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Abstract
Algorithmic fairness is of utmost societal importance, yet the current trend in large-scale

machine learning models requires training with massive datasets that are frequently biased.
In this context, pre-processing methods that focus on modeling and correcting bias in
the data emerge as valuable approaches. In this paper, we propose FairShap, a novel
instance-level data re-weighting method for fair algorithmic decision-making through data
valuation by means of Shapley Values. FairShap is model-agnostic and easily interpretable,
as it measures the contribution of each training data point to a predefined fairness metric.
We empirically validate FairShap on several state-of-the-art datasets of different nature,
with a variety of training scenarios and models and show how it yields fairer models with
similar levels of accuracy than the baselines. We illustrate FairShap’s interpretability by
means of histograms and latent space visualizations. Moreover, we perform a utility-fairness
study, and ablation and runtime experiments to illustrate the impact of the size of the
reference dataset and FairShap’s computational cost depending on the size of the dataset
and the number of features. We believe that FairShap represents a promising direction in
interpretable and model-agnostic approaches to algorithmic fairness that yield competitive
accuracy even when only biased datasets are available.
Keywords: Algorithmic Fairness, Data Valuation, Shapley Value, Instance-level Re-
weighting, Model-agnostic Fairness

1 Introduction

Machine learning (ML) models are increasingly used to support human decision-making in a
broad set of use cases, including in high-stakes domains, such as healthcare, education, finance,
policing, or immigration. In these scenarios, algorithmic design, implementation, deployment,
evaluation and auditing should be performed cautiously to minimize the potential negative
consequences of their use, and to develop fair, transparent, accountable, privacy-preserving,
reproducible and reliable systems (Barocas et al., 2019; Smuha, 2019; Oliver, 2022). To
achieve algorithmic fairness, a variety of fairness metrics that model mathematically different
definitions of equality have been proposed in the literature (Carey and Wu, 2022). Group
fairness focuses on ensuring that different demographic groups are treated fairly by an
algorithm (Hardt et al., 2016; Zafar et al., 2017), and individual fairness aims to give a similar
treatment to similar individuals (Dwork et al., 2012). In the past decade, numerous machine
learning methods have been proposed to achieve algorithmic fairness (Mehrabi et al., 2021).

Algorithmic fairness may be addressed in the three stages of the ML pipeline: first, by
modifying the input data (pre-processing) via e.g. re-sampling, data cleaning, re-weighting
or learning fair representations (Kamiran and Calders, 2012; Zemel et al., 2013); second,
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by including a fairness metric in the optimization function of the learning process (in-
processing) (Zhang et al., 2018; Kamishima et al., 2012); and third, by adjusting the model’s
decision threshold to ensure fair decisions across groups (post-processing) (Hardt et al., 2016).
These approaches are not mutually exclusive and may be combined to obtain better results.

From a practical perspective, pre-processing fairness methods tend to be easier to
understand for a diverse set of stakeholders, including legislators (Feldman et al., 2015;
Hacker and Passoth, 2022). Furthermore, to mitigate potential biases in the data, there
is increased societal interest in using demographically-representative data to train ML
models (Madaio et al., 2022; Gebru et al., 2021; Hagendorff, 2020). However, the vast
majority of the available datasets used to train ML models in real world scenarios are not
demographically representative and hence could be biased. Moreover, datasets that are
carefully created to be fair lack the required size and variety to train large-scale deep learning
models.

In this context, pre-processing algorithmic fairness methods that focus on modeling and
correcting bias on the data emerge as valuable approaches (Chouldechova and Roth, 2020).
Methods of special relevance are those that identify the value of each data point not only from
the perspective of the algorithm’s performance, but also from a fairness perspective (Feldman
et al., 2015), and methods that are able to leverage small but fair datasets to improve fairness
when learning from large-scale yet biased datasets.

Data valuation approaches are particularly well suited for this purpose. The proposed
data valuation methods to date (Ghorbani and Zou, 2019) measure the contribution of each
data point to the utility of the model –usually defined as accuracy– and use this information
as a pre-processing step to improve the performance of the model. However, they have not
been used for algorithmic fairness. In this paper, we fill this gap by proposing FairShap,
an instance-level, data re-weighting method for fair algorithmic decision-making which
is model-agnostic and interpretable through data valuation. FairShap leverages Shapley
Values (Shapley, 1953) to measure the contribution of each data point to a pre-defined group
fairness metric. It uses a reference dataset (T ) to compute the weights, and thus it is able
to leverage fair but small datasets to debias large yet biased datasets.

Figure 1 illustrates the workflow of data re-weighting by means of FairShap: First, the
weights are computed by leveraging a reference dataset T which is either a fair dataset –when
available– or the validation set of the dataset D. Second, once the weights Φi for each data
point in the training set xi are obtained, the training data is re-weighted. Third, an ML
model is trained using the re-weighted data and then applied to the test set.

FairShap has several advantages: (1) it is easily interpretable, as it assigns a numeric
value (weight) to each data point in the training set; (2) it enables detecting which data
points are the most important to improve fairness while preserving accuracy; (3) it makes it
possible to leverage small but fair datasets to learn fair models from large-scale yet biased
datasets; and (4) it is model agnostic.

2 Related Work

Group Algorithmic Fairness Group bias in algorithmic decision-making is based on the
conditional independence between the joint probability distributions of the sensitive attribute
(A), the label (Y ), and the predicted outcome (Ŷ ). Barocas et al. (2019) define three
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(1) Compute FairShap weights (2) Train model with re-weighted D

T 𝜙D Model

D Model

Accurate but unfair model

Accurate and fair modelHow much does each datapoint in D 
contribute to fairness?

Instance-level re-weighting

Data points that contribute the
most to improving fairness

Use for data re-weighting
Use to inform data acquisition policies

A=0  Y=1 (Privileged group, favorable label)

A=0  Y=0 (Privileged group, unfavorable label)

A=1  Y=1 (Disadvantaged group, favorable label)

A=1  Y=0 (Disadvantaged group, unfavorable label)

Figure 1: Left: FairShap’s workflow. The weights are computed using a reference dataset T , which can be an
external dataset or the validation set of D. Right: Illustrative example of FairShap’s impact on individual
instances and on the decision boundary. Note how data re-weighting with FairShap is able to shift the data
distribution yielding a fairer model with similar levels of accuracy.

concepts used to evaluate algorithmic fairness: independence (Ŷ⊥A), separation (Ŷ⊥A|Y ),
and sufficiency (Y⊥A|Ŷ ). The underlying idea is that a fair classifier should have the same
error classification rates for different protected groups. Three popular metrics to assess group
algorithmic fairness are –from weaker to stronger notions of fairness– demographic parity
(DP), i.e. equal acceptance rate (Dwork et al., 2012; Zafar et al., 2017); equal opportunity
(EOp), i.e. equal true positive rate, TPR, for all groups (Chouldechova, 2017; Hardt et al.,
2016); and equalized odds (EOdds), i.e. equal TPR and false positive rate, FPR, for all
groups (Zafar et al., 2017; Hardt et al., 2016). Numerous algorithms have been proposed to
maximize these metrics while maintaining accuracy (Mehrabi et al., 2021). FairShap focuses
on the two strongest of these group-based fairness metrics: EOp and EOdds.

Data Re-weighting for Algorithmic Fairness Data re-weighting is a pre-processing
technique that assigns weights to the training data to optimize a certain fairness measure.
Compared to other pre-processing approaches, data re-weighting is easily interpretable (Baro-
cas and Selbst, 2016). There are two broad approaches to perform data re-weighting: group
and instance-level re-weighting.

In group re-weighting, the same weight is assigned to all data points belonging to the
same group, e.g. all data points that share the same protected attribute value. Kamiran and
Calders (2012) re-weight the groups defined by A and Y based on statistics of the under-
represented label(s) and the disadvantaged group(s) in a model-agnostic manner. Krasanakis
et al. (2018) assume that there is an underlying set of labels that would correspond to an
unbiased distribution and use an inference model based on label error perturbation to define
weights that yield better fairness performance. Jiang and Nachum (2020) adjust the loss
function values in the sensitive groups to iteratively learn weights that address the labeling
bias and thus improve the fairness of the models. Chai and Wang (2022) find the weights
by solving an optimization problem that entails several rounds of model training. Finally,
Jung et al. (2023) combine re-weighing with a regularization term to adjust the weights in
an iterative optimization process based on distributionally robust optimization (DRO).

However, note that several of these works (Krasanakis et al., 2018; Jiang and Nachum,
2020; Chai and Wang, 2022; Jung et al., 2023) propose re-weighting methods that adjust the
weights repeatedly through an ongoing learning process, thus resembling in-processing rather
than pre-processing approaches (Caton and Haas, 2023) as the computed weights depend on
the model. This iterative process adds uncertainty to the weight computation (Ali et al.,
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2021) and requires retraining the model in each iteration, which could be computationally
very costly or even intractable for large datasets and/or complex models. Conversely, data-
valuation methods are based on the concept that the value of the data should be orthogonal
to the choice of the learning algorithm and hence data-valuation approaches should be purely
data-driven and hence model-agnostic (Sim et al., 2022).

In contrast to group re-weighting, instance-level re-weighting seeks to assign individual
weights to each data point by considering the protected attributes and the sample misclassi-
fication probability. Most of the previous work has proposed the use of Influence Functions
(IFs) for instance-level re-weighting. IFs estimate the changes in model performance when
specific points are removed from the training set by computing the gradients or Hessian of
the model (Koh and Liang, 2017; Pruthi et al., 2020; Paul et al., 2021; Sundararajan et al.,
2017). In the context of fairness, IFs have been used to estimate the impact of data points
on fairness metrics. Black and Fredrikson (2021) propose a leave-one-out (LOO) method
to estimate such an influence. In Wang et al. (2022), the data weights are estimated by
means of a neural tangent kernel by leveraging a kernelized combination of training examples.
Finally, Li and Liu (2022) propose an algorithm that uses the Hessian of the matrix of
the loss function to estimate the effect of changing the weights to identify those that most
improve the fairness of the model.

While promising, IFs are not exempt from limitations, such as their fragility, their depen-
dency on the model –and thus making them in-processing rather than pre-processing methods,
their need for strongly convex and twice-differentiable models (Basu et al., 2021) and their
limited interpretability, which is increasingly a requirement by legal stakeholders (Feldman
et al., 2015; Hacker and Passoth, 2022). Also, IFs are regarded as an approximation of a
leave-one-out approach, which limits the analysis by overlooking the correlation between data
points (Koh and Liang, 2017; Kwon and Zou, 2022; Hammoudeh and Lowd, 2022). Finally,
IFs do not satisfy validated properties that have been attributed to data valuation methods,
such as the awareness to data preference, which are essential to making the methods more
precise, practical and interpretable (Ghorbani and Zou, 2019; Wu et al., 2022).

Data Valuation Data valuation (DV) methods, such as the Shapley Value (Shapley, 1953)
or Core (Gillies, 1959), measure how much a player contributes to the total utility of a
team in a given coalition-based game. They have shown promise in several domains and
tasks, including federated learning (Wang et al., 2019), data minimization (Brophy, 2020),
data acquisition policies, data selection for transfer learning, active learning, data sharing,
exploratory data analysis and mislabeled example detection (Schoch et al., 2022).

In the ML literature, Shapley Values (SVs) have been proposed to tackle a variety of
tasks, such as transfer learning and counterfactual generation (Fern and Pope, 2021; Albini
et al., 2022). In the eXplainable AI (XAI) field (Molnar, 2020), SVs have been used to
achieve feature explainability by measuring the contribution of each feature to the individual
prediction (Lundberg and Lee, 2017). Ghorbani and Zou (2019) recently proposed an
instance-level data re-weighting approach by means of the SVs to determine the contribution
of each data point to the model’s accuracy. In this case, the SVs are used to modify the
training process or to design data acquisition/removal policies. The goal is to maximize the
model’s accuracy in the test set. We are not aware of any peer-reviewed publication where
SVs are used in the context of algorithmic fairness.
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In this paper, we propose FairShap, an interpretable, instance-level data re-weighting
method for algorithmic fairness based on SVs for data valuation. We direct the reader to
Table 4 in the Appendix for a comparison between FairShap and related methods regarding
their desirable qualities. In addition to data re-weighting, FairShap may be used to inform
data acquisition policies.

3 Preliminaries

3.1 The Shapley Value of a Dataset

Let D = {(xi, yi)}n be the dataset used to train a machine learning model M . The Shapley
Value (SV) of a data point (xi, yi) –or i for short– that belongs to the dataset D is a data
valuation function, ϕi(D, v) ∈ R –or ϕi(v) for short, that estimates the contribution of each
data point i to the performance or valuation function v(M,D, T ) –or v(D) for short– of
model M trained with dataset D and tested on reference dataset T , which is either an
external dataset or a subset of D. The Shapley Value is given by Eq. 1. Note how its
computation considers all subsets S in the powerset of D, P(D).

ϕi(D, v) :=
1

| D |
∑

S∈P(D \{i})

v(S ∪ {i})− v(S)(| D |−1
|S|

) (1)

The valuation function v(D) is typically defined as the accuracy of M trained with dataset
D and tested with T . In this case, the Shapley Value, ϕi(Acc), measures how much each data
point i ∈ D contributes to the accuracy of M . The values, ϕi(Acc), might be used for several
purposes, including domain adaptation data re-weighting (Ghorbani and Zou, 2019).

Axiomatic properties of the Shapley Values The SVs satisfy the following axiomatic
properties:

Efficiency : v(D) =
∑

i∈D ϕi(v), i.e. the value of the entire training dataset D is equal to
the sum of the Shapley Values of each of the data points in D.

Symmetry : ∀S ⊆ D : v(S ∪ i) = v(S ∪ j) → ϕi = ϕj , i.e. if two data points add the same
value to the dataset, their Shapley Values must be equal.

Additivity : ϕi(D, v1 + v2) = ϕi(D, v1) + ϕi(D, v2), ϕi(D, v1 + v2) = ϕi(D, v1) + ϕi(D, v2),
i.e. if the valuation function is split into additive 2 parts, we can also compute the Shapley
values in 2 additive parts.

Null Element : ∀S ⊆ D : v(S ∪ i) = v(S) → ϕi = 0, i.e. if a data point does not add any
value to the dataset then its Shapley value is 0.

3.2 Efficient Shapley Value Computation

Obtaining the SVs as per Equation (1) is computationally very expensive (O(2n)) for two
main reasons: (1) each v(S) computation requires training and testing the model with a
selected classification threshold; and (2) computing the SVs entails training on S and testing
in T for every S since ϕi iterates over P(D). In addition, computing v(D) is model-dependent,
which limits the flexibility of the approach.

Proposed approximations to compute the Shapley Values, such as Gradient Shapley
or TMC-Shapley (Ghorbani and Zou, 2019) require repetitively training a model and lack
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approximation guarantees (Sim et al., 2022; Jiang et al., 2023). Recent work by Jia et al. (2019)
has proposed an efficient (O(N logN)) closed-form solution to compute the SV of a dataset by
means of a distance-based approach and thus model independent. This closed-form solution
is the most efficient in terms of runtime when compared to other estimators of the Shapley
Values for data valuation (Jiang et al., 2023). Using this approach, a matrix Φ ∈ R| D |×| T | is
computed, where each element Φi,j denotes the contribution of the training point (xi, yi) ∈ D
to the probability of correct classification of the test point (xj , yj) ∈ T when using a k-NN
model, although no model is used for its computation. Appendix C.2 includes an extended
explanation of this approach.

This solution is completely model-agnostic and threshold-independent (see Appendix C.3),
since it is based on distances in the data manifold. Furthermore, previous work has empirically
shown that this efficient approximation is able to accurately estimate the value of the data
points such that the model’s accuracy drops significantly when highly valuable points are
removed, both in the case of tabular and non-structured (embeddings) data (Jiang et al.,
2023, Fig. 4 and Fig. 9). Jia et al. (2019) prove that the SV of each training data point i to
the model’s accuracy –defined as the average probability of correct classification over the test
points–, ϕi(Acc), is the expected value of Φij over all test points: ϕi(Acc) := Ej∼p(T )[Φi,j ] =
1
m

∑m
j=0Φi,j = Φi,: ∈ R, where Ej∼p(T ) denotes the expected value with respect to the test

set T , and j is drawn from T . The expected value of Φi,j over all test points j ∈ T represents
the contribution of the training point i to the model’s accuracy, ϕi(Acc). The SVs of the
training set can thus be represented as a vector ϕ(Acc) = [ϕ0(Acc), · · · , ϕn(Acc)] ∈ R| D |. Note
that given the efficiency axiom, v(D) = Acck-NN =

∑
i∈D ϕi(Acc).

4 FairShap: Fair Shapley Value

FairShap proposes valuation functions that consider the model’s fairness while sharing the
same axioms as the original SVs. Specifically, FairShap considers the family of fairness
metrics that are defined by TPR, TNR, FPR, FNR and their A-Y conditioned versions,
namely Equalized Odds (EOdds) and Equal Opportunity (EOp).

A straightforward implementation of FairShap is intractable. Thus, to address such
a limitation, FairShap leverages the efficiency axiom, the decomposability of the fairness
metrics (Gultchin et al., 2022; Wang et al., 2022) and the efficient and model-agnostic solution
proposed in Jia et al. (2019).

To obtain fair data valuations, FairShap computes ϕ(D, v) by means of a k-NN approxi-
mation and a reference dataset, T , which could be a small and fair external dataset or a
partition (typically the validation set) of D. The resulting model trained with the re-weighted
dataset according to FairShap’s weights maintains similar levels of accuracy while increasing
its fairness. Furthermore, no model is required to compute the fair data valuations and thus
FairShap is model agnostic.

In the following, we derive the expressions to compute the weights of a dataset according to
FairShap in a binary classification case and with binary protected attributes. The extension
to non-binary protected attributes and multi-class scenarios is provided in Appendix C.6.

Fair Shapley Values TPR and TNR are the building blocks of the group fairness metrics
that FairShap uses as valuation functions, namely Equalized Odds (EOdds) and Equal
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Opportunity (EOp). Let ϕi(TPR) and ϕi(TNR) be two valuation functions that measure the
contribution of training point i to the TPR and TNR, respectively. Note that TPR = Acc|Y=1

and TNR = Acc|Y=0. Therefore,

ϕi(TPR) := Ej∼p(T |Y=1)[Φi,j ] = Φi,:|Y=1 ∈ R (2)

where the value for the entire dataset is ϕ(TPR) = [ϕ0(TPR), · · · , ϕn(TPR)] ∈ R| D |. ϕ(TNR)
is obtained similarly but for Y = 0. In addition, ϕi(FNR) = 1

| D | − ϕi(TPR) and ϕi(FPR) =
1

| D | − ϕi(TNR). These four functions fulfill the SV axioms.
Intuitively, ϕ(TPR) and ϕ(TNR) quantify how much the examples in the training set

contribute to the correct classification when y = 1 and y = 0, respectively. To illustrate
ϕ(TPR) and ϕ(TNR), Figure 10 in Appendix D.2 depicts the ϕ(TPR) and ϕ(TNR) of a simple
synthetic example with two normally distributed classes with y = 1 shown in blue and y = 0
in green.

Once ϕi(TPR), ϕi(TNR), ϕi(FPR) and ϕi(FNR) have been obtained, we can compute the
FairShap weights for a given dataset. However, there are two scenarios to consider, depending
on whether the sensitive attribute (A) and the target variable or label (Y ) are the same or
not.

FairShap when A = Y In this case, the group fairness metrics (e.g. Eop and EOdds)
collapse to measure the disparity between TPR and TNR or FPR and FNR for the different
classes (Berk et al., 2021), which, in a binary classification case, may be expressed as the
Equal Opportunity measure computed as EOp := TPR − FPR ∈ [−1, 1] or its bounded
version EOp = (TPR+TNR)/2 ∈ [0, 1]. Thus, the ϕi(EOp) of data point i may be expressed
as

ϕi(EOp) :=
ϕi(TPR) + ϕi(TNR)

2
(3)

For more details on the equality of the group fairness metrics when A = Y and how to
obtain ϕi(EOp), we refer the reader to Appendix C.4.

FairShap when A ̸= Y This is the most common scenario. In this case, group fairness
metrics, such as EOp or EOdds, use true/false positive/negative rates conditioned not only
on Y , but also on A. Therefore, we define TPR|A=a = Acc|Y=y,A=a, or TPRa for short, and
thus

ϕi(TPRa) := Ej∼p(T |Y=1,A=a)[Φi,j ] = Φi,:|Y=1,A=a (4)

where the value for the entire dataset is ϕ(TPRa) = [ϕ0(TPRa), · · · , ϕn(TPRa)]. Intuitively,
ϕi(TPRa) measures the contribution of the training point i to the TPR of the testing points
belonging to a given protected group (A = a). ϕi(TNRa) is obtained similarly but for y = 0.

Given EOp := TPR|A=a−TPR|A=b and EOdds := (FPRA=a −FPRA=b)+(TPRA=a −TPRA=b)
2 ,

then ϕi(EOp) is given by
ϕi(EOp) := ϕi(TPRa)− ϕi(TPRb) (5)

and ϕi(EOdds) is expressed as

ϕi(EOdds) :=
(ϕi(FPRa)− ϕi(FPRb)) + (ϕi(TPRa)− ϕi(TPRb))

2
(6)
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where their corresponding ϕ(EOp) and ϕ(EOdds) vectors are ϕ(EOp) = [ϕ0(EOp), · · · , ϕn(EOp)]
and ϕ(EOdds) = [ϕ0(EOdds), · · · , ϕn(EOdds)], respectively. A step-by-step derivation of the
equations above can be found in Appendix C.5. Additionally, Appendix D.2 and Figure 11
present a synthetic example showing the impact of ϕ(·) on the decision boundaries and the
fairness metrics.

Algorithm 1 provides the pseudo-code to compute the data weights according to FairShap.

Algorithm 1 Data re-weighting for algorithmic fairness via Shapley Values, A ̸= Y

1: Input Training set D, test set T , protected groups A, parameter k
2: procedure CalculateFairShapleyValues(D, T , k)
3: Initialize Φ as a matrix of zeros with dimensions | D | × | T |
4: for j in T do
5: Order i ∈ D according to the L2 distance to j ∈ T → (x1, x2, . . . , xN )

6: Compute ΦN,j =
I[yxN

=yj ]

N
7: for i from N − 1 to 1 do
8: ▷ How much i contributes to j’s likelihood of correct classification? Φi,j ◁

9: Φi,j = Φi+1,j +
I[yi=yj ]−I[yi+1=yj ]

max(k,i)

10: ϕ(TPRa) = [ϕi(TPRa) = Ej∼p(T |Y=1,A=a)[Φi,j ] : ∀i ∈ D] ∀a ∈ A ▷ Equation (4)
11: ϕ(FPRa) = [ϕi(FPRa) =

1
| D | − ϕi(TNRa) : ∀i ∈ D] ∀a ∈ A

12: ϕ(EOp) = [ϕi(EOp) = ϕi(TPRa)− ϕi(TPRb) : ∀i ∈ D] ▷ Equation (5)
13: ϕ(EOdds) = [ϕi(EOdds) = (ϕi(FPRa)−ϕi(FPRb))+(ϕi(TPRa)−ϕi(TPRb))

2 : ∀i ∈ D] ▷ Equation (6)
14: Output:
15: Shapley Value matrix Φ ∈ R| D |×| T |

16: FairShap arrays ϕ(EOp) ∈ R| D | and ϕ(EOdds) ∈ R| D |

5 Experiments

In this section, we present the experiments performed to evaluate FairShap. We report
results on a variety of benchmark datasets for A = Y and A ̸= Y , and with fair and biased
reference datasets T .

5.1 FairShap when A = Y and a fair T

In this scenario, the task is to predict the sensitive attribute, i.e. A = Y , and the reference
dataset T is fair. We perform a sex classification task from facial images by means of a deep
convolutional network (Inception Resnet V1) using FairShap for data re-weighting. Sex is
both the protected attribute (A) and the target variable (Y ).

Datasets. We leverage three publicly available face datasets: CelebA, LFWA (Liu
et al., 2015) and FairFace (Karkkainen and Joo, 2021), where LFWA is the training set D
(large-scale and biased) and FairFace is the reference dataset T (small but fair). The test
split in the FairFace dataset is used for testing. CelebA is used to pre-train the Inception
Resnet V1 model (Szegedy et al., 2017) to obtain the LFWA and FairFace embeddings that
are needed to compute the Shapley Values efficiently by means of a k-NN approximation in
the embedding space.
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Pipeline. The pipeline to obtain the FairShap’s weights in this scenario is depicted in
Figure 2a and proceeds as follows: (1) Pre-train an Inception Resnet V1 model with the
CelebA dataset; (2) Use this model to obtain the embeddings of the LFWA and FairFace
datasets; (3) Compute the weights on the LFWA training set (D) using as reference dataset (T )
the FairFace validation partition. (4) Fine-tune the pretrained model using the re-weighted
data in the LFWA training set according to ϕ; and (5) Test the resulting model on the test
partition of the FairFace dataset. The experiment’s training details and hyper-parameter
setting are described in Appendix D.3.

Test

T = Validation

D
Weighted
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𝝓(D, v(D,T))

weights
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D = Train
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Test

Weighted
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(b) A ̸= Y and T is biased.

Figure 2: Pipelines for experiments in Section 5.1 (a) and Section 5.2 (b).

FairShap Re-weighting. In this case, the group fairness metrics are equivalent and
thus we report results using ϕi(EOp): ϕi(EOp) quantifies the contribution of the ith data
point (image) in LFWA to the fairness metric (Equal Opportunity) of the model tested on
the FairFace dataset.

Baselines. We compare FairShap with three baselines: the pre-trained model using
CelebA; the fine-tuned model using LFWA without re-weighting; and a data re-weighting
approach using ϕ(Acc) from (Ghorbani and Zou, 2019). We report two performance metrics:
the accuracy of the models in correctly classifying the sex in the images (Acc) and the
Equal Opportunity (EOp), measured as TPRM −TPRW where W is the disadvantaged group
(women in this case). We also report the specific TPR for men and women. A summary of
the experimental setup for this scenario is depicted in Figure 2a.

Results. The results of this experiment are summarized in Table 1. Note how both
re-weighting approaches (ϕ(Acc) and FairShap) significantly improve the fairness metrics
of the models while increasing the accuracy of the model. FairShap yields the best results
both in fairness and accuracy. Regarding EOp, the model trained with data re-weighted
according to FairShap yields improvements of 88% and 66% when compared to the model
trained without re-weighting (LFWA) and the model trained with weights according to
ϕ(Acc), respectively. In sum, data re-weighting with FairShap is able to leverage complex
models trained on biased datasets and improve both their fairness and accuracy.

To gain a better understanding of the behavior of FairShap in this scenario, Figure 3
(bottom) depicts a histogram of the ϕ(EOp) values on the LFWA training dataset. As seen
in the Figure, ϕi(EOp) are mostly positive for the examples labeled as "female" (green) and
mostly zero or negative for the examples labeled as "male" (orange). This result makes
intuitive sense given that the original model is biased against women, i.e. the probability of
misclassification is significantly higher for the images labeled as female than for those labeled
as male. Figure 3 (top) depicts the five images with the largest ϕi(EOp): they all belong to
the female category and depict faces with a variety of poses, different facial expressions and
from diverse races.
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Training Set Acc↑ TPRW | TPRM EOp ↓

FairFace 0.909 0.906 | 0.913 0.007

CelebA 0.759 0.580 | 0.918 0.34
LFWA 0.772 0.635 | 0.896 0.26
ϕ(Acc) 0.793 0.742 | 0.839 0.09
FairShap - ϕ(EOp) 0.799 0.782 | 0.813 0.03

Table 1: Performance of the Inception Resnet V1 model tested on the FairFace dataset without and with
re-weighting and with protected attribute A=Y =sex. Best results are highlighted in bold. The arrows next
to the metrics’ name indicate if the optimal result of the metric is 0 (↓) or 1 (↑).

Note how in this case FairShap behaves like a distribution shift method. Figure 4
shows how ϕi(EOp) shifts the distribution of D (LFWA) to be as similar as possible to the
distribution of the reference dataset T (FairFace). Therefore, biased datasets (such as D)
may be debiased by re-weighting their data according to ϕi(EOp), yielding models with
competitive performance both in terms of accuracy and fairness. Figure 4 illustrates how
the group fairness metrics impact individual data points: critical data points are those near
the decision boundary. This finding is consistent with recent work that has proposed using
Shapley Values to identify counterfactual samples (Albini et al., 2022).

0.0015 0.0010 0.0005 0.0000 0.0005 0.0010100

101

102

103

104 φ(EOp)
Gender

Male
Female

Figure 3: Images with largest ϕi(EOp) and histogram of ϕi(EOp) on the LFWA dataset.

5.2 FairShap when A ̸= Y and biased T

In this section, we consider a common real-life scenario where the target variable Y is not
a protected attribute and a single biased dataset D is used for training, validation, and
testing. Thus, the validation set T is obtained from D according to the pipeline illustrated
in Figure 2b.

Datasets. We test FairShap on three commonly used datasets in the algorithmic fairness
literature: (1) the German Credit (Kamiran and Calders, 2009) dataset (German) with target
variable the good or bad individual’s credit risk, and protected groups age and sex ; (2) the
Adult Income dataset (Kohavi et al., 1996) (Adult) where the task is to predict if the income
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Figure 4: Left: LFWA embeddings. Middle: FairFace embeddings. Right: LFWA embeddings with data point
sizes ∝ |ϕi(EOp)|. Points with the largest ϕi(EOp) are highlighted in green. Note how they all correspond
to examples of women near the decision boundary of the original LFWA model. As a result of the data-
reweighting, the decision boundary has been shifted, yielding a fairer model.

of a person is more than 50k per year, and sex and race are the protected attributes; and (3)
the COMPAS (Angwin et al., 2016) dataset with target variable recidivism and protected
attributes sex and race. Appendix D.6 and Table 7 in the Appendix summarize the statistics
of each of these datasets.

Pipeline. The model in all experiments is a Gradient Boosting Classifier (GBC) (Fried-
man, 2001), known for its competitive performance on tabular data and interpretability
properties. The pipeline in this set of experiments is depicted in Figure 2b. As seen in the
Figure, the reference dataset T is the validation set of D. The reported results correspond
to the average values of running the experiment 50 times with random splits stratified by
sensitive group and label: 70% of the original dataset used for training (D), 15% for the
reference set (T ) and 15% for the test set. Train, reference and test set are stratified by A
and Y such that they have the same percentage of A - Y samples as in the original dataset.

FairShap re-weighting. Given that A ̸= Y , FairShap considers two different fairness-
based valuation functions: ϕ(EOp) and ϕ(EOdds) given by Equation (5) and Equation (6),
respectively.

Baselines. To the best of our knowledge, FairShap is the only interpretable, instance-
level model-agnostic data reweighting approach for group algorithmic fairness (see Table 4).
Thus, we compare its performance with 6 state-of-the-art algorithmic fairness approaches
that only partially satisfy FairShap’s properties:

1. Group RW : A group-based re-weighting method that assigns the same weights to all
samples from the same category or group according to the protected attribute (Kamiran and
Calders, 2012). Thus, this is not an instance-level data re-weighting approach;

2. Post-pro: A post-processing algorithmic fairness method that does not fulfill any of
the desiderata, but it is broadly used in the community (Hardt et al., 2016);

3. LabelBias: A model that learns the weights in a in-processing manner and therefore it
is neither a pre-processing nor a model-agnostic approach (Jiang and Nachum, 2020);
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4. Opt-Pre: A model-agnostic pre-processing approach for algorithmic fairness based on
feature and label transformations which does not assign any weights to the data (Calmon
et al., 2017);

5. IFs: An Influence Function (IF)-based approach whis is an in-processing a re-training
approach, since the weights are computed from the Hessian of a pretrained model. We use
the same hyper-parameters reported by the authors for each of the datasets (Li and Liu,
2022); and

6. ϕ(Acc): A method based on data re-weighting by means of an accuracy-based valuation
function without any fairness considerations (Ghorbani and Zou, 2019).

An extended explanation of the methods and the hyperparameters used can be found in
Appendix D.4.

Experimental setup. We adopt the experimental setup that is commonly followed in
the ML community: the weights, the influence functions and the thresholds required by the
different methods are computed on the validation set. Furthermore, all the reported results
correspond to the mean values of running 50 experiments on each dataset with random
stratified train, validation and test set splits in each experiment. Note that some previous
works in the algorithmic fairness literature do not perform label-group stratification on the
splits, or compute the weights or thresholds using the test set instead of the validation set.
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Figure 5: Utility vs fairness analysis. The models trained with data re-weighting via FairShap (depicted as
stars in the graphs) improve in fairness while maintaining competitive levels of accuracy when compared to
the baselines.

Results. The metrics used for evaluation are accuracy (Acc); Macro-F1 (M-F1), which is
an extension of the F1 score that addresses class imbalances, as it is the case in our benchmark
datasets (see Appendix D.5 for a definition of M-F1); equal opportunity (EOp), which is
the difference of true acceptance rates; and equalized odds (EOdds), which is the difference
between the true and the false positive rates, all of them between groups according to the
sensitive attribute. Table 2 summarizes the results, highlighting in bold the best-performing
method. The arrows indicate if the optimal result is 0 (↓) or 1 (↑).

As shown in the Table 2 and Figure 5, data re-weighting with FairShap (ϕ(EOdds)
and ϕ(EOp)) generally yields better results in the fairness metrics than the baselines while
keeping competitive levels of accuracy. This improvement is notable when compared to
the performance of the model built without data re-weighing (GBC). For example, in the
German dataset with sex as protected attribute, the model’s Equalized Odds metric is 93x
smaller (better) when re-weighting via FairShap (ϕ(EOdds)) than the baseline model (GBC)
and 18x better than the most competitive baseline (PostPro).
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German(S|A) Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓ Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓

GBC .697±.006 .519±.010 ‡.107±.020 ‡.185±.020 †.704±.005 .524±.010 ‡.224±.032 ‡.345±.030

Group RW .695±.006 .514±.010 ‡.062±.019 ‡.123±.025 ‡.684±.004 ‡.396±.041 ‡.040±.025 ‡.029±.026

Postpro ‡.691±.005 ‡.366±.055 .013±.014 †.036±.015 ‡.686±.005 ‡.255±.063 ‡.044±.022 ‡.047±.019

LabelBias .695±.006 ‡.465±.035 ‡.051±.019 ‡.092±.026 ‡.690±.004 ‡.354±.053 ‡.052±.029 ‡.052±.035

OptPrep .694±.006 .521±.010 ‡.104±.022 ‡.174±.021 ‡.693±.007 ‡.487±.030 ‡.130±.031 ‡.204±.039

IF .697±.006 .519±.010 ‡.107±.020 ‡.185±.020 †.704±.005 .524±.010 ‡.224±.032 ‡.345±.030

ϕ(Acc) .700±.005 †.507±.009 ‡.097±.018 ‡.184±.018 .706±.005 ‡.517±.010 ‡.193±.025 ‡.313±.025

ϕ(EOp) ‡.683±.006 ‡.460±.034 .029±.026 †.049±.033 ‡.685±.004 ‡.373±.046 .024±.023 .007±.021

ϕ(EOdds) ‡.686±.006 ‡.477±.009 .002±.025 .002±.031 ‡.681±.005 ‡.353±.049 .019±.020 .003±.013

Adult(S|R) Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓ Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓

GBC .803±.001 ‡.680±.002 ‡.451±.004 ‡.278±.003 .803±.001 ‡.682±.002 ‡.164±.010 ‡.106±.006

Group RW ‡.790±.001 .684±.002 .002±.009 .001±.005 .803±.001 ‡.683±.002 .010±.009 .010±.005

Postpro ‡.791±.001 †.679±.004 ‡.056±.013 ‡.034±.007 .802±.001 .688±.002 ‡.061±.011 ‡.042±.006

LabelBias ‡.781±.001 ‡.681±.002 ‡.065±.011 ‡.049±.006 ‡.800±.001 .686±.002 ‡.118±.013 ‡.074±.007

OptPrep ‡.789±.001 ‡.676±.004 ‡.064±.029 ‡.037±.017 ‡.800±.001 †.685±.002 ‡.044±.015 ‡.029±.009

IF ‡.787±.002 †.681±.003 ‡.159±.037 ‡.092±.022 ‡.797±.002 †.685±.002 ‡.042±.020 ‡.031±.012

ϕ(Acc) .804±.001 ‡.681±.002 ‡.452±.005 ‡.279±.003 .803±.001 ‡.681±.002 ‡.161±.011 ‡.104±.007

ϕ(EOp) ‡.790±.001 .684±.002 .002±.009 3e-4±.005 .802±.001 ‡.683±.002 .009±.010 .009±.005

ϕ(EOdds) ‡.790±.001 .683±.002 8e-4±.009 .001±.005 .802±.001 ‡.683±.002 .007±.009 .007±.005

COMPAS(S|R) Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓ Accuracy ↑ M-F1 ↑ EOp ↓ EOdds ↓

GBC .666±.004 .662±.004 ‡.158±.014 ‡.199±.014 .663±.004 .658±.004 ‡.184±.013 ‡.218±.013

Group RW .664±.004 .660±.004 .020±.016 ‡.038±.014 ‡.649±.004 ‡.646±.004 ‡.028±.015 .007±.016

Postpro ‡.660±.003 ‡.655±.003 .017±.017 †.030±.015 ‡.647±.005 ‡.642±.005 1e-4±.015 ‡.026±.016

LabelBias ‡.639±.005 ‡.612±.007 .006±.013 .010±.014 ‡.645±.004 ‡.627±.005 ‡.030±.011 ‡.045±.014

OptPrep .664±.003 .660±.003 ‡.045±.020 ‡.065±.019 ‡.655±.004 †.651±.004 ‡.044±.020 ‡.078±.020

IF .663±.003 .658±.003 ‡.129±.016 ‡.161±.015 .660±.004 .655±.004 ‡.165±.017 ‡.198±.015

ϕ(Acc) .667±.004 .662±.004 ‡.156±.014 ‡.198±.013 .663±.004 .657±.004 ‡.184±.013 ‡.218±.013

ϕ(EOp) †.661±.003 †.658±.004 .013±.024 .007±.021 ‡.650±.004 ‡.647±.004 ‡.027±.016 .004±.017

ϕ(EOdds) .663±.004 .659±.004 .019±.021 †.036±.020 ‡.648±.004 ‡.646±.004 ‡.036±.017 .004±.018

Table 2: Performance of GBC without and with data re-weighting on benchmark datasets with different
sensitive attributes. Best results marked in bold and second-best in italic. Statistically significant differences
with the best performing model are denoted by ‡ for p < 0.01 and † for p < 0.05.

From the results, we draw several observations. First, the variance in the accuracy of
the post-processing approach (PostPro) is significantly larger than that of other methods.
Second, a simple method such as Group RW delivers very competitive results, even better
than more sophisticated, recent approaches. Finally, accuracy is not an appropriate metric
of the performance of the classifier due to the imbalance of the datasets.
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Figure 6: ϕi(EOdds) (left) and ϕi(Acc) (right) for the German Credit dataset with A = sex.
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To shed further light on the behavior of FairShap, Figure 6 depicts the histograms of
the weights according to ϕ(EOdds) (left) and ϕ(Acc) (right) for the German Credit dataset
with sex as protected attribute. Note how the distribution of weights according to ϕ(Acc) is
similar for males and females, even though the dataset is highly imbalanced: male and female
examples with good credit receive larger weights than those with bad credit. Conversely,
ϕ(EOdds) assigns larger weights to female applicants with good credit than to their male
counterparts. In addition, it assigns larger weights to male applicants with bad credit than
to their female counterparts. These weight distributions compensate for the imbalances in
the raw dataset (both in terms of sex and credit risk), yielding fairer classifiers, as reflected
in the results reported in Table 2.

5.3 Accuracy vs Fairness

We are not aware of a theoretical proof that pre-processing model agnostic, data re-weighting
methods for algorithmic fairness will always preserve accuracy: the relationship between
fairness and accuracy in machine learning models is complex and depends on various factors,
including the nature of the dataset and the model used, and the specific fairness metric being
optimized.

Shapley Values provide a way to assign weights to individual data points based on their
contributions to a particular outcome –such as the model’s prediction or fairness. While
Shapley values can be used to re-weight data points to improve fairness according to a specific
fairness metric, the impact on accuracy is not guaranteed to be consistent across all datasets
and scenarios. However, in many scenarios, particularly when there are a large number of
examples in the majority group, optimizing TPR and FPR via data re-weighting does not
necessarily lead to a decrease in accuracy for the majority group while improving the model’s
fairness for the disadvantaged group. We observe this behavior in all our experiments.

Experiment To further illustrate the impact of FairShap’s data re-weighting on the
model’s accuracy and fairness, Figure 7 depicts the utility-fairness curves on the three
benchmark datasets (German, Adult and COMPAS). We define a parameter α that controls
the contribution to the weights of each data point according to FairShap (Φ(EOdds) or
Φ(EOp)), ranging from α = 0 (no data re-weighting) to α = 1 (weights as given by Φ(EOdds)
or Φ(EOp)). Thus, the weights of each data point i are computed as ϕ′

i = (1− α)1| D | + αϕi

where 1n = (1, 1, . . . , 1) ∈ Rn is the constant vector and ϕi are the weigths according to
FairShap.

As shown in the Figure, the larger the α, i.e. the larger the importance of FairShap’s
weights, the better the model’s fairness. In some scenarios, such as on the German dataset,
we observe a utility-fairness Pareto front where the fairest models correspond to α = 1 and
the best performing models correspond to α = 0. Conversely, on the COMPAS (sex) and
Adult (race) datasets, larger values of α significantly increase the fairness of the model while
keeping similar levels of utility (M-F1 and Accuracy).

5.4 Ablation study of the impact of the reference dataset’s size

In this section, we examine the influence of the size of the reference dataset, T , and the impact
of the alignment between T and the test set on the effectiveness of FairShap’s re-weighting.
To do so, we perform an ablation study. We partition the three benchmark datasets (German,
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Figure 7: Utility vs fairness trade-off for different values of α, where α = 0 = means no data re-weighting
and α = 1 means data re-weighting according to FairShap’s Φ(·). Results show the mean and 95% CI over
50 random iterations for three different datasets, different utility and fairness metrics and both for Φ(EOp)
and Φ(EOdds). Φ(EOp) is used in the German and COMPAS datasets, and Φ(EOdds) in the Adult dataset.
Top graphs show the utility-fairness Pareto front –where utility is given by M-F1 and fairness by EqOdds.
The bottom graphs illustrate the Accuracy, M-F1, Equal Opportunity and Equalized Odds for increasing
values of α.

Adult and COMPAS) into training (60%, D), validation (20%), and testing (20%). We
select subsets from the validation dataset –ranging from 5% to 100% of its size– and use
them as T . For each subset, we compute FairShap’s weights on D with respect to T , train
a Gradient Boosting Classifier (GBC) model and evaluate its performance on the test set.
This process is repeated 10 times with reported results comprising both mean values and
standard deviations shown in Figure 8.

As shown in the Figures, the size of the validation dataset has a discernible impact on
the variance of the evaluation metrics, both in terms of accuracy and fairness. Increasing the
size of the reference dataset T leads to a notable reduction in the variability of the outcomes.

5.5 Computational cost

We describe experiments to illustrate FairShap’s computational performance relative to other
approaches by applying data re-weighting on synthetic datasets of varying sizes, ranging from
1k to 100k data points, each comprising 200 features. We compare the run time (in seconds)
of computing the weights using FairShap, Group Re-weighting (Kamiran and Calders, 2012),
OptPrep (Calmon et al., 2017), LabelBias (Jiang and Nachum, 2020) and IFs (Li and Liu,
2022). We leave the post-processing (Hardt et al., 2016) approach out of the comparison since
its based on tweaking thresholds after a model is trained, such that the running time heavily
depends on the training time of the model of choice. In these experiments, we allocate 80%
of the data for training and 20% for validation. With 10 iterations for each configuration, we
compute the mean and standard deviation of the run time on an Intel i7-1185G7 3.00GHz
CPU. Results are reported in Figure 9.

As seen in the Figure, instance level re-weighting via FairShap is computationally
competitive for datasets with up to 30k data points. Group Re-weighting and LabelBias are
computationally more efficient than FairShap on datasets with >30k data points.
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Figure 8: FairShap’s accuracy and fairness metrics (ϕ(EOp) and ϕ(EOdds)) when increasing the size of the
validation sets T , evaluated on both validation (- -) and test sets (—). The performance of the baseline GBC
without re-weighting is shown as a red line. From top to bottom, the rows correspond to the German, Adult
and COMPAS datasets, respectively. From left to right, the columns depict the Accuracy, Equalized Odds
and Equal Opportunity, respectively.

Note that OptPrep (Calmon et al., 2017) and IFs (Li and Liu, 2022) require a hyperparam-
eter search for each model and each dataset, yielding a significant increase on the computation
time. In our experiments, we used the hyperparameters provided by the authors and hence
did not have to tune them. Consequently, the actual running time for these methods would
significantly increase depending on the number of hyperparameter configurations to be tested.
For example, OptPrep consistently requires ≈ 10 seconds regardless of the dataset’s size.
However, a hyperparameter grid-search scenario with 20 different hyperparameter settings
and 10-fold cross-validation, would increase the run time to 2,000 seconds (i.e., 10s/it x 20 x
10) or 20,000s for IFs on a dataset size of 60,000 samples (i.e., 100s/it x 20 x 10). These run
times are significantly larger than those required to compute FairShap’s weights.

The Figure also depicts FairShap’s execution times (in seconds) with different numbers
of features in datasets of increasing sizes. As seen in the Figure, three datasets with 60k, 80k,
and 100k instances and feature dimension of 18, have runtimes of 14.7s, 29.1s, and 47.8s.

Finally, we provide an overview of FairShap’s run times for the experiments described in
Section 5.2. On the German dataset, FairShap has an average execution time of 0.001s±0.002,
where | D | = 700, | T | = 150, and there are 11 features. In the case of the Adult dataset, the
execution time remains consistent at 12.7s±3, for a dataset with | D | = 34189, | T | = 7326,
and 18 features. Finally, for the COMPAS dataset, the execution time is 0.063s±0.004 on a
dataset with | D | = 3694, | T | = 792, and 10 features. These numbers are consistent with
the run times reported in Figure 9.
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Figure 9: Run time comparison of FairShap’s and baselines with respect to data set size and number of
features. Datasets are split in 80% as D and 20% as T . We report mean and std run times for 10 iterations.
The CPU is an Intel i7-1185G7 3.00GHz.

6 Conclusion, Discussion and Future Work

In this paper, we have proposed FairShap, an instance-level, model-agnostic data re-weighting
approach to achieve group fairness via data valuation using Shapley Values. We have
empirically validated FairShap with several state-of-the-art datasets in different scenarios
and using two different types of models (deep neural networks and GBCs). In our experimental
results, the models trained with data re-weighted according to FairShap delivered competitive
accuracy and fairness results. Our experiments also highlight the value of using fair reference
datasets (T ) for data valuation. We have illustrated the interpretability of FairShap by
means of histograms and a latent space visualization. We have also studied the utility vs
fairness trade-off, the impact of the size of the reference dataset and FairShap’s computational
cost when compared to baseline models. From our experiments, we conclude that data re-
weighting by means of FairShap could be a valuable approach to achieve algorithmic fairness.
Furthermore, from a practical perspective, FairShap satisfies interpretability desiderata
proposed by legal stakeholders and upcoming regulations.

In future work, we plan to assess FairShap’s potential to drive data acquisition and
minimization policies, its application to generate counterfactual explanations and its potential
to guide data generation processes. We will also explore computationally efficient alternatives
like sub-group re-weighting instead of instance-level re-weighting.
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Appendix A. Preliminaries

A.1 Notation

Symbol Description

D = {(xi, yi)}n Training dataset
T = {(xj , yj)}m Reference or background dataset as an external dataset or a partition

of D
S ⊆ D Subset of a dataset D

A Set of variables that are protected attributes.
TPRA=a True Positive Rate for test points with values in the protected

attribute equal to a. Also TPRa when the protected group is known.

ϕi(D, v) Shapley Value for data point i in the training dataset D according
to the performance function v

ϕ(D, v) Vector with all the SVs of the entire dataset ∈ R| D |.
v(S, T ) Value of dataset S w.r.t a reference dataset T . E.g., the accuracy of

a model trained with S tested on T (v = Acc) or the value of Equal
Opportunity of of a model trained with S tested on T (v = EOp)

Φ ∈ R| D |×| T | Matrix where Φi,j is the contribution of the training point i ∈ D to
the correct classification of j ∈ T according to C.2

Φi,: Mean of row i
Φi,:|X=x Mean of row i conditioned to columns where Xj = x
1 Vector of ones := [1, 1, ..., 1]

Table 3: Notation.

A.2 Desiderata

Method D1 D2 D3 D4 D5 D6
Data Val. Interpretable Pre-pro. Model agnostic Data RW Instance-level

FairShap ✓ ✓ ✓ ✓ ✓ ✓

Group-RW ✗ ✓ ✓ ✓ ✓ ✗

IFs ✓ ✗ ✗ ✗ ✓ ✗*
Inpro-RW ✗ ✓ ✗ ✗ ✓ ✗

Massaging ✗ ✓ ✓ ✓ ✗ ✗

Table 4: Satisfaction of desiderata by group algorithmic fairness methods similar to FairShap

As previously noted in Section 2, the closest methods to FairShap in the literature are In-
fluence Functions (Wang et al., 2022; Li and Liu, 2022), In-processing reweighting (Krasanakis
et al., 2018; Jiang and Nachum, 2020; Chai and Wang, 2022), Group reweighting (Kamiran
and Calders, 2012) and Massaging (Feldman et al., 2015; Calmon et al., 2017).

D1 - Data valuation method. Our aim is to propose a novel fairness-aware data
valuation approach. Thus, the first desired property concerns whether the method performs
data valuation or not (Hammoudeh and Lowd, 2022). Data valuation methods compute the
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contribution or influence of a given data point to a target function, typically by analyzing
the interactions between points (LOO, pair-wise or all the subsets in the data powerset).

D2 - Interpretable. The method should be easy to understand by a broad set of
technical and non-technical stakeholders when applied to a variety of scenarios and purposes,
including for data minimization, data acquisition policies, data selection for transfer learning,
active learning, data sharing, mislabeled example detection and federated learning.

D3 - Pre-processing. The method should provide data insights that can be applicable
to train a wide variety of ML learning methods.

D4 - Model agnostic. The computation of model-weights, data valuation values, data
insights or data transformations should not rely on learning a model iteratively, to enhance
flexibility, computational efficiency, interpretability and mitigate uncertainty. Therefore, this
follows the guidelines to make data valuation models data-driven (Sim et al., 2022).

D5 - Data Re-weighting. The data insights drawn from applying the method should
be in the form of weights to be applied to the data, which can be used to rebalance the
dataset.

D6 - Instance-Level. Different insights or weights are given to each of the data points.

A.3 Clarification of the concept of fairness

Note that the concept of fairness in the definition of the Shapley Values (SVs) is different from
algorithmic fairness. The former relates to the desired quality of the SVs to be proportional to
how much each data point contributes to the model’s performance. Formally, this translates
to the SVs fulfilling certain properties (e.g. efficiency, symmetry, additivity...) to ensure a fair
payout. The latter refers to the concept of fairness used in the machine learning literature,
as described in the introduction. FairShap uses Shapley Values for data valuation in a
pre-processing approach with the objective of mitigating bias in machine learning models.
As FairShap is based on the theory of Shapley Values, it also fulfills their four axiomatic
properties.

Appendix B. Shapley Values proposed in FairShap

FairShap proposes ϕ(EOp) and ϕ(EOdds) as the data valuation functions to compute the
Shapley Values of individual data points in the training set. These functions are computed
from the ϕ(TPR),ϕ(FPR),ϕ(TNR) and ϕ(FNR) functions, leveraging the Efficiency axiom of
the SVs, and the decomposability properties of fairness metrics.

Accuracy (Jia et al. (2019)):
ϕi(Acc) := 1

| T |
∑

j∈T Φi,j = Φi,: = Ej∼p(T )[Φi,j ]

True/False Positive/Negative rates (This work):
ϕi(TPR) := Ej∼p(T |Y=1)[Φi,j ] =

∑
j∈T Φi,jI[yj=1]

|{x:x∈T |y=1}| = Φi,:|Y=1

ϕi(TNR) := Ej∼p(T |Y=0)[Φi,j ] =
∑

j∈T Φi,jI[yj=0]

|{x:x∈T |y=0}| = Φi,:|Y=0

ϕi(FNR) := 1
| D | − ϕi(TPR)

ϕi(FPR) := 1
| D | − ϕi(TNR)

Conditioned True/False Positive/Negative rates (This work):
ϕi(TPRa) := Ej∼p(T |Y=1,A=a)[Φi,j ] =

∑
j∈T Φi,jI[yj=1,Aj=a]

|{x:x∈T |y=1,A=a}| = Φi,:|Y=1,A=a
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ϕi(TPRb) := Ej∼p(T |Y=1,A=b)[Φi,j ] =
∑

j∈T Φi,jI[yj=1,Aj=b]

|{x:x∈T |y=1,A=b}| = Φi,:|Y=1,A=b

ϕi(TNRa) := Ej∼p(T |Y=0,A=a)[Φi,j ] =
∑

j∈T Φi,jI[yj=0,Aj=a]

|{x:x∈T |y=0,A=a}| = Φi,:|Y=0,A=a

ϕi(TNRb) := Ej∼p(T |Y=0,A=b)[Φi,j ] =
∑

j∈T Φi,jI[yj=0,Aj=b]

|{x:x∈T |y=0,A=b}| = Φi,:|Y=0,A=b

ϕi(FPRa) :=
1

| D | − ϕi(TNRa)

ϕi(FPRb) :=
1

| D | − ϕi(TNRb)

ϕi(FNRa) :=
1

| D | − ϕi(TPRa)

ϕi(FNRb) :=
1

| D | − ϕi(TPRb)

When A=Y (This work):
ϕi(EOp) := ϕi(EOp) = ϕi(TPR) + ϕi(TNR)− 1

| D |

or its bounded version ϕi(EOp) = ϕi(TPR)+ϕi(TNR)
2 .

See Appendix C.4 for more details on how to derive these formulas.
When A̸=Y (This work):
ϕi(EOp) := ϕi(TPRa)− ϕi(TPRb)

ϕi(EOdds) := (ϕi(FPRa)−ϕi(FPRb))+(ϕi(TPRa)−ϕi(TPRb))
2

We refer to the reader to Appendix C.5 for more details on how to obtain these formulas.

Appendix C. Methodology

C.1 Algorithmic Fairness Definitions

As aforementioned, the fairness metrics used as valuation functions in FairShap depend on
the conditioned true/false negative/positive rates, depending on the protected attribute A:

TPRA=a := P[Ŷ = 1|Y = 1, A = a], TNRA=a := P[Ŷ = 0|Y = 0, A = a]

FPRA=a := P[Ŷ = 1|Y = 0, A = a], FNRA=a := P[Ŷ = 0|Y = 1, A = a]

Note that different fairness metrics are defined by forcing the equality in true/false nega-
tive/positive rates between different protected groups. For instance, in a binary classification
scenario with a binary sensitive attribute, Equal Opportunity (EOp) and Equalized Odds
(EOdds) are defined as follows:

EOp := P[ŷ = 1|Y = 1, A = a] = P[Ŷ = 1|Y = 1]

EOdds := P[ŷ = 1|Y = i, A = a] = P[Ŷ = 1|Y = i],∀i ∈ {0, 1}

In practical terms, the metrics above are relaxed and computed as the difference for the
different groups:

EOp := TPRA=a − TPRA=b, EOdds :=
1

2
((TPRA=a−TPRA=b) + (FPRA=a− FPRA=b))

The proposed Fair Shapley Values include as their valuation function these group fairness
metrics.
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C.2 Efficient k-NN Shapley Value

Jia et al. (2019) propose an efficient, exact calculation of the Shapley Values by means of
a recursive k-NN algorithm with complexity O(N logN). The proposed method yields a
matrix Φ ∈ R| D |×| T | with the contribution of each training point to the accuracy of each
test point. Therefore, Φi,j defines how much data point i in the training set contributes to
the probability of correct classification of data point j in the test set. The intuition behind
is that Φi,j quantifies to which degree a training point i helps in the correct classification of
a test point j. The k-NN-based recursive calculation is at follows.

For each j in T :

• Order i ∈ D according to the distance to j ∈ T → (x1, x2, ..., xN )

• Calculate Φi,j recursively, starting from the furthest point:

ΦN,j =
I[yxN = yj ]

N

Φi,j = Φi+1,j +
I[yi = yj ]− I[yi+1 = yj ]

maxK, i

• Φ is a | D | × | T | matrix given by:

Φ =

 Φ00 · · · Φ0| T |
...

. . .
...

Φ| D |0 . . . Φ| D || T |

 ∈ R| D |×| T |

where Φi,j is the contribution of training point i to the accuracy of the model on test
point j. Thus, the overall SV of a training point i with respect to the test set is the average
of all the values of row i in the SV matrix:

ϕi(Acc) =
1

m

m∑
j=0

Φi,j = Φi,: ∈ R

Note that the mean of a column j in Φ is the accuracy of the model on that test point.
The vector with the SV of every training data point is computed as:

ϕ(Acc) = [ϕ0, · · · , ϕn] ∈ R| D |

In addition, given the efficiency axiom of the Shapley Value, the sum of ϕ is the accuracy
of the model on the training set.

V (D) =

n∑
i=0

ϕi =

n∑
i=0

1

m

m∑
j=0

Φi,j = Acc

Technically speaking, the process may be parallelized over all test points (columns of
the matrix) since the computation is independent, reducing the practical complexity from
O(N logN) to O(N).
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C.3 Threshold independence

Computing ϕ(·) according to the original Shapley Value implementation (Section 3.1) entails
evaluating the performance function v(S) on each data point, which requires testing the
model trained with S. As the group fairness metrics are based on different classification
errors, they depend on the classification threshold T , such that TP = |{Ŷ > t|Y = 1}|,
TN = |{Ŷ < t|Y = 0}|, FP = |{Ŷ > t|Y = 0}| and FN = |{Ŷ < t|Y = 1}|.

However, the previously described efficient method (Section 3.2) is threshold independent
since it calculates the accuracy as the average of the probability of correct classification for
all test points, as shown in Appendix C.2.

C.4 FairShap’s weights derivation when A = Y

When A = Y in a binary classification task, TPR and TNR are the accuracies for each
protected group, respectively. In this case, DP collapses to P(Ŷ = 1|A = a) → P(Ŷ = 1|Y =
a) . In this case, EOp measures the similarity of TPRs between groups.

As a result, when A = Y in a binary classification scenario, the group fairness metrics
measure the relationship between TPR, TNR, FPR and FNR not conditioned on the protected
attribute A, since these metrics already depend on Y and A = Y . As an example, Equal
opportunity is defined in this case as (TPR+TNR)/2 ∈ [0, 1] (Hardt et al., 2016):

EOp =
TPR − FPR + 1

2
=

TPR − (1− FNR) + 1

2
=

TPR + TNR
2

∈ [0, 1]

Consequently, ϕi(EOp) ∈ [0, 1] when A = Y can be obtained as follows:

EOp =

∑
i∈D ϕi(TPR) +

∑
i∈D ϕi(TNR)

2
=

∑
i∈D

ϕi(TPR)

2
+
∑
i∈D

ϕi(TNR)

2

ϕi(EOp) =
ϕi(TPR) + ϕi(TNR)

2

C.5 FairShap’s weights derivation when A ̸= Y

We derive ϕ(EOp) and ϕ(EOdds) when A ̸= Y using the definitions for EOdds and EOp given
by:

EOp = TPRA=a−TPRA=b

EOdds =
1

2
((TPRA=a−TPRA=b) + (FPRA=a− FPRA=b))

Leveraging the Efficiency property of SVs, ϕ(EOp) is computed as:

EOp =
∑
i∈D

ϕi(TPRA=a)−
∑
i∈D

ϕi(TPRA=b)

EOp =
∑
i∈D

(ϕi(TPRA=a)− ϕi(TPRA=b)) → ϕi(EOp) = ϕi(TPRA=a)− ϕi(TPRA=b)
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Similarly, ϕ(EOdds) can be obtained as follows:

EOdds =
1

2
((TPRA=a−TPRA=b) + (FPRA=a− FPRA=b))

=
(
∑

i∈D ϕi(TPRA=a)−
∑

i∈D ϕi(TPRA=b)) + (
∑

i∈D ϕi(FPRA=a)−
∑

i∈D ϕi(FPRA=b))

2

=

∑
i∈D (ϕi(TPRA=a)− ϕi(TPRA=b)) +

∑
i∈D

(
ϕi(FPRA=a)−

∑
i∈D ϕi(FPRA=b)

)
2

=

∑
i∈D ((ϕi(TPRA=a)− ϕi(TPRA=b)) + (ϕi(FPRA=a)− ϕi(FPRA=b)))

2
→

→ ϕi(EOdds) =
(ϕi(TPRA=a)− ϕi(TPRA=b)) + (ϕi(FPRA=a)− ϕi(FPRA=b))

2

C.6 Extension to multi-label and categorical sensitive attribute scenarios

As in the binary setting, the group fairness metrics are computed from TPR, TNR, FPR
and FNR. Taking as an example TPR, the main change consists of replacing y = 1 or y = 0
for yj=y:

ϕi(TPR|Y=y) = Ej∼p(T |Y=y)[Φi,j ] =

∑
j∈T Φi,jI[yj = y]

|{x : x ∈ T |y = y}|
= Φi,:|Y=y

The conditioned version ϕi(TPRa) may be obtained as:

ϕi(TPR|Y=y,A=a) = Ej∼p(T |Y=y,A=a)[Φi,j ] =

∑
j∈T Φi,jI[yj = y,Aj = a]

|{x : x ∈ T |y = y,A = a}|
= Φi,:|Y=y,A=a

where y and a can be categorical variables. In the scenario where a is not a binary protected
attribute, EOp is calculated as EOpa = |TPR − TPRA=a| ∀a ∈ A , and then the maximum
difference is selected as the unique EOp for the model EOp = max∀a∈A EOpa, i.e. the EOp
for the group that most differs from the TPR of the entire dataset. Therefore, ϕi(EOp)
for each data point is computed as ϕi(EOp) = ϕi(TPRa) − ϕi(TPR) being a the protected
attribute with maximum EOp. The same procedure applies to EOdds. In other words,
ϕi(EOp) = Ej∼p(T |Y=y,A=a)[Φi,j ]− Ej∼p(T |Y=y)[Φi,j ].

Appendix D. Experiments

The code for all the experiments described in this paper is publicly available at https:
//anonymous.4open.science/r/fair-shap.

D.1 Impact of biased datasets on the models’ evaluation

It is crucial to be aware that models trained on biased datasets may perform well in terms
of accuracy and fairness when tested against themselves. However, when evaluated against
fair datasets, their performance can deteriorate significantly. It is widely recognized that
biased datasets can lead to biased machine learning models, which can perpetuate and
exacerbate societal inequities. These models can reinforce existing biases and stereotypes,
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leading to unfair and discriminatory outcomes for certain groups, especially underrepresented
or marginalized communities. Therefore, it is essential to develop fair reference datasets
to ensure that machine learning models are tested in a way that accounts for the potential
impact of bias and promotes fairness. In light of this, we present here the results of our
experiments that illustrate the performance and fairness of a model trained and tested on
three different dataset combinations: large yet biased datasets (LFWA and CelebA) and a
smaller and unbiased dataset (FairFace). As illustrated in Table 5, the performance of the
models trained on biased datasets (LFWA and CelebA) and tested on fair datasets (FairFace)
is significantly worse than when tested on the biased datasets.

Train \ Test FairFace LFWA CelebA

FairFace 90.9 | 0.01 95.7 | 0.03 96.7 | 0.09
LFWA 77.2 | 0.49 96.6 | 0.08 98.3 | 0.02
CelebA 76.1 | 0.61 96.9 | 0.09 98.2 | 0.01

Table 5: Sex classification results reported as Acc ↑ | AccDisp ↓ for an Inception Resnet V1 model trained
and tested on different datasets. The protected attribute A is sex. Note the degradation in performance
when training on a biased dataset and evaluating on a fair dataset (marked in red font in the Table).

D.2 Experiments on synthetic datasets

ϕ(TPR) and ϕ(TNR) In this section, we present a visual analysis of ϕ(TPR) and ϕ(TPR)
using a synthetic binary classification dataset featuring two Gaussian distributions.

Figure 10 illustrates the extent to which each data point contributes positively or
negatively to the True Positive Rate (TPR) and True Negative Rate (TNR). Points with
larger ϕ(TPR) correspond to instances from the positive class located on the correct side near
the decision boundary whereas points with smaller ϕ(TPR) represent positive class points
placed on the wrong side of the decision boundary. The same logic applies to ϕ(TNR) with
respect to the negative class points, providing intuitive insights related to the contributions
to TPR or TNR of different data points.

Data φ(TPR)> 0 φ(TNR)> 0 φ(TPR)< 0 φ(TNR)< 0

Figure 10: Synthetic example with positive (blue) and negative (green) classes. Data points with the 50
largest (in green) and smallest (in red) ϕi are highlighted. Size ∝ |ϕi|, i.e. larger when grater in ϕi(·) > 0
and larger when smaller in ϕi(·) < 0. Points belonging to the positive and negative class are colored as blue
and green, respectively.

A ̸=Y In this scenario, we generate synthetic data where the protected attribute A and
the label Y are slightly correlated. Specifically, we employ Case I from Zafar et al. (2017)
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Acc: 0.81
DI: 0.50

EOp: -0.33
EOdds: -0.28

Y=0, A=1
Y=0, A=0
Y=1, A=1
Y=1, A=0

(a) Original Data

Acc: 0.81
DI: 0.50

EOp: -0.33
EOdds: -0.28

(b) ϕ(Acc)

Acc: 0.83
DI: 0.78

EOp: 0.00
EOdds: -0.11

(c) ϕ(EOp)

Acc: 0.81
DI: 0.88

EOp: 0.11
EOdds: -0.06

(d) ϕ(EOdds)

Figure 11: Synthetic example where the group FPR and the group FNR differences have different signs
(Case I in Zafar et al. (2017)). The size of each data point is proportional to its |ϕ(·)|. The top-50 points,
according to each ϕ(·), are highlighted in green. The label Y = 1 corresponds to the favorable outcome
(colored in green), and the privileged group is defined by A = 1 (represented as triangles ▲). The label
Y = 0 corresponds to the unfavorable outcome (colored in red), and the disadvantaged group is defined by
A = 0 (represented as crosses ✛). Logistic Regression models are trained on different re-weighted versions of
the data and evaluated using the same test split. Decision regions are shaded.

as a reference, where the disparity between the False Negative Rate (FNR) and the False
Positive Rate (FPR) exhibits a distinct sign: larger FPR for the privileged group and larger
FNR for the disadvantaged group. Consequently, the mean overlap occurs between the
unfavorable-privileged and the favorable-disadvantaged classes.

Figure 11 visualizes data instances of this scenario as points, where the size of each point
is proportional to its |ϕ(·)|. Additionally, we highlight in green the top-50 points based on
their ϕ(·). The label Y = 1 corresponds to the favorable outcome (colored in green), and the
privileged group is defined by A = 1 (represented as triangles). The label Y = 0 corresponds
to the unfavorable outcome (colored in red), and the disadvantaged group is defined by
A = 0 (represented as crosses). We train unconstrained Logistic Regression models on various
versions of the data and assess their performance using the same test split.

The experimental results shown in Figure 11 illustrate significant changes in the decision
boundaries of the models when trained using weights given by ϕ(EOp) or ϕ(EOdds), yielding
fairer models while maintaining comparable or improved levels of accuracy. Moreover, the
analysis reveals that both ϕ(EOp) and ϕ(EOdds) predominantly prioritize instances in the
unfavorable-privileged (red triangles) and favorable-disadvantaged groups (green crosses).

D.3 Computer vision training set-up

In the experiment described in Section 5, the Inception Resnet V1 model was initially pre-
trained on the CelebA dataset and subsequently fine-tuned on LFWA. Binary cross-entropy
loss and the Adam optimizer were used in both training phases. The learning rate was set to
0.001 for pre-training and reduced to 0.0005 for fine-tuning, each lasting 100 epochs. Training
batches consisted of 128 images with an input shape of (160x160), and a patience parameter
of 30 was employed for early stopping, saving the model with the highest accuracy on the
validation set. The classification threshold for this model was set at 0.5.

D.4 Description of the baselines used in the experiments (Section 5.2)

Group RW (Kamiran and Calders, 2012)]: A group-based re-weighting method that
assigns the same weights to all samples from the same category or group according to the
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protected attribute. Weights are assigned to compensate that the expected probability if A
and Y where independent on D is higher than the observed probability value.

wi(ai, yi) =
|{X ∈ D |X(A) = ai}| × |{X ∈ D |X(Y ) = yi}|

|{D}| × |{X ∈ D |X(A) = ai, X(Y ) = yi}|

Group RW does not require any additional parameters for its application. We use the
implementation from AIF360 (Bellamy et al., 2019).

Post-pro (Hardt et al., 2016): A post-processing algorithmic fairness method that
assigns different classification thresholds for different groups to equalize error rates. The
method applies a threshold to the predicted scores to achieve this balance.

In our experiments, we adopt an enhanced implementation of this method, provided
by the authors and based on the error-parity library1. This implementation makes its
predictions using an ensemble of randomized classifiers instead of relying on a deterministic
binary classifier. A randomized classifier is one that lies within the convex hull of the
classifier’s ROC curve at a specific target ROC point. This approach enhances the method’s
ability to satisfy the equality of error rates.

LabelBias (Jiang and Nachum, 2020): This model learns the weights in an iterative,
in-processing manner based on the model’s error. Consequently, this method is neither a
pre-processing nor a model-agnostic approach.

We use an implementation based on the google-research/label_bias repository, which
is the official implementation of the original work. We apply the settings described in Jiang
and Nachum (2020) and use a learning rate of µ = 1 with a fixed number of 100 iterations.

Opt-Pre (Calmon et al., 2017): A model-agnostic pre-processing approach for algo-
rithmic fairness based on feature and label transformations solving a a convex optimization.

We use the pre-defined hyperparameters provided by both the authors (see Calmon
et al., 2017, Supplementary 4.1-4.3) and the AIF360 library: the discrimination parameter
ϵ = 0.05; distortion constraints of [0.99, 1.99, 2.99], which are distance thresholds for
individual distortions; and finally we use probability bounds of [.1, 0.05, 0] for each threshold
in the distortion constraints (Calmon et al., 2017, Eq. 5). We use the implementation from
AIF360 (Bellamy et al., 2019).

IFs (Li and Liu, 2022): An Influence Function (IF)-based approach, where the influence
of each training sample is modeled with regard to a fairness-related quantity and predictive
utility. This is an in-processing, and re-training approach, as follows. First, a model is
trained. Second, the Hessian vector product is computed for every sample H−1

θ̂(1)
∇2

θℓ(xi; θ̂(1),

where the Hessian is defined as Hθ̂(1) =
∑

i=1∇2
θℓ(xi; θ̂(1)) and θ̂(1) is the empirical risk

minimization with equal sample weights. Third, the influence functions for every sample are
obtained based on the vector products. Fourth, a linear problem based on these influence
functions is solved to compute the weights. Finally, the model is re-trained with the new
weights. Notably, this method exhibits behavior resembling hard removal re-weighing –as
observed in our experiments– where the weights are either 0 or 1 for all samples, with no
in-between values. This pattern aligns with the observations made by the authors themselves.
While the method is theoretically categorized as individual re-weighting, in practice, it works
as a sampling method.

1. https://github.com/socialfoundations/error-parity
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We set the hyperparameters to the values reported by the authors for each dataset.
Namely, for the German dataset: α = 1, β = 0, γ = 0 and l2reg = 5.85. For the Adult
dataset: α = 1, β = 0.5, γ = 0.2 and l2reg = 2.25. Finally, for the COMPAS dataset: α = 1,
β = 0.2, γ = 0.1 and l2reg = 37. We use an implementation from the influence-fairness
repository by Brandeis ML, which needs the request and installation of a Gurobi license.

ϕ(Acc) (Ghorbani and Zou, 2019): A method based on data re-weighting by means
of an accuracy-based data valuation function without any fairness considerations. This
method is explained in detail on Section 3.2 and Appendix C.2. We use our own efficient
implementation using the Numba python library.

D.5 Utility metrics

The reported experiments with the tabular datasets (i.e. German, Adult and COMPAS)
include different utility metrics to evaluate the performance of the models.

In imbalanced datasets, where one class significantly outweighs the other in terms of the
number of examples, accuracy does not provide a comprehensive assessment of a model’s
performance, given that high accuracies might be obtained by a simple model that predicts the
majority class. In these cases, the F1 metric is more appropiate, defined as 2× precision×recall

precision+recall ,
since it considers both precision ( TP

TP+FP) and recall (TPR = TP
TP+FN).

However, the F1 metric is only meaningful when the positive class is the minority class.
Otherwise, i.e. if the positive class is the majority class, a constant classifier that always
predicts the positive class can achieve a high F1 values. For example, in a scenario where the
positive class has 100 examples and the negative class only 20, a simple model that always
predicts the positive class will get an accuracy of 0.83 and a F1 score of 0.91. However, the
F1 score for the negative class would be 0 in this case.

The Macro-F1 metric arises as a solution to this scenario. Unlike the standard F1 score,
the Macro-F1 computes the average of the F1 scores for each class. Thus, the Macro-F1 score
can provide insight into the model’s performance on every class for imbalanced datasets.

Thus, in our experiments with tabular data, we report the Macro-F1 scores.

D.6 Dataset statistics

Image Datasets Total number of images and male/female distribution from the CelebA,
LFWA and FairFace datasets are shown on Table 6.

Dataset Train Validation Test

CelebA 94509|68261 11409|8458 12247|7715
LFWA 7439|2086 2832|876 –
FairFace 45986|40758 9197|8152 5792|5162

Table 6: Face Datasets Statistics. Rows stand for #male|#female.

Fairness Benchmark Datasets The tables below summarize the statistics of the German,
Adult and COMPAS datasets in terms of the distribution of labels and protected groups. Note
that all the nomenclature regarding the protected attribute names and values is borrowed
from the official documentation of the datasets.
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Table 7a shows the distributions of sex and label for the German dataset (Kamiran and
Calders, 2009). It contains 1,000 examples with target binary variable the individual’s credit
risk and protected groups age and sex. We use ‘Good Credit’ as the favorable label (1) and
‘Bad Credit‘ as the unfavorable one (0). Regarding age as a protected attribute, ‘Age>25’
and ’Age<25’ are considered the favorable and unfavorable groups, respectively. When using
sex as protected attribute, ‘male’ and ’female’ are considered the privileged and unprivileged
groups, respectively. Features used are the one-hot encoded credit history (delay, paid, other),
one-hot encoded savings (>500, <500, unknown) and one-hot encoded years of employment
(1-4y, >4y, unemployed).

A\Y Bad Good Total

Male 191 499 690 (69%)
Female 109 201 310 (31%)

Age>25 220 590 810 (81%)
Age<25 80 110 190 (19%)

Total 300 (30%) 700 (70%) 1,000

(a) German Credit

A\Y <50k >50k Total

White 31,155 10,607 41,762 (86%)
non-White 6,000 1,080 7,080 (14%)

Male 22,732 9,918 32,650 (67%)
Female 14,423 1,769 16,192 (33%)

Total 37,155 (76%) 11,687 (24%) 48,842

(b) Adult Income

A\Y Recid No Recid Total

Male 2,110 2,137 4,247 (80%)
Female 373 658 1,031 (20%)

Caucasian 822 1,281 2,103 (40%)
non-Cauc. 1,661 1,514 3,175 (60%)

Total 2,483 (47%) 2,795 (53%) 5,278

(c) COMPAS

Table 7: Tabular datasets statistics.

Table 7b depicts the data statistics for the Adult Income dataset (Kohavi et al., 1996).
This dataset contains 48,842 examples where the task is to predict if the income of a person
is more than 50k per year, being >50k considered as the favorable label (1) and <50k as the
unfavorable label (0). The protected attributes are race and sex. When race is the protected
attribute, ‘white’ refers to the privileged group and ‘non-white’ to the unprivileged group.
With sex as protected attribute, ‘Male’ is considered the privileged group and ‘female’ the
unprivileged group. The features are the one-hot encoded age decade (10, 20, 30, 40, 50, 60,
>70) and education years (<6, 6, 7, 8, 9, 10, 11, 12, >12).

Table 7c contains the statistics about the COMPAS (Angwin et al., 2016) dataset. This
dataset has 5,278 examples with target binary variable recidivism. We use ‘Did recid’ as the
unfavorable label (0) and ‘No recid’ as the favorable label (1). When sex is the protected
attribute, ‘male’ is the unprivileged group and ‘female’ as the privileged one. When using
race as protected attribute, ‘caucasian’ is the privileged group and ‘non-caucasian’ the
unprivileged one. Regarding the features, we use one-hot encoded age (<25, 25-45, >45),
one-hot prior criminal records of defendants (0, 1-3, >3) and one-hot encoded charge degree
of defendants (Felony or Misdemeanor).
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All datasets are pre-processed using AIF360 by Bellamy et al. (2019), which use the same
pre-processing as in Calmon et al. (2017).
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