images. Those initial results are encouraging, but there are still some
challenges. Further, improvements and further investigation on more lightweight
models are possible based on the experiments in this paper. Furthermore, an
approach for multi-task scenarios where classification is combined with segmen-
tation to provide more localized and precise identification of disasters is desired.
Finally, it is worth investigating non-supervised approaches, since data for emer-
gency management applications are scarce and difficult to annotate.
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