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ABSTRACT
Social networks contribute to the distribution of social capital, de-

fined as the relationships, norms of trust and reciprocity within

a community or society that facilitate cooperation and collective

action. Social capital exists in the relations among individuals, such

that better positioned members in a social network benefit from

faster access to diverse information and higher influence on infor-

mation dissemination. A variety of methods have been proposed in

the literature to measure social capital at an individual level. How-

ever, there is a lack of methods to quantify social capital at a group

level, which is particularly important when the groups are defined

on the grounds of protected attributes. Furthermore, state-of-the-

art approaches fail to model the role of long-range interactions

between nodes in the network and their contributions to social

capital. To fill this gap, we propose to measure the social capital

of a group of nodes by means of their information flow and em-

phasize the importance of considering the whole network topology.

Grounded in spectral graph theory, we introduce three effective

resistance-based measures of group social capital, namely group
isolation, group diameter and group control, where the groups are
defined according to the value of a protected attribute. We denote

the social capital disparity among different groups in a network as

structural group unfairness, and propose to mitigate it by means of a

budgeted edge augmentation heuristic that systematically increases

the social capital of the most disadvantaged group. In experiments

on real-world networks, we uncover significant levels of structural

group unfairness when using gender as the protected attribute,

with females being the most disadvantaged group in comparison

to males. We also illustrate how our proposed edge augmentation

approach is able to not only effectively mitigate the structural group

unfairness but also increase the social capital of all groups in the

network.
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1 INTRODUCTION
Online social networks play an important role in defining and

sustaining the social fabric of human communities. With billions

of users worldwide, they allow individuals to connect, interact

and share information with one another over the internet. They

have opened up new opportunities for personal and professional

networking, entertainment, learning and activism. However, the

formation of social networks —whether through organic growth

or recommendations— can create imbalances in network positions

which condition the access to resources and information [54]. These

network inequalities have an impact on the social capital of its

members, which exists in the relations among individuals [21].

Better positioned network members benefit from faster access to

diverse information, higher influence on information dissemination

and more control of the information flow [5, 14, 15, 37, 38]. In

practical terms, this means that individuals with a strategic position

in the network will have more influence over others, and better

access to information and opportunities regarding jobs, health,

education or finance.

Furthermore, link recommendation algorithms that pervade so-

cial media platforms tend to connect similar users, contributing to

the homophily and clustering of the network [69, 86]. These filter
bubbles limit the access to diverse individuals [37], exacerbate the

isolation and polarization of groups [25, 35, 69], reduce the opportu-

nities of innovation [58] and aggravate the perpetuation of societal

stereotypes [40]. In sum, the topology of the network can lead to a

vicious cycle where those who are disadvantaged accumulate fewer

opportunities to improve their social capital [30].

A variety of graph intervention methods have been proposed in

the literature to mitigate disparities in social capital at an individual

level [5, 39]. However, there is a lack of methods that consider such

disparities at a group level, which is particularly relevant when the

groups correspond to socially vulnerable groups, i.e., those defined
on the grounds of sex, race, color, language, religion, political or

other opinion, national or social origin, association with a national

minority, property, birth or other [22, 78]. Evaluating disparities

at the group level provides a broader, systemic perspective that

allows for the identification of overarching structural barriers or

inequalities that may not be apparent when examining individual

experiences. Focusing on the group level also supports the develop-

ment of inclusive solutions at scale that benefit entire communities,

promoting equity, diversity and the inclusion of disadvantaged

groups. We denote the disparity in social capital among different

groups in the network as structural group unfairness.
Similar to Bashardoust et al. [5], we consider a setting where

each node in the network is a source of unique information and,

therefore, access to all nodes is equally important. In this context,

information flow is an integral component of the social capital

and a distance metric that quantifies total information flow in the

graph, considering high-order relations that expand beyond the

immediate neighbors, is of utmost importance. We propose using

the effective resistance to measure the overall information flow

between pairs of nodes, since it is a theoretically grounded contin-

uous graph diffusion metric that considers both local and global
properties of the network’s topology [18]. In Section 3.1.2, we intro-

duce three measures of group social capital —group isolation, group
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diameter and group control— based on the effective resistance where

the groups are defined according to the value of their protected

attribute of interest. Based on these measures of social capital, we

define three measures of structural group unfairness in Section 3.2,

and frame the challenge of mitigating structural group unfairness

as a budgeted edge augmentation task in Section 3.3. This section

also presents the Effective Resistance Group Link (ERG-Link) al-
gorithm, a greedy edge augmentation algorithm that iteratively

adds the edges to the graph to increase the social capital of the

most disadvantaged group. In experiments on real-world networks,

described in Section 4, we uncover significant levels of structural

group unfairness when using gender
1
as the protected attribute,

with females being the most disadvantaged group in comparison

to males. We also illustrate how our approach is able to not only

mitigate structural group unfairness, but also increase the social

capital of all the groups in the network.

In sum, the main contributions of our work are:

(1) We propose three effective resistance-based measures of group

social capital in social networks, namely group isolation, group di-
ameter and group control;
(2) We define structural group unfairness as a disparity in the values

of such measures by different groups in the graph, where the groups

are defined according to the values of a protected attribute. This

approach is particularly relevant from a social perspective when the

disadvantaged group in the network corresponds to a vulnerable

social group;

(3) We propose ERG-Link, an effective resistance-based greedy edge
augmentation algorithm that iteratively adds edges to the network

to maximize the social capital of the most disadvantaged group;
(4) In experiments on real-world networks, we uncover significant

levels of group structural unfairness when using gender as pro-

tected attribute, with females being the most disadvantaged group

in comparison to males. We also illustrate how our approach is

the most effective in reducing structural group unfairness when

compared to the baselines.

2 RELATEDWORK
In this section, we provide an overview of the most relevant work

in the literature related to social capital, its measurement by means

of computational methods, fairness in graphs from the perspective

of social capital, and network interventions to mitigate unfairness.

Social capital. Social capital is as a multidimensional construct

that has been extensively studied in sociology, political science,

economics, and more recently, computational social science [57]. It

is defined as the networks, relationships, and norms of trust and

reciprocity within a community or society that facilitate coopera-

tion and collective action [21]. In simple terms, social capital is the

value derived from connections between people. It can be measured

and analyzed both at an individual and collective levels [8] and it

has been characterized according to different criteria. Some authors

propose three main dimensions of social capital, namely: structural,

emphasizing the relationships among individuals, organizations

and communities; cognitive, focusing on the shared values, norms

1
Note that we follow the same nomenclature for gender as that used in the analyzed

datasets, which is a binary variable with two values: male and female.

and beliefs that bind members of a group or community; and re-

lational, highlighting the intensity and quality of relationships,

including reciprocity, trust and obligations among individuals [50].

Others have proposed the distinction between bonding, bridging,

and linking social capital [71]. Bonding social capital captures the

aspects of “inward looking” communities that reinforce exclusive

identities and homogeneous groups [21]; bridging social capital

refers to “outward looking” networks across different groups that

do not necessarily share similar identities [15, 37]; and linking social

capital characterizes the trusting relationships and norms of respect

across power or authority gradients [70, 81]. The three forms are im-

portant for the well-being of individuals and communities: bonding

social capital contributes to social cohesion and support; bridging

social capital to mutual understanding, solidarity and respect; and

linking social capital to mobilize political resources and power.

Computational models of social capital. Network analysis offers

a robust computational framework to examine and quantify social

capital [15, 21, 80]. We consider a setting where all the nodes in the

network may be sources of relevant information. As a consequence,

access to all nodes —not just the sources or seeds of information—

is equally important. In this context, information flow is an integral

component of the social capital, and a variety of methods have been

proposed to characterize it, mainly through two concepts: centrality

and criticality [7].

Centrality measures the relative importance or prominence of

a node in the network, quantifying its ability to reach the rest of

nodes. Different approaches have been proposed in the literature to

measure centrality, including the degree centrality, closeness, local

clustering, the assortativity coefficient [9, 51], Katz centrality [42]

and PageRank [55]. Criticality reflects the node’s level of influence

or vulnerability within the network [34, 74]. Nodes with high criti-

cality are essential, such that their failure or disruption can have

significant consequences, cascading effects or system-wide impact.

Measures of criticality include effective size [15], redundancy [8]

and shortest path betweenness [41].

However, previously proposed methods are insufficient to ac-

curately quantify the overall information flow in the network for

several reasons. First, they model the distance between nodes as

the shortest path distance (geodesic distance [51]) which overlooks

alternative routes and indirect connections that may exist between

distant nodes, thereby underestimating the potential pathways for

information diffusion, influence propagation [10, 68] or resource

exchange. This myopic view can lead to oversimplified representa-

tions of network dynamics, ignoring the interplay between weak

ties, bridge nodes and overlapping communities that facilitate con-

nectivity and communication across disparate components in the

network. Second, most of the proposed approaches only consider

first-order —direct and local— relationships between nodes, rely-

ing on small neighborhoods of the graph. As a result, they ignore

higher-order structural information [1], such as the global proper-

ties of the network topology and long-range interactions between

nodes, which can lead to inaccurate insights on how information

flows globally [60]. Third, popular approaches to model informa-

tion flow in a network, such as the Independent Cascade model [43]

assume homogeneous, deterministic and instantaneous interactions
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between neighboring nodes which might lead to inaccurate predic-

tions, biased estimations and misrepresentations of actual diffusion

patterns observed in complex networks [72].

Conversely, graph diffusion metrics, such as the effective re-
sistance [45, 68], offer a principled approach to quantifying dis-

tances and interactions between nodeswithin a network, addressing

the above limitations. The effective resistance accurately captures

not only short-range but also long-range relationships between

nodes [18] because it considers alternative pathways, including

the network dynamics, and quantifies connectivity between dis-

tant nodes. Therefore, it constitutes a natural information distance

metric between nodes in a graph [10, 68]. Previous work has the-

oretically formulated measures of node centrality and criticality

based on effective resistances [10, 11, 52, 75], yet we are not aware

of any work that has modeled the social capital of a group of nodes

by means of effective resistance. From a practical perspective, the

concept of effective resistance has been used to measure polariza-

tion in social networks [39] and to rank user-items relations in

recommender systems [32]. In this paper, we propose quantifying

the social capital of a group of nodes in the network by means

of three measures derived from the effective resistance: the group

isolation, group diameter and group control, explained in Section

3.1.2.

Fairness in graphs. Social status plays a role in defining the struc-

ture of a network [3, 16] and a node’s position in a network is a

form of social capital [14, 21]. Thus, there are structural advantages

in information flow depending on the position that a node occu-

pies in the network. In the field of social networks, prior work has

stud fairness from the perspective of disparities in access to infor-

mation by differently positioned nodes in the graph, particularly

in the case of influence maximization, i.e., when a single piece of

information is spread in the network [65, 79]. However, there is a

scarcity of studies that model fairness considering that all the nodes

are sources of information and access to all the nodes is equally

important [5]. In this context and to the best of our knowledge, no

previous research has considered fairness in graphs from a group

perspective, when the groups are defined according to protected

attributes —such as gender, ethnicity, religion or socio-economic

status. In this paper, we fill this gap by defining, measuring and

mitigating structural group unfairness, understood as disparities in

social capital between different groups and where social capital is

measured by information flow.

Network interventions to mitigate unfairness in graphs. Network
interventions draw upon social network theory and structural anal-

ysis to understand and address the underlying mechanisms of un-

fairness within social networks. Interventions to mitigate structural

unfairness in a network may entail redesigning network struc-

tures [39, 64] or altering (adding and/or removing) edges [5, 76]

to eliminate discriminatory barriers, reduce homophily, and foster

diversity within the networks [15, 37]. These interventions aim to

enhance connectivity, promote inclusivity, and facilitate equitable

access to resources, opportunities, and support networks [7].

When aiming to improve the social capital in a network, edge

augmentation (i.e., adding edges) constitutes the natural interven-
tion tomitigate disparities [5]. Several edge augmentation strategies

have been proposed in the literature, such as connecting similar

nodes to improve bonding social capital [85], linking nodes with the

highest product of eigenvector centralities [76] or creating edges

between the most disadvantaged nodes and the central node [5].

However, these strategies are defined for individual notions of social

capital and they do not consider long-range interactions between

nodes. In our work, we focus on reducing the social capital dis-

parities between groups in the graph and we propose to measure

the social capital by means of the effective resistance, which is

able to quantify both short- and long-range interactions between

nodes. We approach this objective by adding weak ties [37] —i.e.

ties that correspond to relationships that are not within one node’s

close-knit group (strong ties)— between the disadvantaged group

and the rest of the graph.

3 MEASURING STRUCTURAL GROUP
UNFAIRNESS IN A NETWORK

In this section, we first present the distance metric that quantifies

the information flow between pairs of nodes in a social network and

provides the theoretical basis for the proposed measures of group

social capital. Next, we introduce three measures to quantify the

social capital of a group of nodes in a graph and present the concept

of structural group unfairness as the disparity in the measures by

different groups in the graph. Finally, we describe a greedy graph

intervention (edge augmentation) algorithm to mitigate structural

group unfairness.

3.1 Preliminaries
3.1.1 Effective resistance and social capital. We focus on the struc-

tural dimension of social capital, which emphasizes the relation-

ships among individuals, organizations and communities [50], and

propose to measure it as the information flow of a node in the net-

work. Such a measure is captured by the effective resistance [28, 45,
73] of the node. Given nodes 𝑢 and 𝑣 in graph 𝐺 = {V, E}, where
V is the set of nodes, E = {(𝑢, 𝑣) ∈ V ×V : 𝐴𝑢𝑣 = 1} is the set of
edges and A is the graph’s adjacency matrix, the effective resistance

𝑅𝑢𝑣 between nodes 𝑢 and 𝑣 is a distance metric given by:

𝑅𝑢𝑣 = (e𝑢 − e𝑣)L† (e𝑢 − e𝑣)⊤, (1)

where e𝑢 is the unit vector with a unit value at 𝑢-th index and

zero elsewhere; L† =
∑
𝑖>1

1

𝜆𝑖
𝜙𝜙⊤ is the pseudo-inverse of the

graph’s Laplacian L = D − A = ΦΛΦ⊤
, with D the graph’s degree

matrix, 𝐷𝑢,𝑢 =
∑

𝑗∈𝑉 𝐴𝑢,𝑣 and 0 elsewhere; and 𝜆𝑖 the 𝑖-th smallest

eigenvalue of L corresponding to the 𝜙𝑖 eigenvector. The complete

matrix of all pairwise effective resistances in a graph, R is given by

R = 1 diag(L†)⊤ + diag(L†)1⊤ − 2L†.
The effective resistance is a distance metric since it satisfies the

symmetry, non-negativity and triangle inequality conditions [29].

In addition, 𝑅𝑢𝑣 is proportional to the commute times between 𝑢

and 𝑣 , i.e., the expected number of steps in a randomwalk starting at

𝑣 to reach node𝑢 and come back:𝑅𝑢𝑣 ∝ E𝑢 [𝑣]+E𝑣 [𝑢], where E𝑢 [𝑣],
E𝑣 [𝑢] are the expected number of steps that a random walker takes

to go from 𝑢 to 𝑣 and from 𝑣 to 𝑢, respectively [17, 31, 32, 58, 73]. A

high value of 𝑅𝑢𝑣 means that𝑢 and 𝑣 generally struggle to visit each

other in a random walk, i.e., nodes with high effective resistance

between them are unlikely to exchange information. 𝑅𝑢,𝑣 can be
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expressed as

𝑅𝑢,𝑣 =

∞∑︁
𝑖=0

(
𝑑−1

𝑢 (A𝑖 )𝑢𝑢 + 𝑑−1

𝑣 (A𝑖 )𝑣𝑣 − (𝑑𝑢𝑑𝑣)−1/2
2(A𝑖 )𝑢𝑢

)
,

being A𝑘
the matrix that defines the number paths of length 𝑘

between 𝑢 and 𝑣 [6]. Hence, it is able to capture both short- and

long-range interactions between nodes in the graph.

The effective resistance has been characterized as the information
distance in a network [10, 45, 68, 73] as it quantifies the amount of

effort (distance) required to transmit information between the nodes.

The total effective resistance Rtot of a graph [29] – defined as the

sum of all 𝑅𝑢𝑣 (Rtot = 1R1⊤) – is therefore inversely proportional

to the expected ease of information flow in the graph.

The total effective resistance of node𝑢,Rtot (𝑢), is given byRtot (𝑢) =∑
𝑣∈V 𝑅𝑢𝑣 , i.e., the sum of all the effective resistances between node

𝑢 and the rest of nodes in the network. Given that the effective

resistance is an information distance, the smaller the total effective

resistance of a node, the larger its information flow. In other words,

the effective resistance allows to identify which nodes in a graph

have limited information flow (i.e., high effective resistance) and

thus low social capital [29, 36]. Equivalent terms to denote the effec-

tive resistance in the literature include the current-flow closeness

centrality [11, 51] and the information centrality [68].

From a computational perspective, calculating 𝑅𝑢𝑣 does not re-

quire hyper-parameter tuning and can be efficiently calculated,

mitigating two significant drawbacks of other diffusion or learnable

graph distances [56]. An overview of the theoretical properties of

𝑅𝑢𝑣 are provided in Appendix B.

3.1.2 Effective-resistance-based measures of group social capital.
Based on the definition of effective resistance above, we propose

three metrics that characterize the social capital of a group of nodes

in a graph. The metrics are computed based on pairwise effective

resistances between the nodes in the group and the rest of nodes

the graph, which are then aggregated to all members of the group to

quantify its social capital. Each of the proposed metrics is based on

theoretical principles derived from effective resistance, as explained

in the previous section and in Appendix B.3. In the following, we

refer to a group of nodes 𝑆𝑖 in graph 𝐺 = {V, E} as a subset of V ,

i.e., 𝑆𝑖 ⊆ V with |𝑆𝑖 | nodes.

1. Group Isolation. The isolation of a group 𝑆𝑖 , Rtot (𝑆𝑖 ), is given
by the average of the total effective resistances of all the nodes in

group. Rtot (𝑆𝑖 ) is proportional to the expected information distance

when sampling one node from group 𝑆𝑖 and another node at random.

It can be interpreted as a proxy for the marginalization of a group

from the perspective of information flow, such that the lower the

Rtot (𝑆𝑖 ), the less isolated the group 𝑆𝑖 is in the network. Therefore,

reducing this measure for group 𝑆𝑖 would yield an increase in its

social capital. It is given by:

Rtot (𝑆𝑖 ) = E𝑢∼𝑆𝑖 [𝑅𝑡𝑜𝑡 (𝑢)] =
1

|𝑆𝑖 |
∑︁
𝑢∈𝑆𝑖

Rtot (𝑢) = |V|E𝑢∼𝑆𝑖 ,𝑣∼V [𝑅𝑢𝑣]

(2)

where Rtot (𝑢) =
∑

𝑣∈V 𝑅𝑢𝑣 is the total effective resistance of

node 𝑢, V is the set of all nodes in the graph, and 𝑆𝑖 is group

of interest. The normalization factor enables comparing groups

of different sizes. Note that adding links between nodes with the

highest 𝑅𝑢𝑣 —irrespective of which group they belong to— has been

found to reduce the total effective resistance of a graph [6, 36] and

hence the isolation of all the graph’s nodes.

2. Group Diameter. The group diameter, R
diam

(𝑆𝑖 ), measures

the average of the maximum distance between any node in group

𝑆𝑖 and any node in the graph. A larger group diameter suggests

that the nodes in group 𝑆𝑖 are distant from the rest of the graph,

indicating potential challenges in information exchange with the

nodes outside of 𝑆𝑖 , and hence it can be interpreted as another

measure of social capital.

This measure is based on R
diam

(𝐺), which is the maximum

effective resistance of the graph [58].

R
diam

(𝑆𝑖 ) = E𝑢∼𝑆𝑖 [Rdiam
(𝑢)] = E𝑢∼𝑆𝑖 [max

𝑣∈V
𝑅𝑢𝑣] (3)

where R
diam

(𝑢) = max𝑣∈V 𝑅𝑢𝑣 is the diameter of node 𝑢, i.e., the
maximum 𝑅𝑢𝑣 from 𝑢 to any other node in the graph. R

diam
(𝑆𝑖 )

gives an indication of the information flow gap between the group 𝑆𝑖
and the rest of the network [30]. Therefore, the larger theR

diam
(𝑆𝑖 ),

the lower the social capital of group 𝑆𝑖 .

3. Group Control. The aforementioned concepts measure the

amount of information flow in a group of nodes in the graph. An-

other relevant variable to assess is the criticality of a node for the

diffusion of information in the graph, which in the literature has

been measured as betweenness [34], redundancy [8] or effective

size [15]. Nodes with high levels of control serve as important con-

nectors in the network, facilitating the flow of information and

enabling communication between otherwise disconnected groups

of nodes [15].

The control of a node can be computed by restricting the sum-

mation of a node’s total effective resistance to the nodes that are

directly linked to it (i.e., its direct neighbors). Thus, it is expressed
as BR (𝑢) =

∑
𝑣∈N(𝑢 ) 𝑅𝑢𝑣 , where N(𝑢) = {𝑣 : (𝑢, 𝑣) ∈ E} are the

neighbors of𝑢. The larger the BR (𝑢), the more control a node has in

the network’s information flow and hence the larger its social capi-

tal. The node control of a node is bounded by 1 ≤ BR (𝑢) ≤ 𝑑𝑢 , being

𝑑𝑢 the number of neighbors of node 𝑢 (see Theorem C.1). BR (𝑢) is
theoretically related to the current-flow betweenness [11, 52, 74, 75],

the node’s information bottleneck [2], and the curvature of the

node [26, 77].

We define the group control or group betweenness BR (𝑆𝑖 ) as the
average of the controls of all the nodes in 𝑆𝑖 , i.e.:

BR (𝑆𝑖 ) = E𝑢∼𝑆𝑖 [BR (𝑢)] =
1

|𝑆𝑖 |
∑︁
𝑢∈𝑆𝑖

BR (𝑢), (4)

and is bounded by 1 ≤ BR (𝑆𝑖 ) ≤ vol(𝑆𝑖 )/|𝑆𝑖 |, being vol(𝑆𝑖 )/|𝑆𝑖 |
the average degree of the group 𝑆𝑖 (see Theorem C.2). Note that the

sum of all 𝑅𝑢𝑣 for all nodes in a graph is constant at |V| − 1 and

it is independent of the number of edges [45]. If an edge is added,

removed or modified in the graph, all 𝑅𝑢𝑣 are updated accordingly

such that their sum remains constant. The sum and the average

control of all nodes in the graph are also constant with values∑
𝑢∈V BR (𝑢) = 2|𝑉 | − 2 and E𝑢∼V [BR (𝑢)] = 2− 2

|V | , respectively,
independently of the number of edges (see Appendix C.1.2 for more

details). Consequently, the control of a node or group of nodes is dis-

tributed among the nodes in the network and cannot be optimized
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for every node/group in the graph by adding more edges: if a node

or group of nodes increase their control over the information flow

in the graph, they must do so at the cost of reducing the control of

other nodes.

3.2 Structural group unfairness
To study disparities in the distribution of social capital in the net-

work, we define the groups of nodes 𝑆𝑖 according to their values

of a sensitive attribute 𝑖 ∈ 𝑆𝐴 = {𝑠𝑎1, 𝑠𝑎2, . . . , 𝑠𝑎 |𝑆𝐴 | }, which is

a categorical variable with |𝑆𝐴| possible values that refer to a so-

cially relevant concept, such as sex, age, gender, religion or race.

We denote the value of the sensitive attribute of a node 𝑣 as 𝑆𝐴(𝑣).
For instance, if 𝑆𝐴 is sex with three possible values, 𝑆𝐴={male, fe-

male, non-binary}, the groups 𝑆
male

, 𝑆
female

and 𝑆
non-binary

are the

set of nodes whose sex is labeled as male, female and non-binary,

respectively.

We define the structural group unfairness in a network as the

disparity in information flow between the nodes belonging to dif-

ferent groups in the network. Since we have defined the groups in

terms of protected attributes, structural group unfairness becomes

particularly relevant because it informs about potential disparities

in information flow (and hence social capital) between a vulnera-

ble group –e.g. females– and the rest of the network. We present

here three metrics to characterize the structural group unfairness,

namely isolation disparity, diameter disparity and control disparity.

1. Group Isolation Disparity. Ideally, every group in the net-

work should have the same levels of information flow and hence

the same —and low— levels of group isolation, namely:

Rtot (𝑆𝑖 ) = Rtot (𝑆 𝑗 ), ∀ 𝑖, 𝑗 ∈ 𝑆𝐴. (5)

Deviations from equality lead to isolation disparity ΔRtot, which is

defined as the maximum over all groups in the graph of the differ-

ences in group isolation: ΔRtot = max𝑖, 𝑗∈𝑆𝐴 (Rtot (𝑆𝑖 ) − Rtot (𝑆 𝑗 )).
Reducing the isolation disparity contributes to increasing the

social capital of the most disadvantaged group and equalizes the

information flow between the groups in the network.

2. Group Diameter Disparity. Ideally, every social group in

the network should have the same –and low– group diameter:

R
diam

(𝑆𝑖 ) = R
diam

(𝑆 𝑗 ), ∀ 𝑖, 𝑗 ∈ 𝑆𝐴. (6)

Any deviations from equality lead to diameter disparity,ΔR
diam

, de-

fined as the maximum over all groups in the graph of the differences

in group diameter: ΔR
diam

= max𝑖, 𝑗∈𝑆𝐴 (Rdiam
(𝑆𝑖 ) − R

diam
(𝑆 𝑗 )).

Achieving equal diameter entails equalizing the worst-case sce-

nario in information flowing to the entire network from the perspec-

tive of any group of nodes in the graph. By promoting equal group

diameter, we generate a fairer information-sharing environment.

3. Group Control Disparity. By striving for equalized control

in all groups in the network, no particular group would dominate or

be marginalized from the perspective of their control of information

in the network:

BR (𝑆𝑖 ) = BR (𝑆 𝑗 ) = 2 − 2

|V| , ∀ 𝑖, 𝑗 ∈ 𝑆𝐴. (7)

Any deviations from equality lead to control disparity, ΔBR, defined
as the maximum over all groups in the graph of the differences in

group control: ΔBR = max𝑖, 𝑗∈𝑆𝐴 (BR (𝑆𝑖 ) − BR (𝑆 𝑗 )).
As previously explained, control is a bounded resource to be dis-

tributed among the groups of nodes in the graph with an expected

value of 2 − 2

|V | . Hence, reducing the control disparity entails a

redistribution of the control in all the groups in the graph converg-

ing to BR (𝑆𝑖 ) = 2 − 2

|V | , ∀ 𝑖 ∈ 𝑆𝐴, leading to a more equitable

allocation of the control that different groups play regarding the

information flow in the network.

3.3 Edge augmentation to mitigate structural
group unfairness

Edge augmentation. Edge augmentation is the natural interven-

tion to mitigate information flow disparities in a network where all

nodes are sources of unique pieces of information [5, 15].

Regarding which structural group unfairness measure we should

aim to optimize, we argue that we should primarily focus on im-

proving the isolation disparity of the most isolated group in the

graph. Note that mitigating isolation will also yield an improvement

in the diameter and control disparities, as illustrated in our experi-

ments. The reduction in isolation entails creating edges between

distant nodes, i.e., fostering the creation of weak ties. Granovetter

[37]’s work provides evidence that information spreads more effec-

tively through weak ties than through strong ties: weak ties give

peripheral nodes more visibility in the network, which leads to a

decrease in group isolation and diameter. Adding weak ties reduces

discontinuities in the information flow, increases redundancies in

the paths between nodes and improves the control of peripheral

nodes while reducing the control of dominant ones [15].

Previous work has suggested connecting peripheral isolated

nodes (with low centrality and control) to salient nodes (with high

centrality and control) [5, 41, 76]. However, these solutions lead

to a rich-get-richer phenomenon that benefits the best connected

nodes and potentially increases the disparities in information ac-

cess [13]. Hence, we advocate for the creation of edges between the

most distant nodes in the network (weak ties) without necessarily

connecting them with a central node.

Problem definition. We consider a budgeted edge augmentation

intervention: given a maximum number 𝐵 of allowed new connec-

tions to be created in the graph, we aim to identify the 𝐵 new edges

E′
to be added to the graph 𝐺 that would maximally reduce the

group isolation disparity of the most disadvantaged group in the

graph. This leads to a new graph 𝐺 ′
with lower levels of structural

group unfairness:

𝐺 ′ = min

𝐺 ′=(V,E′ )
E𝑢,𝑣∼𝑉 ×𝑉 [𝑅𝑢𝑣] s.t. |E′ \ E| = 𝐵 E ⊂ E′

(8)

Algorithm. To tackle the problem above, we introduce ERG-Link,
a greedy algorithm that adds edges between the nodes with the

largest effective resistance between them, where at least one of

the nodes belongs to the most isolated group as per Section 3.1.2,

and groups in the graph are defined in the grounds of a protected

attribute. Note that this strategy also reduces the isolation (total

effective resistance) of the entire graph [36].
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Figure 1: Illustration of the impact of adding one edge on
the information flow of 𝐺 . The color denotes information
distances (effective resistances) w.r.t. to the star node. The
histogram shows the change of all 𝑅′𝑢,𝑣𝑠 in 𝐺 . Note how all
𝑅′𝑢,𝑣𝑠 between the star node and the rest of nodes in the net-
work (𝑅⋆,𝑣) decrease in 𝐺 ′ even if there is no change in the
geodesic distance between them.

Algorithm 1 outlines the main steps of ERG-Link. Given a graph

𝐺 = (𝑉 , 𝐸), a protected attribute 𝑆 and a total budget 𝐵 of new

edges to add, the group isolation 𝑅𝑡𝑜𝑡 (𝑆) is computed for each

group according to 𝑆 . The most disadvantaged group 𝑆𝑑 is identified

as the group with largest 𝑅𝑡𝑜𝑡 (𝑆). Then, the 𝑅𝑢𝑣 ∀(𝑢, 𝑣) ∈ V ×
V is computed, and a ranking of all potential new edges in the

graph is created from the highest to the lowest values of effective

resistance. In each iteration, ERG-Link adds the new edge to the

graph that yields the largest improvement in the information flow

of 𝑆𝑑 , i.e., the edge that connects the two nodes with largest effective
resistance between them where at least one of the nodes belongs

to 𝑆𝑑 . See Black et al. [6], Ghosh et al. [36] for a proof that such an

edge is the one that maximally improves the information flow in

the graph.

Algorithm 1: ERG-Link
Data: Graph 𝐺 = (V, E), a protected attribute 𝑆𝐴, budget 𝐵

of total number of edges to add

Result: New Graph 𝐺 ′ = (V′, E′) with 𝐵 new edges

1 L = D − A;

2 𝑆𝑑 = argmax𝑆𝑖∀𝑖∈𝑆𝐴 Rtot (𝑆𝑖 ) ; // Identify the most

disadvantaged group

3 Repeat

4 L† =
∑
𝑖>0

1

𝜆𝑖
𝜙𝑖𝜙

⊤
𝑖
=

(
L + 11⊤

𝑛

)−1

− 11⊤
𝑛 ;

5 R = 1 diag(L†)⊤ + diag(L†)1⊤ − 2L† ; // Compute

effective resistance

6 𝐶 = {(𝑢, 𝑣) | 𝑢 ∈ 𝑆𝑑 or 𝑣 ∈ 𝑆𝑑 , (𝑢, 𝑣) ∉ E′} ; // Select

edge candidates

7 E′ = E′ ∪ arg max(𝑢,𝑣) ∈𝐶 𝑅𝑢𝑣 ; // Add edge with

maximum effective resistance from 𝐶

8 L = L + (e𝑢 − e𝑣) (e𝑢 − e𝑣)⊤; // Fast update of L
9 Until |E′ \ E| = 𝐵;

10 return 𝐺 ′
;

ERG-Link leverages Rayleigh’s monotonicity principle [28, 29],
according to which the total effective resistance of a graph can only

decrease when new edges are added to it, as illustrated in Fig. 1.

The new edges that most highly reduce both the graph’s total and

maximum effective resistances are those that connect the two nodes

with the largest effective resistance between them [2, 6, 36, 58].

Therefore, creating an edge between nodes with maximum 𝑅𝑢𝑣
not only improves the information flow between the two nodes

(increasing their social capital) but it also improves the information

flow of the entire graph.

Note that the addition of each new edge changes all the pairwise

information distances between nodes in the graph, requiring the re-

computation of all distances (effective resistances) in each iteration.

Therefore, this type of edge augmentation is not feasible by means

of Independent Cascade distance estimation [5, 43], random-walk

embeddings [56] or graph neural networks [44, 82]. These methods

require training expensive neural networks or running complex

simulations for the estimation of the distances in each iteration. In

addition, they only capture short-range interactions between nodes.

Conversely, the effective resistance captures both short and long-

range interactions between nodes in the graph and it is efficient to

update. While it requires the computation of the Laplacian pseudo-

inverse, Woodbury’s formula [6] can be used to avoid recomputing

L† in line 3 of Algorithm 1, as reflected in Algorithm 2.

4 EXPERIMENTS
4.1 Datasets and set-up

Table 1: Group social capital in the original graphs. Group
with the largest social capital is highlighted in bold.

𝐺 𝑅𝑡𝑜𝑡 ↓ R𝑑𝑖𝑎𝑚 ↓ BR ↑

Facebook (female) 221.4 2.29 1.93

Facebook (male) 179.8 2.25 2.03

UNC28 (female) 608.6 2.11 1.99

4051
UNC28 (male) 586.3 2.11 2.00

5.14 3767

Google+ (female) 564.1 1.31 1.81

Google+ (male) 287.7 1.24 2.32

To empirically evaluate ERG-Link, we tackle the challenge of
mitigating structural group unfairness in three real-world networks

(school and online social networks), where the nodes are users and

the edges correspond to connections between them, i.e., friendships.
The three datasets are commonly used in the graph fairness litera-

ture, namely:

(1) The Facebook dataset [47], a dense graph of 1,034 Facebook

users (|V|) and 26,749 edges (|E |). It corresponds to a large ego-

network where nodes are connected if they are friends in the social

network;

(2) The UNC28 dataset [62], consisting of a 2005 snapshot from the

Facebook network of the university of North Carolina (|V|=3985,
|E |=65287);
(3) The Google+ dataset [47], an ego-network of G+, the social

network developed by Google, with 3,508 nodes (|V|) and 25,3930

edges (|E |).
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Table 2: Structural group unfairness before and after the graph interventions.

(a) Facebook (𝐵=50)

ΔRtot ΔR
diam

ΔBR
𝐺 (original) 41.62 0.042 0.107

Random 38.7 0.039 0.108

DW 36.3 0.031 0.104

Cos 28.7 0.029 0.120

ERG 10.3 0.009 0.098

S-DW 43.6 0.041 0.103

S-Cos 41.4 0.042 0.105

S-ERG 41.6 0.042 0.107

(b) UNC28 (𝐵=5000)

ΔRtot ΔR
diam

ΔBR
𝐺 (original) 22.4 0.006 0.009

Random 19.8 0.005 0.014

DW 22.2 0.006 0.004

Cos 19.1 0.005 0.102

ERG 8.8 0.002 0.003

S-DW 20.6 0.006 0.008

S-Cos 22.1 0.006 0.019

S-ERG 22.3 0.006 0.004

(c) Google+ (𝐵=5000)

ΔRtot ΔR
diam

ΔBR
𝐺 (original) 276.4 0.078 0.51

Random 129.4 0.037 0.47

DW 274.1 0.078 0.51

Cos 86.8 0.025 0.47

ERG 37.1 0.011 0.29

S-DW 272.5 0.078 0.49

S-Cos 236.0 0.067 0.47

S-ERG 276.4 0.079 0.52

Gender is the protected attribute in all networks with two pos-

sible values 𝑆𝐴 ={male, female}. We select the largest connected

component for all the datasets.

The original values of group social capital per gender are de-

picted in Table 1. As seen in the Table, our study unveils that

the disadvantaged group according to the three defined measures

(group isolation, group diameter and group control) corresponds to

females in the three datasets. Hence, 𝑆𝑑 = 𝑆𝑓 𝑒𝑚𝑎𝑙𝑒 .

In contrast, group extensions of traditional individual social capi-

tal metrics fail to model long-range interactions between nodes and

hence are unable to uncover the extent of social capital disparities

between groups. For example, in the Google+ dataset, females are

49% more isolated than men according to our proposed group iso-

lation (Rtot) metric (564.1 vs 287.7 for females vs males). However,

they are only 7% more isolated (8,073 vs 7,477 for females vs males)

when using the geodesic distance and a traditional farness centrality
measure [63]. Furthermore, according to the commonly used be-

tweenness measure (number of shortest paths through a node) [34]

on the UNC28 dataset, males —as opposed to females— are the

disadvantaged group with 7% less control than females (3,767 vs

4,051).

4.2 Baselines
We compare edge augmentation by means of ERG-Link with three

baselines:

(1) Random: an algorithm that adds edges at random to the graph.

(2) DW : an algorithm that adds edges using the dot product simi-

larity of DeepWalk [56] embeddings as a distance between nodes. It

is based on sampling random walks and training a BERT model to

compute each node’s embedding. Results correspond to the follow-

ing hyper-parameters: 128 embedding dimension, 40 walk length,

and 10 window size;

(3) Cos: a greedy algorithm that adds edges using the cosine similar-

ity of the rows of the adjacency matrix [65] as a distance between

nodes. This is an example of a classic method based on neighbor-

hood similarity.

All the baselines correspond to an algorithm similar to Algo-

rithm 1 (lines 2 and 6 remain the same) with one difference: instead

of using the effective resistances to quantify the distances between

nodes, the baselines consider cosine or DW distances. Note that

we do not include any GNN-based method as a baseline because

they require training a neural network to estimate the pairwise

distances in the graph. This is computationally unfeasible in our

task as it would entail retraining the neural network every time a

new edge is added [82].

4.3 Experimental methodology
We set a budget 𝐵 of a maximum of 5,000 new links to be added

to the the UNC28 and Google+ datasets, which corresponds to ap-

proximately 0.05% of the number of all potential edges in the graph.

We also run experiments with a maximum of 50 new edges for the

Facebook dataset to showcase that even with an extremely low

budget, ERG-Link is able to significantly improve the social capital

of the disadvantaged group and reduce the structural unfairness in

the graph. We compute the social capital for each group (male and

female) and the structural group unfairness on both the original

and the augmented graphs (after all edges have been added) based

on the defined measures. We also compute them at each step of

edge addition to shed light on the evolution of the structural group

unfairness as new edges are added.

4.4 Structural group unfairness mitigation
Table 2 depicts the three structural group unfairness measures on

the original graph 𝐺 and after adding 50 edges to the Facebook

dataset and 5,000 edges to the UNC28 and Google+ datasets. The

groups are defined based on gender (male, female) and the disad-

vantaged group are females according to the three structural group

unfairness measures, as depicted in Table 1 and top row of Table

2. The disparities in social capital between males and females are

particularly large in the Google+ network with a ΔRtot of 276.4,
meaning that females have significantly lower levels of information

flow than males in this network. ΔBR also shows a difference of

0.51 on the control of the network, which is a large difference given

that the values of BR are in the range [0, 2 − 2/|V|].
Regarding the results of the graph intervention algorithms, we

observe how edge augmentation via ERG-Link outperforms all the

baseline methods on the three datasets in terms of reducing struc-

tural group unfairness. Interestingly, the larger the unfairness in

the original graph, the larger the improvement after the interven-

tion with ERG-Link. For example, in the case of isolation disparity,

ΔRtot, the original values of 22.4, 41.62 and 276.4 improve by 60%,
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Figure 2: Pareto front of the structural group unfairness (X-axis) vs the sum of the group social capital of all the groups (Y-axis)
using Rtot on the top row and Rdiam on the bottom row. From left to right: Facebook, UNC28 and Google+ datasets.

75% and 87% after ERG-Link’s intervention in the UNC28, Facebook
and Google+ networks, respectively. A similar behavior is observed

for the other structural group unfairness measures.

For illustration purposes, we also report results of the three

versions of Algorithm 1 using the three distances (DeepWalk, cosine

and effective resistance) but where the added edges connect the

nodes with the smallest —instead of the largest— pairwise distance,

similar to how link recommendation algorithms work. We refer to

these methods as the “Strong” version (for strong ties) and hence

denote them with an “S-” before the abbreviation. The bottom part

of Table 2 contains the results of edge augmentation with these

variations. As expected, edge augmentation in this case does not

significantly improve the structural group unfairness since such

methods are not designed to improve the information flow in the

most isolated nodes in the graph, but to connect nodes that are

already structurally close to each other (foster strong ties).

Note how the edge augmentations when using DW and Cos dis-

tances still yield graphs with significant levels of structural group

unfairness. Furthermore, in the case of using DW distances, the

improvement in performance worsens as the graph gets larger

(Google+). While using Cos distance for edge augmentation im-

proves ΔRtot and ΔR
diam

, it is unable to always improve ΔBR due

to the inherently more intricate nature of control disparity opti-

mization. Unlike ΔRtot and ΔR
diam

, minimizing ΔBR requires the

precise identification of network gaps which are difficult to detect

using a cosine similarity distance. For completeness, the social capi-

tal metrics for each group (males and females) in the three data sets

are shown in Table 4 in Appendix D.1. Note how females always

have lower values of social capital (Rtot, Rdiam
and BR) than males,

even after the graph interventions.

4.5 Overall social capital improvement
In this section, we illustrate how edge augmentation via ERG-Link
is more effective than the baseline methods not only to reduce the

structural group unfairness (ΔRtot and ΔR
diam

), but also to im-

prove the overall social capital measures of group isolation 𝑅𝑡𝑜𝑡 (𝑆𝑖 )
and group diameter 𝑅𝑑𝑖𝑎𝑚 (𝑆𝑖 ) for all the groups in the graph.

For each dataset, the structural group unfairness metric (ΔRtot
or ΔR

diam
) is shown on the x-axis and the overall group isolation

(sum of group isolation for all groups) or overall group diame-

ter (sum of diameters for all groups) on the y-axis. For both axes,

the lower the values, the better. Edge augmentation via ERG-Link
clearly outperforms any other graph intervention strategy, provid-

ing evidence that it not only reduces inequalities in social capital

between groups, but also improves the social capital of all groups

by reducing their group isolation.

4.6 Evolution of structural group unfairness
throughout the interventions

Fig. 3 illustrates the evolution of the structural group unfairness

metrics for the Google+ dataset as new edges are added to the net-

work with a total budget of 5,000 edges. As seen in the Figure, edge

augmentation via ERG-Link quickly mitigates the group isolation

and diameter disparities, even after the addition of a small number

of edges. Furthermore, edge augmentation via ERG-Link exhibits a

smoother and more consistent reduction in control disparity (ΔBR),
in contrast to the stair-step behavior observed when adding edges

using the baseline methods.

Note that BR is a finite resource to be allocated among the groups

and cannot be globally maximized. Hence, the right-most graphs

show how ΔBR is improved by decreasing BR of the group with

highest initial BR and increasing it otherwise (top-right). The goal

is to converge both controls to the optimal bound of 2 − 2/|V| as
indicated by the horizontal black line.

We also show in Appendix D.3 the evolution of the structural

group unfairness and group social capital metrics when the budget

𝐵 of edges to add is very small (50 edges) and large (5,000 edges) to

study the efficacy of the interventions. Fig. 4 in Appendix D.3 depict
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Figure 3: Evolution of the structural group unfairness metrics as the number of added edges increases on the Google+ dataset
with a total budget of 5,000 new edges.

the distribution of the social capital metrics for the nodes in each

of the groups in the original graph and the resulting graphs after

edge augmentation. The results are consistent: for a fixed budget,

edge augmentation via ERG-Link yields the best results both for

the mitigation of structural group unfairness and the increase in

the overall social capital of all the groups in the graph. Addition-

ally, for a fixed structural group unfairness mitigation goal, edge

augmentation via ERG-Link achieves it with a significantly smaller

budget of added edges than any of the baseline methods.

5 DISCUSSION, CONCLUSION AND FUTURE
WORK

In this paper, we have presented a novel method, based on the

effective resistance, to measure and mitigate structural unfairness

in groups within a social network, where the groups are defined

according to the values of a protected attribute. We have proposed

a graph intervention approach rooted in the literature of the philos-

ophy of discrimination. We acknowledge that in the literature there

is not a single universal and absolute interpretation of fairness [23].

At present, the distributive paradigm of fairness [61] dominates

the political and philosophical discussions of social justice [83].

In social networks, this translates into the pursuit of equal social

capital for all individuals in the network. Nevertheless, there are

alternative interpretations of fairness [19] that remain unexplored

in social networks. For example, a sufficitarian approach to fair-

ness [53, 66] would entail guaranteeing a minimum threshold of

social capital for all network members, while a prioritarian concep-

tion of fairness [19] would give priority to the individuals belonging

to a vulnerable social group. Moreover, prominent voices in social

philosophy have long defended that fairness can be understood not

only as the redistribution of social capital among individuals, but

also as the social recognition of identity groups [33]. In this paper,

we focus on group fairness in graphs and combine both a priori-

tarian and a Rawlsian approach to fairness since our intervention

aims to mitigate the social capital gap for the most disadvantaged

group while increasing the social capital of all groups. Given the

importance of social networks in the definition of the social fabric,

the ultimate goal of our work is to spur a reflection on the potential

use of social networks as reparative tools for social inequality [24].

While one could argue that defining groups in terms of pro-

tected attributes can be considered a form of discrimination, our

approach does not aim to systematically increase the social capital

of a pre-defined vulnerable social group, but to detect those that

are structurally disadvantaged in the network (i.e., those having
the lowest levels of social capital) and implement a mechanism at

scale that benefits an entire community. This type of mitigation

of structural unfairness is particularly relevant since the potential

disadvantages suffered by groups in social networks can add up

to already existing social conditions that contribute to systemic

injustice [84].

In terms of limitations, we have not validated the proposal with

real users, who could be reluctant to accept graph interventions that

connect them with nodes outside of their close-knit circle, despite

the benefits that these weak ties bring as contributors to innova-

tion [59] and social equity. Nonetheless, we envision our proposal

as a complement to existing graph interventions in a hybrid setup

that combines the addition of edges connecting nodes with both

small (strong ties) and large (weak ties) effective resistances. We

leave for future work such a validation. Also, in line with the body

of work on intersectional bias mitigation which focuses on demo-

graphic dimensions [46], we have considered gender as a binary
protected attribute in our experiments. We would have preferred

to work with a non-binary approach to gender, yet available social

network datasets only contain gender as a binary variable.

From a technical perspective, we plan to explore alternative edge

augmentation algorithms to mitigate structural group unfairness

using our effective resistance-based measures measures and we

would like to incorporate additional node features corresponding

to the characteristics of the individuals in the network. We also
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maintain ongoing discussions with several community organiza-

tions to define a project with participants that arrive in another

country as refugees, for whom information access and connection

with the local population of the hosting country are key.
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A TABLE OF NOTATION

Table 3: Table of Notation

Symbol Description Definition

𝐺 = (V, E) Graph = (Nodes, Edges)

𝑛 = |V| Number of nodes

A Adjacency matrix: A ∈ R𝑛×𝑛 𝐴𝑢,𝑣 = 1 if (𝑢, 𝑣) ∈ E and 0 otherwise

𝑣 or 𝑢 Node 𝑣 ∈ V or 𝑢 ∈ V
𝑒 Edge 𝑒 ∈ E
𝑑𝑣 Degree of node, i.e., number of neighbors 𝑣 𝑑𝑣 =

∑
𝑢∈𝑉 𝐴𝑣,𝑢

D Degree diagonal matrix where 𝑑𝑣 in 𝐷𝑣𝑣 D = diag(𝑑0, . . . , 𝑑V )
vol(𝐺) Sum of the degrees of the graph vol(𝐺) = ∑

𝑢∈𝑉 𝑑𝑢 = 2|E | = Tr[D]
N (𝑢) Neighbors of 𝑢 N(𝑢) = {𝑣 : (𝑢, 𝑣) ∈ E}
𝑆𝑖 Subset of nodes 𝑆 ⊆ 𝑉

𝑆𝐴 Set of sensitive attributes 𝑆𝐴 = {𝑠𝑎1, 𝑠𝑎2, . . . , 𝑠𝑎 |𝑆𝐴 | }
𝑆𝐴(𝑣) Value of the sensitive attribute of the node 𝑣

𝑠𝑎𝑖 Specific value of a sensitive attribute, e.g., 𝑠𝑎𝑖=female.
𝑆𝑖 Set of nodes defined by their sensitive attribute 𝑆𝑖 = {𝑣 ∈ 𝑉 |𝑆𝐴(𝑣) = 𝑠𝑎𝑖 }
𝑆𝑑 Set of nodes defined by their sensitive attribute with the highest level of

isolation Rtot (𝑆𝑖 )
L Graph Laplacian L = D − A = ΦΛΦ⊤

Λ Eigenvalue matrix of L
Φ Matrix of eigenvectors of L
𝜆𝑖 The 𝑖-th smallest eigenvalue of L
f𝑖 Eigenvector associated with the 𝑖-th smallest eigenvalue of L
L+ The pseudo-inverse of L L+ =

∑
𝑖>1

𝜆−1

𝑖
𝜙𝜙⊤

ℎ𝐺 Cheeger constant Eq. 9

e𝑢 Unit vector with unit value at 𝑢 and 0 elsewhere

𝑅𝑢𝑣 Effective resistance between nodes 𝑢 and 𝑣 𝑅𝑢𝑣 = (e𝑢 − e𝑣)L+ (e𝑢 − e𝑣)
R Effective resistance matrix where the 𝑖, 𝑗 entry corresponds to 𝑅𝑖 𝑗 R = 1diag(L+)⊤ + diag(L+)1⊤ − 2L+

Z Commute Time Embedding matrix Z =
√︁
𝑣𝑜𝑙 (𝐺)Λ−1/2Φ⊤

z𝑢 Commute times embedding of node 𝑍𝑢,:
CT(𝑢, 𝑣) Commute time CT(𝑢, 𝑣) = vol(𝐺)𝑅𝑢.𝑣
Rtot Total Effective Resistance of 𝐺 Rtot = 1

2
1⊤R1

R
diam

Resistance Diameter of 𝐺 R
diam

= max𝑢,𝑣∈V 𝑅𝑢,𝑣
Rtot (𝑢) Node Isolation or Total Effective Resistance Rtot (𝑢) =

∑
𝑣∈𝑉 𝑅𝑢𝑣

R
diam

(𝑢) Node Resistance Diameter R
diam

(𝑢) = max𝑣∈𝑉 𝑅𝑢𝑣
BR (𝑢) Node Control or Resistance Betweenness BR (𝑢) =

∑
𝑣∈N(𝑢 ) 𝑅𝑢𝑣

Rtot (𝑆𝑖 ) Group Isolation or Total Effective Resistance Rtot (𝑆𝑖 ) = |𝑆 |−1
∑
𝑢∈𝑆 Rtot (𝑢)

R
diam

(𝑆𝑖 ) Group Resistance Diameter R
diam

(𝑆) = |𝑆 |−1
∑
𝑢∈𝑆 Rdiam

(𝑢)
BR (𝑆𝑖 ) Group Control or average Betweenness BR (𝑆) = |𝑆 |−1

∑
𝑢∈𝑆 BR (𝑢)

B EFFECTIVE RESISTANCE AND INFORMATION FLOW
In this section, we provide an overview of the graph diffusion concepts that constitute the theoretical foundation of the effective resistance

as a measure of information flow in a graph.

B.1 Graph Diffusion Measures
Discrete information propagation. Information propagation in networks has been widely studied [12, 43], prominently by means of graph

diffusion and Random Walks methods. A RandomWalk (RW) on a graph is a Markov chain that starts at a given node 𝑖 , and moves randomly

to another node from its neighborhood with probability 1/𝐷𝑖,𝑖 . The RW transition probability matrix is given by P = D−1A and defines the

discrete probability of a random walker to move from node 𝑢 to node 𝑣 . P𝑘 is the 𝑘-th power of the transition matrix 𝑃 : the entry (𝑃𝑘 )𝑖 𝑗
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denotes the probability of transitioning from node 𝑖 to node 𝑗 in exactly 𝑘 steps. The graph’s diffusion matrix is defined as T =
∑∞
𝑘=0

𝜃𝑘P𝑘 ,
and it represents the cumulative effect of multiple steps of a random walk on the graph. Each entry 𝑇𝑖 𝑗 of T corresponds to the probability

of transitioning from node 𝑖 to node 𝑗 over an infinite number of steps. 𝜃𝑘 is known as the teleport probability at step 𝑘 in the random

walk. It quantifies the likelihood that, at each step, the random walker will teleport to a random node instead of following an edge. Thus,

the sequence {𝜃𝑘 } is a series of teleport probabilities over the steps. The resulting 𝑇 captures the cumulative probabilities of transitioning

between nodes over an infinite number of steps in the random walk, such that the probability of co-occurrence of two nodes on a random

walk corresponds to the probability of information flowing between these two nodes.

However, this approach to assess information flow between nodes in a graph has several limitations. First, it requires considering all the

potential paths in a graph, which might not be computationally feasible for large graphs. To overcome this issue, a value of 𝑘 is typically

chosen, which limits the power of the method. Second, the teleport probabilities, 𝜃𝑘 , need to be defined for each 𝑘-hop. Several methods have

studied how to approximate it, such as Independent Cascade [43], Katz [42], SIR or PageRank [55]. Independent Cascade or SIR methods [43]

are based on infection models, where they sample guided random walks and, thus, usually rely on expensive Monte Carlo simulations

leading to a sub-optimal probability of transition, unable to consider the topology of the entire graph.

Graph continuous diffusion metrics. Graph continuous diffusion metrics —such as the Heat kernel distance, [20], effective resistance

(or commute times distance) [31, 32, 45, 58] or the bi-harmonic distance [48]— arise as a generalization of random walk metrics. Their

mathematical foundations allow for a better characterization of the information flow and an intuitive interpretation of the diffusion processes

in a network.

Diffusion metrics define distances based on fine-grained nuances of the topology of the graph that are not captured by simple geodesic

distances. When two nodes can be reached by many paths, they should be closer than when they can be reached only by few paths of equal

length. When two nodes can be reached by a set of edge-independent paths, they are closer than when they are reached by redundant paths.

Similarly, when two nodes are separated by a shorter path, they are closer than when they are separated by a longer path [10].

In addition, these metrics provide a node embedding, i.e., a numerical representation of each node in the graph that reflects its importance

in the process of information diffusion. These embeddings capture the global structure of the network because they incorporate both the

local and global geometry of the graph.

The continuous diffusion metrics can be computed using the pseudo-inverse (or Green’s function) of the combinatorial graph Laplacian

L = D − A, or the normalized Laplacian L = D−1/2LD−1/2
[32]. The pseudo-inverse, denoted as L+ is computed using the spectral

decomposition: L+ =
∑
𝑖≥0

𝜆−1

𝑖
𝜙𝜙⊤ where L = ΦΛΦ⊤

, where 𝜆𝑖 is the 𝑖-smallest eigenvalue of the Laplacian corresponding to the 𝜙𝑖
eigenvector.

In this paper, we use the effective resistance, which is a continuous diffusion metric.

B.2 Effective Resistance and Commute Times
The Commute Time (CT) [58], CT(𝑢, 𝑣), is the expected number of steps that a random walker needs to go from node 𝑢 to 𝑣 and come back

to 𝑢. The Effective Resistance, 𝑅𝑢𝑣 , is the Commute Time divided by the volume of the graph [45]. In addition to providing a distance for all

pairs of nodes —whether connected or not— 𝑅𝑢𝑣 may be viewed as an indicator of the criticality or importance of the edges in the flow of

information throughout the network [67].

Intuitively, this distance captures how structurally similar and connected are two nodes in a graph. If two nodes are structurally similar

to each other, then the effective resistance between them will be small. Conversely, if two nodes are weakly or not connected, then their

effective resistance will be large. In addition, we can define a commute time embedding (CTE, Z =
√︁
𝑣𝑜𝑙 (𝐺)Λ−1/2Φ⊤

) of the nodes in the

graph —similar to the idea of the node’s access signature in Bashardoust et al. [5]—, where the Euclidean distance in such an embedding

corresponds exactly to the commute times CT(𝑢, 𝑣) = | |𝑍𝑢,: − 𝑍𝑣,: | |2 = E𝑢 [𝑣] + E𝑣 [𝑢] = 2|E |𝑅𝑢𝑣 . This distance is upper bounded by the

geodesic distance, with equality in the case of the graph being a tree.

Note that the effective resistance does not rely on any parameter and it is an accurate metric to measure the graph’s information

flow [2, 17, 36], as explained next.

Information flow in a graph. The graph’s information flow is given by the graph’s conductance, which is measured leveraging the Cheeger

Constant, ℎ𝐺 , of a graph [18]:

ℎ𝐺 = min

𝐻⊆𝑉
|{𝑒 = (𝑢, 𝑣) : 𝑢 ∈ 𝑆, 𝑣 ∈ 𝐻 }|

min(𝑣𝑜𝑙 (𝐻 ), 𝑣𝑜𝑙 (𝐻 ))
(9)

The larger ℎ𝐺 , the harder it is to disconnect the graph into separate communities. Therefore, to increase the information flow in the network,

one could add edges to the original graph 𝐺 , creating a new graph 𝐺 ′
, such that ℎ𝐺 ′ > ℎ𝐺 . In addition, by virtue of the Cheeger Inequality,

ℎ𝐺 is bounded by the smallest non-zero eigenvalue of L defined as 𝜆2:

2ℎ𝐺 ≤ 𝜆2 <
ℎ2

𝐺

2

(10)
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Finally, the CT is bounded by 𝜆2 as per the Lovász Bound [49]����CT(𝑢, 𝑣)
vol(𝐺) −

(
1

𝑑𝑢
+ 1

𝑑𝑣

)���� ≤ 1

𝜆2

2

𝑑𝑚𝑖𝑛
(11)

where vol(𝐺) is the volume of 𝐺 , i.e., the sum of the degrees of the all nodes in the graph; 𝑑𝑢 , 𝑑𝑣 are the degrees of nodes 𝑢 and 𝑣 ,

respectively; and 𝑑𝑚𝑖𝑛 is the minimum degree in the graph.

Therefore, a graph’s information flow is bounded by 𝜆2 which is bounded by ℎ𝐺 . The intuition is that graphs with large 𝜆2 ∝ ℎ𝐺 have

short CT distances and thus they have better information flow. Edge augmentation in a graph would lead to a new graph𝐺 ′
where ℎ𝐺 ′ > ℎ𝐺 ,

with smaller CT distances and therefore better information flow.

The effective resistance is also related to other ways of computing the information flow between two nodes in a graph, such as the

Jacobian [6, 27, 77].

B.3 Theoretical Metrics Derived from Effective Resistance
In this section, we introduce several measures that are derived from the effective resistance. These measures have been proposed in previous

work and constitute the grounds for the group social capital metrics that we propose in this paper (Sections 3.1.2 and 3.2).

Total effective resistance. Rtot [29] is the sum of all effective distances in the graph. A lower value of Rtot indicates ease of signal propagation
across the entire network and hence larger information flow. Rtot is given by:

Rtot = Rtot (V) = 1

2

1⊤R1 =
1

2

∑︁
(𝑣,𝑢 ) ∈𝑉

𝑅𝑢𝑣 = 𝑛

𝑛∑︁
2

1

𝜆𝑛
= 𝑛 Tr(L†) (12)

The minimum Rtot = |𝑉 | − 1 = 𝑛 − 1 is achieved in a fully connected graph. Conversely, the maximum Rtot is achieved on a path graph (or

linear graph) and Rtot =
∑𝑛−1

𝑖 𝑖 = 1

2
(𝑛(𝑛 − 1)). Therefore, Rtot is —for connected graphs— in the range [𝑛 − 1,

𝑛 (𝑛−1)
2

]
Additionally, since the distance between 𝑢 and 𝑣 is the Euclidean distance in the embedding Z, Rtot can be obtained as follows [36]:

Rtot =
∑︁

(𝑣,𝑢 ) ∈𝑉
| |𝑍𝑢: − 𝑍𝑣: | |2 = 𝑛

∑︁
𝑢∈𝑉

| |𝑍𝑢: | |2 (13)

Similarly to 𝑅𝑢𝑣 , Rtot is theoretically related to the connectivity of the graph defined by it smallest non-zero eigenvalue. Ellens et al. [29]

demonstrated the relation between Rtot and 𝜆2:

𝑛

𝜆2

< Rtot ≤
𝑛(𝑛 − 1)

𝜆2

. (14)

Resistance diameter. The proposed group resistance diameter is based on the resistance diameter of a graph R
diam

, which is the maximum

effective resistance on the graph [17, 58]:

R
diam

= max

𝑢,𝑣∈𝑉
𝑅𝑢𝑣 (15)

R
diam

∝ 𝜆2 [17, 18], since

1

𝑛𝜆2

≤ R
diam

≤ 2

𝜆2

(16)

and specifically [2, 58]:

ℎ𝐺 ≤ 𝛼𝜖√︁
R
diam

·𝜖
𝑣𝑜𝑙 (𝑆)𝜖−1/2, (17)

By [58] we know that

R
diam

≤ 1

𝜆2

and R
diam

≤ 1

ℎ2

𝐺

(18)

In addition, R
diam

is related to the cover time of the graph, which is the expected time required for a random walk to visit every node at

least once, i.e., the expected time for a piece of information to reach the entire network. R
diam

can be used to estimate the cover time of the

graph, as per [17]:

𝑚 R
diam

≤ cover time ≤ 𝑂 (𝑚 R
diam

log𝑛) (19)

Resistance betweenness and curvature. As the effective resistance is an information distance, this metric can be used to propose alternative

betweenness or criticality metrics to the shortest path betweenness [52]. In the literature, several effective resistance-based measures have

been proposed to determine a node’s criticality, such as: the current flow betweenness [10, 11, 52, 74, 75], the resistance curvature of a

node [26, 77], and the information bottleneck property of a node [2, 4, 6]. Note that the last two definitions are mathematically equivalent [26].

In this work, we focus on the resistance curvature of a node and the information bottleneck, which have been shown to define how much

information is squeezed into a node when the information flows in the graph [2, 4]. The resistance curvature of a node is expressed as [26]:

𝑝𝑢 = 1 − 1

2

∑︁
𝑣∈N(𝑢 )

𝑅𝑢𝑣 (20)
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Therefore, it fulfills the following equality:

𝑝𝑢 = 1 − 1

2

∑︁
𝑣∈N(𝑢 )

𝑅𝑢𝑣 = 1 − 1

2

BR (𝑢) → BR (𝑢) = −2(𝑝𝑢 − 1) . (21)

Although the definition of a node’s resistance curvature involves computing the sum of the effective resistances between the node and its

neighboring nodes, the overall structure of the graph affects all 𝑅𝑢𝑣 ’s and, consequently, the value of 𝑝𝑖 and BR (𝑢). The curvature of a node
is bounded by 1 − 𝑑𝑢/2 ≤ 𝑝𝑢 ≤ 1/2.

C GROUP SOCIAL CAPITAL METRICS AND EDGE AUGMENTATION ALGORITHM
In this section, we explore the properties and attributes of the proposed group social capital metrics and present an efficient version of the

greedy edge augmentation algorithm described in the main paper.

C.1 Group Social Capital Metrics
C.1.1 Group Isolation and Isolation Disparity. Group Isolation is based on the previously explained notion of total effective resistance of

a graph and its close connection with the current flow closeness centrality [52]. We propose to define the isolation of a node as its total

effective resistance Rtot (𝑢) =
∑

𝑣∈V 𝑅𝑢𝑣 . The proposed group isolation is obtained as the expectation in Rtot (𝑢) for all the nodes in the

group:

Rtot (𝑆𝑖 ) =E𝑢∼𝑆𝑖 [Rtot (𝑢)]

= |V| E𝑢∼𝑆𝑖

[
1

|V|
∑︁
𝑣∈V

𝑅𝑢𝑣

]
= |V|E𝑢∼𝑆𝑖 [E𝑣∼V [𝑅𝑢𝑣]]

=|V|E𝑢∼𝑆𝑖 ,𝑣∼V [𝑅𝑢𝑣] , (22)

and it is also proportional to the average 𝑅𝑢𝑣 of the nodes in 𝑆 to all other nodes in the graph, multiplied by the size of that group.

Rtot (𝑆𝑖 ) is computed as the expectation of Rtot (𝑢) for all nodes in group 𝑆𝑖 :

Rtot (𝑆𝑖 ) =|V|E𝑢∼𝑆𝑖 ,𝑣∼V [𝑅𝑢𝑣] (23)

=|V| 1

|𝑆𝑖 |
∑︁
𝑢∈𝑆𝑖

1

|V|
∑︁
𝑣∈V

𝑅𝑢𝑣 =
1

|𝑆𝑖 |
∑︁
𝑢∈𝑆𝑖

∑︁
𝑣∈V

𝑅𝑢𝑣 =
1

|𝑆𝑖 |
∑︁
𝑢∈𝑆𝑖

Rtot (𝑢)

=E𝑢∼𝑆𝑖 [Rtot (𝑢)]

Finally, the cumulative group isolation across all groups in the graph fulfills the following equality with the total effective resistance of

the graph.

1

2

∑︁
𝑖∈𝑆𝐴

|𝑆𝑖 | Rtot (𝑆𝑖 ) =
1

2

∑︁
𝑖∈𝑆𝐴

|𝑆𝑖 |
1

|𝑆𝑖 |
∑︁
𝑢∈𝑆𝑖

∑︁
𝑣∈V

𝑅𝑢𝑣 =
1

2

∑︁
𝑣∈V

∑︁
𝑣∈V

𝑅𝑢𝑣 = Rtot = 𝑛 Tr(L†)

Therefore, since Rtot is related to the information flow, Rtot (𝑆𝑖 ) measures the ease of information flow through group 𝑆𝑖 in the graph.

The optimal –yet extreme– scenario of maximum information flow in a graph is such where all nodes in the graph are connected. Hence,

𝐺 will be a fully connected graph. In this scenario, the total effective resistance of the graph reaches its minimum 𝑛 − 1, where 𝑛 = |V|.
The total effective resistance of all existing edges in the graph is 𝑛 − 1, and given that we have all connections, Rtot also sums up to 𝑛 − 1.

Therefore, every pair of nodes will be separated by 𝑅𝑢𝑣 = 2/𝑛. In this scenario, Rtot (𝑢) = (2/𝑛) (𝑛 − 1) = 2 − 2/𝑛 for all nodes in the graph. It

leads to an group isolation of Rtot (𝑆𝑖 ) = 2 − 2/𝑛 for all the different groups in the graph and therefore a Isolation disparity ΔRtot = 0.

Regarding group isolation disparity, Eq. (5) can be redefined using Eq. (23). It is equivalent to the equality for all groups of the mean 𝑅𝑢𝑣
between of the nodes in the group and all nodes in the graph:

Rtot (𝑆𝑖 ) = Rtot (𝑆 𝑗 ),∀𝑖, 𝑗 ∈ 𝑆𝐴

E𝑢∼𝑆𝑖 ,𝑣∼V [𝑅𝑢𝑣] = E𝑢∼𝑆 𝑗 ,𝑣∼V [𝑅𝑢𝑣] ,∀𝑖, 𝑗 ∈ 𝑆𝐴 × 𝑆𝐴 (24)

C.1.2 Group Control and Control Disparity. In this section, we provide the proof for the bounds associated with the proposed control

metrics.

Bounds of BR (𝑢) and BR (𝑆𝑖 ). In this section, we show the proof of the bounds of the node and group control.

Theorem C.1. The control of a node is bounded by 1 ≤ BR (𝑢) ≤ 𝑑𝑢 , being 𝑑𝑢 the degree of node 𝑢. Equality on the upper bound holds when
all the edges are cut edges, i.e., edges that if removed the graph would become disconnected.
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Proof. The resistance curvature of a node is known to be bounded by 1 − 𝑑𝑢/2 ≤ 𝑝𝑢 ≤ 1/2 [26], and the relation between the curvature

and group control is given by the equality 𝑝𝑢 = 1 − 1

2
BR (𝑢). Therefore, we obtain the bounds as

1 − 𝑑𝑢

2

≤ 𝑝𝑢 ≤ 1

2

→

1 − 𝑑𝑢

2

≤ 1 − 1

2

BR (𝑢) ≤ −1

2

→

−𝑑𝑢 ≤ −BR (𝑢) ≤ −1 →
1 ≤ BR (𝑢) ≤ 𝑑𝑢

□

Theorem C.2. The control of a group is bounded by 1 ≤ BR (𝑆𝑖 ) ≤ vol(𝑆𝑖 )
|𝑆𝑖 | , being vol(𝑆𝑖 ) the sum of the degrees of node 𝑢. Thus, vol(𝑆𝑖 )/|𝑆𝑖 |

is the average degree of all the nodes in 𝑆𝑖 . Equality on the upper bound holds when the subgraph with all nodes of 𝑆𝑖 and their neighbors is a tree
graph, i.e., a connected acyclic undirected graph.

Proof. The control of a group is defined as BR (𝑆𝑖 ) = E𝑢∼𝑆𝑖 [BR (𝑢)] and using Theorem C.1, we derive the bounds of BR (𝑆𝑖 ) as follows:

1 ≤ BR (𝑢) ≤ 𝑑𝑢 →
1 ≤ E𝑢∼𝑆𝑖 [BR (𝑢)] ≤ E𝑢∼𝑆𝑖 [𝑑𝑢 ] →

1 ≤ BR (𝑆𝑖 ) ≤
vol(𝑆𝑖 )
|𝑆𝑖 |

□

Control as an allocation problem. Here we delve into the properties and behavior of the group control (BR (𝑆𝑖 )) as a limited resource to be

distributed in the network. The sum of 𝑅𝑢𝑣 for every edge always equals to |V| − 1 [29]:∑︁
(𝑢,𝑣) ∈E

𝑅𝑢𝑣 = |𝑉 | − 1.

Therefore, the sum of the node controls in the graph is defined as∑︁
𝑢∈V

𝐵𝑅 (𝑢) =
∑︁
𝑢∈V

∑︁
𝑣∈N(𝑢 )

𝑅𝑢𝑣 = 2 ×
∑︁

(𝑢,𝑣) ∈E
𝑅𝑢𝑣 = 2|𝑉 | − 2,

and the expectation as:

E𝑢∼𝑉 [𝐵𝑅 (𝑢)] = 2 − 2

|𝑉 |
independently of the number of edges (density) of the graph.

As a consequence of the definition of group control (Eq. (4)), the weighted sum of group control for all groups in the graph and the

weighted mean also remain constant at:∑︁
𝑆𝑖 ∈𝑉

|𝑆𝑖 | × 𝐵𝑅 (𝑆𝑖 ) = 2|𝑉 | − 2 and

1

|𝑉 |
∑︁
𝑆𝑖 ∈𝑉

|𝑆𝑖 | × 𝐵𝑅 (𝑆𝑖 ) = 2 − 2

|𝑉 | .

C.2 Efficient version of Algorithm
Algorithm 2 shows an efficient manner to update the pseudo-inverse of the Laplacian after adding one edge to the graph. Therefore, we

avoid the computation of L† after every edge addition. L† is easily updated using the Woodbury’s formula which is based on the values of L†

(see Black et al. [6] for a proof).

D ADDITIONAL EXPERIMENTS
In this section, we complement the experimental results reported in Section 4, and we report results on additional experiments.

D.1 Group Social Capital Metrics
The experiments presented in the main paper illustrate how edge augmentation via ERG-Link is able to (1) significantly mitigate the structural

group unfairness (Table 2); and (2) increase the social capital for all the groups in the graph (Fig. 2). Table 4 depicts the group social capital

for each group after each intervention. Note that the optimal value of BR is to get every group’s control equal to 2 − 2/|V|.
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Algorithm 2: ERP-Link
Data: Graph 𝐺 = (V, E), a protected attribute 𝑆𝐴, budget 𝐵 of total number of edges to add

Result: Interviened Graph 𝐺 ′ = (V′, E′)
1 L = D − A;

2 𝑆𝑑 = argmax𝑆𝑖∀𝑖∈𝑆𝐴 Rtot (𝑆𝑖 ) ; // Identify the most disadvantaged group

3 L† =
∑
𝑖>0

1

𝜆𝑖
𝜙𝑖𝜙

⊤
𝑖
=

(
L + 11⊤

𝑛

)−1

− 11⊤
𝑛 ; // Pre-computation of L†

4 Repeat
5 R = 1 diag(L†)⊤ + diag(L†)1⊤ − 2L† ; // Compute effective resistance

6 𝐶 = {(𝑢, 𝑣) | 𝑢 ∈ 𝑆𝑑 or 𝑣 ∈ 𝑆𝑑 , (𝑢, 𝑣) ∉ 𝐸} ; // Select edge candidates

7 E′ = E′ ∪ arg max(𝑢,𝑣) ∈𝐶 𝑅𝑢𝑣 ; // Add edge with maximum effective resistance from 𝐶

// Fast update of L and L†

8 L = L + (e𝑢 − e𝑣) (e𝑢 − e𝑣)⊤;
9 L† = L† − 1

1+𝑅𝑢𝑣 × (L†𝑢,: − L†𝑣,:) ⊗ (L†𝑢,: − L†𝑣,:) ; // updated by Woodbury

10 Until |E′ \ E| = 𝐵;

11 return 𝐺 ′
;

Table 4: Group Social Capital after Edge Augmentation. The best values are highlighted in bold. Note how edge augmentation
via ERG-Link is able to not only increase the social capital of the disadvantaged group (females) but also of the rest of the groups
(males).

(a) Facebook (50) Female

𝑅𝑡𝑜𝑡 ↓ R𝑑𝑖𝑎𝑚 ↓ BR
𝐺 221.4 2.29 1.927

Random 211.5 2.26 1.927

DW 199.4 1.87 1.929

Cos 190.4 1.64 1.918

ERG 138.7 0.43 1.933

(b) UNC28 (5,000) Female

𝑅𝑡𝑜𝑡 ↓ R𝑑𝑖𝑎𝑚 ↓ BR
𝐺 608.6 2.11 1.994

Random 435.0 1.23 1.992

DW 583.2 1.81 1.997

Cos 429.6 0.42 1.940

ERG 316.8 0.10 2.001

(c) Google+ (5,000) Female

𝑅𝑡𝑜𝑡 ↓ R𝑑𝑖𝑎𝑚 ↓ BR
𝐺 564.1 1.31 1.807

Random 305.1 1.07 1.824

DW 558.7 1.31 1.806

Cos 230.9 0.29 1.827

ERG 145.5 0.07 1.889

(d) Facebook (50) Male

𝑅𝑡𝑜𝑡 ↓ R𝑑𝑖𝑎𝑚 ↓ BR
𝐺 179.8 2.25 2.034

Random 172.8 2.22 2.035

DW 163.1 1.83 2.033

Cos 161.8 1.61 2.039

ERG 128.5 0.42 2.031

(e) UNC28 (5,000) Male

𝑅𝑡𝑜𝑡 ↓ R𝑑𝑖𝑎𝑚 ↓ BR
𝐺 586.3 2.11 2.004

Random 415.2 1.23 2.005

DW 561.0 1.81 2.001

Cos 410.6 0.41 2.043

ERG 308.0 0.09 1.998

(f) Google+ (5,000) Male

𝑅𝑡𝑜𝑡 ↓ R𝑑𝑖𝑎𝑚 ↓ BR
𝐺 287.7 1.24 2.321

Random 175.7 1.03 2.293

DW 284.6 1.24 2.323

Cos 144.1 0.27 2.288

ERG 108.5 0.06 2.185

D.2 Distribution of Social Capital by Group
For completeness, Fig. 4 illustrates the distributions of all effective resistances 𝑅𝑢𝑣 and the node’s social capital metrics –Rtot (𝑢), Rdiam

(𝑢)
and BR (𝑢)– in the graph before and after the edge augmentation interventions for each of the groups.

The plots correspond to two different edge augmentation experiments on the Facebook dataset, with budgets of B=50 and B=5,000 new

edges. Edge augmentation via ERG-Link is able to drastically reduce all effective resistances of the graph, unlike the other methods and even

for the small budget. Note how there is still a long tail in the distribution of effective resistances after edge augmentation with the baseline

methods, which illustrates that there are still nodes that struggle to exchange information even after the intervention.

Regarding the node social capital metrics, edge augmentation via ERG-Link reduces all Rtot (𝑢) and Rdiam
(𝑢), which explains why Rtot (𝑆𝑖 )

and Rtot (𝑆𝑖 ) is improved for all groups in the graph, and particularly for the disadvantaged group. Thus, ΔRtot and ΔR
diam

are significantly

reduced.

D.3 Evolution of Group Social Capital During the Interventions
In this section, we provide additional results regarding the evolution of group social capital metrics during the graph’s intervention, as

initially shown in Fig. 3. The goal is to analyze the effectiveness of the edge augmentation methods on both small (𝐵 = 50 edges) and large
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Figure 4: Distribution of 𝑅𝑢𝑣 and proposed social capital metrics on the Facebook dataset and after different graph interventions,
50 links in the top row and 5,000 in the bottom row. Columns show (left) distribution of all𝑅𝑢𝑣 distances, (center-left) distribution
of all Rtot (𝑢), (center-right) distribution of all Rdiam (𝑢), (right) distribution of all BR (𝑢). The distributions for the node metrics
are shown for the two groups according to the protected attribute (gender).

(𝐵 = 5, 000 edges) budget scenarios. Figs. 5 and 6 show the evolution of both the group social capital metrics for each group and the structural

group unfairness metrics on the Facebook dataset.

We observe in Fig. 5 how edge augmentation via ERG-Link is able to significantly improve the group social capital for all groups and

reduce all structural unfairness metrics. In contrast, the baselines fail to do so.

Figure 5: Evolution of group social capital and disparity metrics for both groups as the number of added edges increases on the
Facebook dataset with a budget of 50 new edges.

Fig. 6 depicts the evolution of group social capital and disparity metrics when adding 5,000 edges to the Facebook dataset. The more

edges we add to a graph, the denser the graph becomes and therefore the better the information flow. Thus, one can expect that after a large

number of added edges, all methods behave similarly.

However, we observe some differences. First, the convergence to minimal isolation and diameter disparities is significantly faster when

adding edges via ERG-Link than any other method. Second, the decrease in Rtot (𝑆𝑖 ) is very significant for both groups (males and females)

even after just adding a small number of edges bymeans of ERG-Link. Third, regarding group control and control disparity, edge augmentation

via ERG-Link systematically reduces ΔBR while converging each group control to the optimal BR (𝑆𝑖 ) = 2 − 2/|V|.
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We also show in Fig. 7 the evolution of BR (𝑆𝑖 ) and ΔBR on the UNC28 dataset with 1,000 edge additions along with the distribution of

node’s control BR (𝑢) after the intervention to showcase an scenario where ERG-Link is able to reach the optimal control disparity in the

graph, allocating the same amount of control for each group, BR (𝑆𝑖 ) ≈ 2 − 2/|V| ∀ 𝑖 ∈ 𝑆𝐴 → ΔBR ≈ 0.

Last but not least, the different baselines do not reach a better behavior than the random method, neither on the group social capital

metrics nor in terms of structural unfairness. After 5,000 edge additions, the random method significantly reduces the unfairness metrics

ΔRtot and ΔR
diam

while also achieving decent rated of Rtot (𝑆𝑖 ) and R
diam

(𝑆𝑖 ) since the budget is high enough to improve the information

flow with no strategy. However, all baselines struggle to optimize ΔBR (𝑆𝑖 ) and BR (𝑆𝑖 ). None of them is able to improve, and the cosine

similarity approach even increased the Control Disparity.

Figure 6: Evolution of group social capital metrics for both groups and fairness metrics as the number of added links increases,
on Facebook dataset after adding 5,000 edges. Edge augmentation via ERG-Link exhibits a faster rate of convergence to the
optimal scenario than the baselines.

Figure 7: Behavior of node, group control and control disparity (BR (𝑢),BR (𝑆𝑖 ),ΔBR). Illustration of the evolution of the group
control (left, BR (𝑆𝑖 )) and control disparity (middle, ΔBR) through an edge augmentation with 𝐵 = 1, 000 edges on the UNC
dataset. Right-most figure: distribution of the nodes’ control (BR (𝑢)) for each group. Note how edge augmentation via ERG-Link
yields a control for all groups approaching their optimal value of 2 − 2/|V| by reducing the control of the privileged group
(males) while increasing the control of the disadvantaged group (females).
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