the Nansen LEGACY

Ocean acidification

Our carbon footprint is also visible in the Arctic

The ocean absorbs around 30% of anthropogenic carbon dioxide (CO₂) emissions from the atmosphere, thus reducing warming from the greenhouse effect. However, this has shifted the ocean chemistry towards enhanced CO₂ and lower pH (ocean acidification). Ocean acidification has negative consequences for marine organisms, particularly in early-life stages and those forming shells and skeletons made up of calcium carbonate minerals, such as sea butterflies, mussels, sea stars and corals. Ocean acidification can also affect survival, growth and reproduction with further impacts for the rest of the food chain.

also visible in the Arctic. CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 CO_2 ()2 CO_2 CO_2 CO_2 CO_2 CO_2 Autumn 2020 Autumn 2000

pH low high high Less ocean acidification

Many available calcium carbonate ions

More sea ice

Less CO₂ uptake

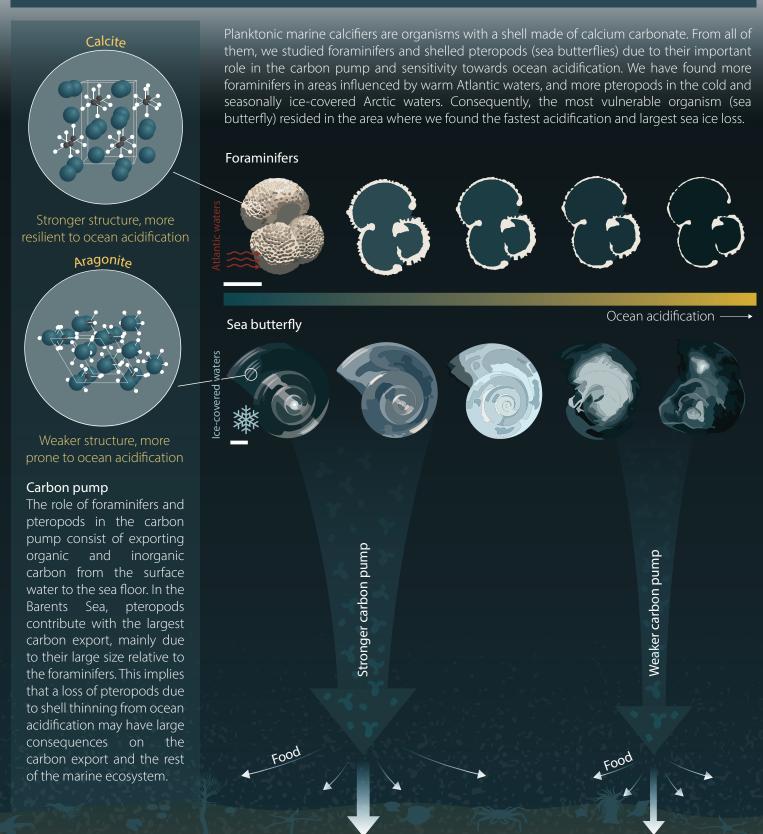
 CO_2

Abundant healthy marine calcifiers

рН

Less sea ice

More CO₂ uptake


More ocean acidification

Fewer, smaller, weaker marine calcifiers

The Barents Sea acts as a CO₂ sink all year round and shows rapid ocean acidification, twice as fast as expected from increased atmospheric CO₂ emissions during the last decade. This implies that processes other than anthropogenic CO₂ contribute to speeding-up ocean acidification in the Barents Sea. The fastest ocean acidification was found in areas with the largest sea ice loss. This suggests that more open-water areas and increased sea-ice meltwater enhanced ocean acidification.

RECOMMENDATIONS

Carbon storage Carbon storage

The Nansen Legacy project clearly showed the combined effects of climate change and ocean acidification. The Barents Sea is an efficient carbon sink and absorbs CO₂ from the atmosphere all year round. In the last two decades, surface acidification progressed faster than other global oceans, particularly in areas with the largest sea ice loss. Ocean acidification can have negative consequences for organisms such as pelagic calcifiers, and thereby impact the amount of carbon sinking to deeper layers. This will ultimately affect the ocean's CO₂ uptake, carbon storage, and food supply to benthic organisms. It is unclear how the combined effects of ongoing warming ('Atlantification') and ocean acidification will affect CO₂ uptake in the future. Moreover, little is known about how ocean acidification will influence other chemically controlled processes, such as the bioavailability and toxicity of trace and heavy metals (e.g. mercury). Multi-disciplinary observations, particularly in the seasonally ice-covered areas where the largest change was observed, are important to understand ecosystem response to the effects of anthropogenic carbon emissions.