
Cloud Native Federated Learning for Streaming: An
Experimental Demonstrator

Sergio Barrachina-Muñoz, Engin Zeydan, Luis Blanco, Luca Vettori, Farhad Rezazadeh, Josep Mangues-Bafalluy

Centre Technologic de Telecomunicacions de Catalunya (CTTC), Castelldefels, Barcelona, Spain, 08860.
Emails: {sbarrachina, ezeydan, luis.blanco, lvettori, frezazadeh, jmangues}@cttc.es

Abstract—This paper demonstrates an implementation of Fed-
erated Learning (FL) for streaming applications using cloud-native
technology. Compared to a centralized management, by adopting
a decentralized approach, the FL method improves convergence
time, reduces communication overhead, and increases network
energy efficiency. The cloud-native FL architecture presented
comprises three sites, each with its own Kubernetes (K8s) cluster.
The edge sites run FL Analytical Engines (AEs)/clients for local
training and updates, and the central site runs the aggregation
server for FL training. Some other relevant workloads deployed at
the clusters are the video streaming server, the orchestrator, and
monitoring components. As for the RAN, we showcase a multi-gNB
setup from which we obtain monitoring data via custom sampling
functions. Following the description of the testbed infrastructure
and setup, this demonstration presents the real-time visualization
of network parameters during FL training, and the enhancement
of video streaming through proactive Central Processing Unit
(CPU) scaling, made possible by the resource forecasting.

Index Terms—video streaming, cloud native, federated learning,
distributed, network management, experiments

I. INTRODUCTION

CLoud native distributed Artificial Intelligence (AI) al-
gorithm design has emerged as a promising approach

for collaborative Machine Learning (ML) in a distributed
environment [1]. By allowing multiple parties to collaborate
and train ML models on decentralized data sources, Federated
Learning (FL) has the potential to enable scalability, low data
exchange, and enhanced security in a wide range of new
applications and use cases [2]. For managing a massive number
of network slices across different technological domains with
zero-touch, a scalable, hierarchical, and distributed approach
that utilizes AI technology is required. The MonB5G project
[3] funded by the EU H2020 proposes a technical approach
that distributes management functions among all entities re-
sponsible for the lifecycle management of network slices and
utilizes distributed closed control loops to assist the lifecycle
management entities with state-of-the-art data-driven and AI-
based mechanisms. This approach consists of four components:
Monitoring System (MS), Analytical Engine (AE), Decision
Engine (DE) and Actuator (ACT) [4]. In this paper, we present a
novel experimental demonstrator for cloud-native FL for video

This work has been partially funded by EC H2020 MonB5G project (Grant
871780), Spanish MINECO - Program UNICO I+D (grants TSI-063000-
2021-54 and -55) and Grant PID2021-126431OB-I00 funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF A way of making Europe” .

streaming data relying on MonB5G framework. Our approach
leverages the latest advances in cloud-native computing, includ-
ing Kubernetes, and 5G communication to enable efficient and
scalable FL on streaming video traffic data.

Figure 1: PoC infrastructure and setup.

II. TESTBED INFRASTRUCTURE AND DATASET

Fig. 1 shows the Proof of Concept (PoC) infrastructure
setup. The testbed instance we will be using in this scenario
is designed to evaluate MonB5G solutions in a 5G network
environment. It is comprised of a variety of different compo-
nents that work together to enable the testing and evaluation
of FL approach. In particular, Fig. 1 consists of a MS, an AI-
enabled resource predictor function called AE, DE and an ACT.
Each MS performs slice-level RAN Key Performance Indicator
(KPI) data collection to build its local datasets for each slice. A
server located at site-C, plays the role of FL model aggregator.
Each AE predicts the required amount of resources to ensure
low Normalized Mean Squared Error (NMSE) when making
predictions. The components can be categorized as follows:



Cloud-native infrastructure: of the testbed is built using
containers and virtual machines. In essence, Virtual Machines
(VMs) are used as (worker/master) nodes to deploy Kubernetes
(K8s) clusters, while containers run different applications and
microservices. This allows for flexibility and scalability in the
testbed, as well as the ability to easily replicate and test different
configurations. In particular, we consider three K8s clusters:
two for the edge/RAN domains and one in the cloud for
showcasing the hierarchical features of the monitoring system.

Monitoring System: In order to monitor and troubleshoot
the testbed, we deploy three instances of the MonB5G MS.
The FL-related MS instances running at the edge sites will run
customized sampling functions (for infrastructure monitoring
and for Radio Access Network (RAN) monitoring). These
monitoring systems will be able to monitor and collect metrics
from the testbed infrastructure, as well as from the RAN. We
also use Prometheus to expose some metrics of interest, which
can then be visually displayed in Grafana for easy analysis.
The cloud MS will run a generic Sampling Function (SF) to
showcase extracted values from the edge sites.

Orchestration: The testbed uses a Python script based on
the K8s scheduler to act as the intermediary between the FL
agents and the K8s scheduler. The script triggers actions related
to pod scale-out, in order to ensure pre-emptive and efficient
resource allocation via the FL process.

Federated learning: The testbed includes a FL client/AE
that builds local models in phase I and makes inferences
in phase II. The FL client connects to the MS in order to
collect and analyse metrics during the learning process. The
FL aggregation server is responsible for exchanging weights
between FL clients in order to aggregate the learned models.

5G network: The testbed includes a User Equipment (UE)
emulator realized with Amarisoft Simbox1 and 2x gNB real-
ized with Amarisoft Callbox2. These components are plugged
together in order to create a rich multi-domain setup for testing
FL algorithms. There are different alternatives for the 5G core,
including Amarisoft’s proprietary core or open-source projects
like Open5GS, Free5G, or OpenAirInterface Core Network.
Each of these open-source cores have been integrated with
Amarisoft Callbox gNB, so we have the flexibility to use any
of them.

Video Streaming Application: The testbed includes a video
on demand (VoD) client and server as shown in Fig. 3 (which
shows the average Central Processing Unit (CPU) versus num-
ber of active UEs (N) consuming the video stream in FL sites 1
and 2), both of which are cloud-native. High bandwidth video
is used to stress the CPU of the server and trigger actions, such
as scaling out pods, in order to test the performance of the FL
algorithm under different conditions.

Table I summarizes the input features and the supervised
output of the local dataset. Here, the CPU load resources

1Online: https://www.amarisoft.com/products/test-measurements/amari-ue-
simbox/, Available: April 2023.

2Online: https://www.amarisoft.com/products/test-measurements/amari-lte-
callbox/, Available: April 2023.

Figure 2: Traffic Patterns generated at different FL sites.

Figure 3: Video Streaming application infrastructure and setup.

are dynamically allocated at the video streaming server level
according to the traffic patterns as given in Fig. 2 (previous
and current CPU) and radio conditions (average bit rate) of
each slice. The model used in FL phase is a custom neural
network model with one hidden layer. The final FL model is
used to predict the CPU load of the clients.

Table I: Dataset Features and Output

Feature Description
Current The instantaneous bit rate at gNodeB
Bitrate when video streaming is running

Previous CPU Previous Time Window CPU resource
Load consumption for video streaming server

Current CPU Current Time Window CPU resource
Load consumption for video streaming server

Output Description
Next CPU Next Time Window CPU resource

Load consumption for video streaming server

III. DEMONSTRATION OF THE PROPOSED APPROACH

In cloud native implementation, we use Docker containers for
containerization of MS, AE and use K8s as overall orchestrator.
In docker implementation, AEs at different sites simultaneously
run on K8s. Through REST API, the FL server and two AEs
(clients) can communicate with each other. FastAPI3 as a REST
API is used in our implementation.

The flow of information is shown in Fig. 4 and can be
summarized as follows: In the first step, all clients should know
the IP address of server node to register themselves with the
FL server (or aggregation) node (which is always in running
mode). After registration, the administrator starts the automated

3Online: https://fastapi.tiangolo.com/, Available: 10-2022



FL process in step-2. Then, the server sends training requests
to clients and start FL training in step-3. Local training is
performed for each client in step-4. The model weights of
each clients are sent to the server in step-5. Then, the server
computes the average of the model weights in step-6. The
overall system parameters are updated in step-7 and the same
procedure is repeated for upcoming FL rounds starting from
step-3 in Fig. 4.

Figure 4: High level workflow of the FL approach.

Figure 5: Containerization of real-time visualization platform
to keep track of relevant metrics from aggregation server.

For real-time visualization of changes in NMSE over the FL
rounds, we used the ELK stack4 (Logstash as log transformer,
Elasticsearch as the data indexer and Kibana for visualization)
and Filebeat side container to track the metrics status from the
aggregation server as given in Fig. 5. Fig.6 shows all considered
metrics as well as the dashboards of the demo visualization.
Fig.6 (a) shows the training phase of the considered FL
approach. Fig.6 (b) shows the inference phase and the metrics
that are observed on the Grafana dashboard 5. Fig.6 (c) shows
the Finally, Fig.6 (d) shows the NMSE values (on left) and
observations time over the number of rounds (on right) using
Kibana dashboard.

REFERENCES

[1] A. Boudi, M. Bagaa, P. Pöyhönen, T. Taleb, and H. Flinck, “Ai-based
resource management in beyond 5g cloud native environment,” IEEE
Network, vol. 35, no. 2, pp. 128–135, 2021.

4Online: https://www.elastic.co/what-is/elk-stack, Available: April 2023.
5Online: https://grafana.com/, Available: April 2023.

(a) Training Phase

(b) Inference Phase Metrics on Grafana

(c) Inference Phase Video Streaming to N=6 users

(d) Kibana Dashboard for Training phase

Figure 6: Cloud native FL showcasing training phase, inference
phase and visualizations in Kibana and Grafana.

[2] Z. Yang, M. Chen, K.-K. Wong, H. V. Poor, and S. Cui, “Federated learning
for 6g: Applications, challenges, and opportunities,” Engineering, vol. 8,
pp. 33–41, 2022.

[3] S. Kukliński et al., “Ai-driven predictive and scalable management and
orchestration of network slices,” ITU Journal on Future and Evolving
Technologies, vol. 3, no. 3, pp. 570–588, 2022.

[4] H. Chergui, L. Blanco, L. A. Garrido, K. Ramantas, S. Kukliński, A. Ksen-
tini, and C. Verikoukis, “Zero-touch ai-driven distributed management for
energy-efficient 6g massive network slicing,” IEEE Network, vol. 35, no. 6,
pp. 43–49, 2021.


