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Abstract— Reconfigurable Intelligent Surfaces (RISs) have 

gained significant attention in research studies focused on their 

technology and/or potential applications. While several 

modeling approaches have been proposed - ranging from 

analytical integral formulations to simplified approaches based 

on scattering matrix theory – there is still a great need for 

efficient and electromagnetically-consistent macroscopic models 

that can simulate scattering from RISs, especially for the 

purpose of large-scale simulations purposes. In the present 

paper we propose a fully ray-based approach, based on the 

characterization of the RIS through a "spatial modulation" 

function that can be easily embedded in efficient, forward ray 

tracing models. We validate the proposed model by comparison 

to well established methods available in the literature and show 

that, although the considered method is completely different and 

more efficient, results are as accurate if not indistinguishable in 

a typical benchmark case. 

Keywords— macroscopic modeling, ray model, reconfigurable 

intelligent surface (RIS), metasurface. 

I. INTRODUCTION 

In the last years, Reconfigurable Intelligent Surface (RIS) 

technology has been proposed as a powerful and flexible tool 

to realize passive, relay-like reflectors for mm-wave and THz 

applications, to improve channel capacity or to perform basic 

operations on the signal "at the speed of light", thus limiting 

the use of digital signal processing devices and power 

consumption [1]. 

Several approaches have been proposed in the literature to 

efficiently model scattering from RISs for design and 

simulation purposes, while retaining good accuracy and 

electromagnetic consistency. Some Authors propose hybrid 

approaches where electromagnetic simulation is used to 

derive a far-field radar cross section of the RIS to be inserted 

in ray tracing simulation [2]. Far-field approaches, however, 

cannot be used to model near-field effects such as focusing, 

which represents one of the most important RIS applications. 

Promising macroscopic modeling approaches have been 

proposed that overlooks the RIS microscopic structure in 

order to directly address the specific wave transformation the 

RIS realizes [3]-[6]. These approaches assume that the 

metasurface can be described in terms of an effective surface 

function - e.g. a surface impedance or a spatial modulation 

function - that determines such a wave transformation based 

on Maxwell's equations.  In particular, in [6], a realistic 

macroscopic model for evaluating multi-mode reradiation 

from generic, finite-size, reflective RISs is introduced. 

While in the foregoing paper reradiation is modelled using a 

Huygens-based formulation, in the present work we build on 

that macroscopic approach to develop a fully ray-based, 

efficient formulation for anomalous reradiation, that can be 

used for large-scale simulation of RIS-based radio network 

solutions. Differently from [7], we model reradiation with a 

forward ray tracing approach, therefore avoiding a complex 

critical point search step. 

The model is briefly described in the following and then 

validated by comparison with some reference measurements 

and models available in the literature. 

II. RAY MODEL BASICS 

In the following, according to a forward ray-tracing 

perspective, we assume that the surface of an impedance 

modulated RIS is divided into small surface elements (or 

“tiles”) and we exploit the locally-plane wave assumption, to 

define the local incident and (anomalously) 

reflected/diffracted ray at each tile, in accordance with the 

classical Geometrical Optics (GO) theory.  At the same time, 

the actual curvature of the incident and reflected wavefronts 

is taken into account to compute the wave spreading factor, 

that gives the actual attenuation-trend of field with distance. 

The final goal is to compute the total field reradiated by the 

RIS in the far-field and radiative near-field as a set of rays. 

To this extent, the procedure is composed of the following 

steps: 

i. computation of the anomalous ray direction 

ii. computation of the reradiated field at the RIS 

surface 

iii. computation of the spreading factor 

If the RIS has multiple reradiation modes (e.g. Floquet’s 

modes of a locally periodic structure), the procedure above 

must be iterated for each reradiation mode. Moreover, the 

same procedure is applied also to diffracted rays from the 



surface edges, following the well-known approach of the 

Uniform geometrical theory of diffraction (UTD) [8],[9]. 

Anomalous ray reflection 

When a ray impinges on the RIS with propagation direction

ˆi
s , the field acquires an incidence phase gradient on the tile 

surface due to the inclination of the locally-plane wavefront 

of the ray with respect to the tile. Such phase gradient is:  

0
ˆsin                          (1)i i

ik τχ θ∇ = − s  

where 
iθ is the incidence angle with respect to the RIS 

normal, ˆi

τs is a unit vector that defines the orientation of the 

incidence plane with respect to the surface, and k0 is the free-

space wavenumber. 

 
Fig. 1 – Incident and reradiated ray on a point of the RIS surface. 

 

Then, according to a macroscopic approach, the RIS 
applies the additional phase gradient mχ∇  of the considered 

reradiation mode so that the total phase gradient at the 
considered tile becomes: 

                         (2)i mχ χ χ∇ = ∇ + ∇  

Anomalous reflection direction takes place according to 
total phase gradient (2). In particular, the reflection plane is 
parallel to the phase gradient direction (see Fig. 1): however, 
as surface points with a greater phase will reradiate before 
those with a phase lag, the resulting locally-plane wavefront 
will have opposite orientation with respect to the total phase 
gradient χ∇ . Therefore, the reradiation direction can be easily 

computed by observing that: 
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with 
rθ being the reradiation angle with respect to the surface 

normal, and ˆr

τs  the projection of the reradiation direction on 

the RIS plane. The reradiation direction ˆrs  is then given by:  

0

ˆ ˆ ˆ ˆcos +cos             (4) sin
r r

r r r
k

τ

χ
θ θ θ= +

∇
= −s s n n  

with n̂  being the normal unit vector to the RIS surface. 
As in [6], [10], the reradiated field can be computed using a 
proper Spatial Modulation Coefficient (SMC), sometimes 
called “reflection coefficient”. More generally, in order to take 
into account the polarimetric effect of the RIS we can make 
use of the Spatial Modulation Dyadic (SMD) coefficient: 

( ) ( ) ( )                       (5)e
mm j mA χ ′′ ′= ⋅r

Γ r r R  

where ′r  is the position vector of the generic element on the 

RIS surface, Am and χm are the amplitude and phase 
modulation of the considered reradiation mode, while the 
matrix m

R is used to account for the polarization 

transformation realized by the metasurface.  
In addition to the SMD, a proper spreading factor must be also 
applied to the incident field, in order to compute the reradiated 
field at a given point along the reflected ray.  
The spreading factor for the general case of an astigmatic 
wave is expressed by [11]: 

( ) 1 2
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where s is a local coordinate along the ray, and ρ1, ρ2, are the 
principal curvature radii of the wavefront at the reference 
point s=0. The reciprocals of the principal curvature radii (i.e. 
the principal wave curvatures), are the eigenvalues of the so-

called curvature matrix Q  [12],[13]. 

The surface impedance modulation of the RIS modifies 
the local curvature of the incident wave. Then, by following 
an approach similar to the one adopted in [13], i.e. imposing 
the phase matching for the incident and reflected wave at the 
RIS surface, the curvature matrix of the reflected ray can be 

expressed as a function of the incident curvature matrix i
Q  

and of the RIS modulation as: 
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with 
mχ∇∇ being the Hessian matrix of the phase modulation 

function computed at the reference point
0
′r , and 1  the 

identity matrix, while the notation T≡ab ab stands for the 

dyadic vector product, which is equivalent in linear algebra to 
the product of a column vector by a row vector, and 

T⋅ ≡a b a b  is the dot scalar product. 

Finally, the (anomalous) reflected field is expressed as: 
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with r’ being the position vector of the considered tile on the 
RIS surface, r the position vector of the observation point,         
s = |r-r’| the local coordinate along the reflected ray, and 

1 2,r rρ ρ  the reciprocals of the non-zero eigenvalues of the 

reflection curvature matrix r
Q , computed with (7). 

A. Anomalous ray diffraction 

Beside the GO contributions for the RIS scattered field, 
edge diffracted ray-fields are also included in the model. This 
type of contribution is important to smooth out the abrupt field 
discontinuity predicted by GO when crossing the Reflection 
Shadow Boundary (RSB) and to predict a nonzero field in the 
GO shadow region [8],[9]. 

Since the total phase progression along the RIS edges 
results from the combination of both the incident wave 
illumination and the surface impedance modulation, edge 
diffracted rays are launched toward anomalous directions, 
similarly to what happens for GO reflected rays.  

Namely, according to a generalized law of diffraction, the 

diffracted ray direction ˆd
s  must obey to: 



0

ˆ ˆ ˆ ˆcos                       (9)
m

d i

k

χ
β

 ∇
= ⋅ = − ⋅ 

 
s e s e  

where β is the aperture angle of the anomalous Keller’s 

diffraction cone, β’ is the incidence angle with respect to the 

edge and ê  is the unit vector along the edge, as shown in 

Figure 2. 

 

Fig. 2 – Incident and (anomalously) diffracted ray on a RIS edge. 

 
Therefore, one can proceed similarly to the standard UTD 
case, by recalling that the diffracted wave is astigmatic with 
one caustic on the edge, and that the diffracted field is 
computed as: 

( ) ( )
( )

0              (10)
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In (10), D is the dyadic diffraction coefficient, and ρd is the 

edge-caustic distance, i.e. the distance between the caustic at 
the edge and the second caustic of the diffracted ray.  

In order to extend the UTD theory to the case of a RIS, the 
diffraction coefficient introduced in [9] for a perfectly 
conducting wedge is here heuristically modified by multipling 
it by the spatial modulation dyadic Γ , similarly to the 

approach adopted in [14],[15] for a non-perfectly conducting 
surface. 

III. PRELIMINARY RESULTS 

As a simple benchmark case, we consider a "perfect" 

anomalous reflector, illuminated with a plane wave at normal 

incidence. The RIS has size 7x7 m2 , is centered in the origin 

of an orthogonal reference system Oxyz, and lays on the xy 

plane. Furthermore, the RIS is designed for an anomalous 

reflection angle θr = 60°, and a normal incident wave with 

perpendicular (TE) polarization with respect to the xz plane, 

at the frequency of 3.5 GHz. This can be accomplished by 

setting the following expressions in the SMD coefficient: 

0 (sin sin )

cos / cos

ˆ ˆ

m
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m
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m
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A

χ θ θ

θ θ

= − −

=

=R yy

                      (11) 

this means that the RIS imposes a constant phase gradient 

0
ˆ(sin sin )m

i rkχ θ θ∇ = − − x along the x axis,  the wave 

polarization is perpendicular to the reradiation plane and is not 

altered by the RIS, while the term cos / cosm

i rA θ θ=  

accounts for global power conservation [16]. 
In order to show the effectiveness of the proposed 

approach, the reradiated field is computed with the ray model 
along the Rx segment 10,   0,   0 20 [m]x y z= = ≤ ≤  

(crossing the reflection cone of the RIS and with spacing of 

0.03 m between receivers), and then compared with the field 
predicted using the Physical Optics approach. 

The PO field is computed through the following radiation 
integral: 

0
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where the equivalent surface currents for an impenetrable 
metasurface are approximated as [3]: 
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with 

, , ,1
ˆi r i r i r

η
= ×H s E  

Figure 3 shows the comparison of the ray model (blue dashed 
line) with the PO model (red line) along the Rx route. It is 
evident that the 2 curves are nearly coincident, thus 
confirming the validity of the adopted approach. 

 

Fig. 3 – Comparison of the ray model with the PO model along a Rx route 
crossing the reflection cone of the RIS. 

IV. CONCLUSIONS 

Based on the characterization of the RIS through a surface 

impedance (or "spatial modulation") function and a few 

parameters, in the present paper we propose a fully ray-based 

approach for the computation of the field reradiated from a 

finite-size, reflective RIS that can be easily embedded in 

efficient, forward ray tracing models. The model is based on 

the computation of the anomalous direction of the reflected 

or diffracted ray based on the phase gradient of the spatial 

modulation function, and on the computation of its spreading 

factor using the curvature matrix of the local wavefront. 

Preliminary results show that the proposed ray model, 

besides being intrinsically more efficient in terms of 

computation time, is as accurate as other popular models 

based on the Physical Optics approach. 
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