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Abstract—There has been a rapid increase in the num-
ber of connected vehicles with a huge amount of data
exchange between these vehicles that needs to be commu-
nicated, processed and analyzed reliably and efficiently.
For secure and decentralized authentication, self-sovereign
identity (SSI) management in vehicular networks have at-
tracted attention in recent years. Hierarchical deployment
frameworks, on the other hand, can provide secure and
efficient knowledge sharing for vehicular networks with
heterogeneous and geographically distributed vehicles and
infrastructure in 6G networks. In this paper, we explore
the joint use of hierarchical federated learning, as a col-
laborative machine learning framework, and hierarchical
SSI management in vehicular networks, highlighting its
advantages, limitations. At the end of the paper, we also
provide two illustrative use cases.

Keywords—self-sovereign, digital identity, blockchain, hi-
erarchical federated learning, vehicular networks.

I. INTRODUCTION

6G is expected to provide low-delay communication,
dependable connections, and advanced sensory abilities
to vehicular networks. This helps increase connectivity
and provide novel Artificial Intelligence (AI) and Ma-
chine Learning (ML)-empowered vehicular applications
for their users at the edge. Future vehicle communica-
tion networks are seeking cheap and efficient vehicle
to vehicle (V2V), vehicle to infrastructure (V2I), and
vehicle to everything (V2X) solutions mostly relying on
Intelligent Transportation System (ITS) that utilize the
power of AI/ML-based approaches for road-safety, emer-
gency responses, traffic optimization, road optimization,
or vehicle maintenance.
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Learning in vehicular networks can manage the avail-
able resources smartly and efficiently. However, it should
cover large geographical regions with different road
traffic dynamics, and network characteristics. Combining
such diverse data and pooling the model parameters
for secure and distributed learning becomes one of the
most challenging tasks. Therefore, conventional Feder-
ated Learning (FL) techniques fail to address this issue
as they require a fairly large number of resources for
data transmission and storage. Hierarchical Federated
Learning (HFL) has emerged as a promising approach
for addressing this challenge, as it allows for decentral-
ized learning and decision-making while still preserving
privacy and data security. HFL is a type of FL where the
data is organized into a hierarchy of groups or clusters.
In HFL, each group has its own local model that is
trained on the data within its cluster. Later at the top
level of the hierarchy, the models are combined to form a
global model [1]. These groups can be vehicles as well as
infrastructures (Roadside Units (RSUs) and Base Stations
(BSs)) that are distinguished according to their regional
and functional features.

Together with the increasing connectivity of vehi-
cles and the growing amount of sensitive information
being transmitted and stored in these networks, it is
crucial to have a robust and scalable solution for identity
management. Blockchain-based Self-Sovereign Identity
(SSI) provides decentralized identity management and
allows vehicle users to have full control and ownership
over their own personal data (e.g., selectively sharing
information with privacy control) [2] while also provid-
ing a secure authentication and authorization process.
This will enable the development of secure, privacy-
preserving, and highly automated road transportation
networks. In SSI systems, Blockchain Networks (BCNs)
help identities to be created, stored, and managed, so
that the data is secured and cannot be tampered with or



misused. It also allows for the verification of identities,
secure storage and transmit of data, and provide audit
trails, allowing for easier tracking of any changes that
are made to the ledger.

II. RELATED WORK AND OUR CONTRIBUTIONS

The 5G NR standard has already new use cases for
Cellular Vehicle-to-Everything (CV2X) communications
such as remote driving, vehicle platooning, extended
sensors, and advanced driver assistance functionalities
[3]. 6G use cases are expected to go beyond in V2X
communication with technologies such as brain—vehicle
interfacing, tactile communication, and terahertz (THz)
communications [4] and use cases such as Advanced
remote driving, intelligent traffic scheduling, holographic
driving, personalized transport vehicles with holographic
infotainment and tactile/haptic interactions, flying taxis
and cargo drones [5]. FL-based frameworks for decen-
tralized training of ML models in vehicular networks
already exist in the literature [6]. HFL is also used for
vehicles to learn environmental data and share the learn-
ing knowledge with each others while relying on BCN
ability to deal with certain malicious attacks effectively
by authors in [7].

To provide more secure and dependable digital iden-
tification solutions, SSI-based smart contract implemen-
tations such as Jolocom', OpenSSI, and Sovrin are being
developed. To ensure the privacy and security of users’
personal data, these solutions employ distributed ledger
technology and smart contracts. They also give a safe and
dependable method for users to authenticate their identi-
fication to third parties without disclosing any sensitive
information. This gives users control over who has access
to their data and how it is utilized. Organizations may
utilize these solutions to build trustless and secure digital
identification systems that can be used for a number
of purposes. A comprehensive review and mapping of
theoretical and practical advances in SSI is provided in
[8]. The authors in [9] review use cases, technologies
and challenges of SSI within Industrial Internet of Things
(IToT) applications.

Considering the above related works, to the best of
authors’ knowledge, no work has been done exploiting
the benefits of SSI during HFL process, which forms
the basis of our motivation in our work. Our main con-
tributions are as follows: (i) Combining the benefits of
hierarchical SSI in a HFL system for vehicular networks,
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(i1) Providing a novel mathematical formulation for the
SSI embedded HFL, (iii) Describing the benefits of the
proposed approach in two novel use cases. The rest of
the paper is organized as follows: Section III discusses
about the essentials of HFL, its potential in vehicular
networks and the role of BCN. Section IV discusses
about providing security in identity management and how
HFL can be combined with SSI. Section V gives the
phases of the proposed HFL with SSI solution. Section
VI discusses about the considered use case and the
potential future enhancements to the secure architecture.
Finally, Section VII gives the conclusions of the paper.

III. HFL IN VEHICULAR NETWORKS
A. FL and HFL Essentials

We aim at learning a unique global statistical model
via supervision at a central server, whereby each of the
N workers possess a private dataset and helps with the
local model training. Let us denote the private dataset
owned by i-th worker (client) by D? = {xg-l), yj(-l) }, where
i € {1,2,...,N}, xg-’) is the j-th input sample from

D' and yj(’) is the label information. Let us also denote

E(XE»Z), yj|w) as the loss function that is used to minimize
the empirical loss £(w), where w is the hyperparameter
set of the global model. The main objective of FL
is to solve the following optimization problem using

distributed training,
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where Dy = U, D'. For faster convergence and effi-
cient computation, it is typical to use mini-batch stho-

castic gradient descent (SGD) (with batch B of size m)
to find the minimum cost where, in each step, model
parameters are updated as,
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where « is the learning rate scaled by the average
of the mini-batch gradients through back-propagation.
Each device ¢ performs its mini-batch SGD on their
corresponding dataset D' to find the local model param-
eters w;. Finally, the central server aggregates all local
parameters to update the global ones which is shared in

the next step with workers for convergence.

HFL allows multiple levels of servers and devices to
be used to aggregate and distribute the machine learning
models, typically in a star topology. This approach allows



for more efficient communication, better scalability, and
more robustness to device failures or disconnections. It
also enables different levels of privacy and security to
be applied to the data and models at different levels
of the hierarchy. The central server typically runs a
clustering of workers and assigns an aggregator (an edge
server) from each cluster that establishes up-and-down
links between the workers and the central server. Since
the aggregators serve as the intermediary (a relay in
a downstream transmission) and lump together all the
collected model weights (also hyperparameters), it helps
with the overall network traffic and bandwidth. It reduces
the amount of data that needs to be transmitted between
clients and the server since all the model weights are
collected in one spot. This helps to reduce latency and
improve the speed of training.

B. Benefits of HFL for Vehicular Scenarios

In vehicular networks, HFL can be very useful in
various applications to manage vehicle flow or traffic
over a group or clusters of users. For example, 3D object
detection by utilizing image datasets, feature learning
in different geographical locations, collaborative driving
with lane changing, semantic segmentation for self-
steering and route optimization for fuel efficiency are
only few to name. In each of these objectives pertaining
to vehicular network optimizations, the data is collected
from the vehicles and then shared among the edge servers
or other vehicles that serve as cluster parameter servers
in the network. Each dataset is then used to train a HFL
model, which is then used to control the behavior of
the vehicles in the network through dissemination of
the learned model to each user of the system. This can
help improve the efficiency of the running traffic, reduce
congestion, and improve fuel efficiency.

Current static topologies considered for HFL focus
on latency and bandwidth resorces and may not be
directly applicable to the requirements of vehicular net-
works. As the users of the network are mobile, user
clusters might be forming continuously to accommodate
the ever-changing cluster size, node locations, and user
dataset distributions. The convergence of the overall
model training is therefore a function of the mobility
and the iteration efficiency of the global and local model
parameter exchanges.

C. Storage of Model Updates: Blockchain Network

In HFL, due to local/global updates, there appear var-
ious model states that follow a specific trajectory. Tracing
the training procedure (model updates) can reveal many

properties of the overall learning process, potential biases
in local datasets housed by the system workers. For
temper-proof tracing, Blockchain may be used within the
context of HFL to organize and store decentralized model
updates that are produced by participants at various
levels of the hierarchy on a secure/open platform. The
model updates are recorded irreversibly due to the secure
decentralized nature of blockchain, which also protects
the system from harmful assaults and unintended data
manipulations. Additionally, the HFL system’s rules and
procedures, such as rewarding members who contribute
to the model update the most useful way or settling any
conflicts that may develop during the training process,
may be handled by smart contracts. Overall, implement-
ing blockchain in HFL enhances the system’s security,
dependability, and scalability.

IV. FusioN oF SSI wiTHIN HFL FRAMEWORK
A. Security in Identity Management

Self-sovereign identity management (SSI) is a digital
identification strategy that prioritizes user control, pri-
vacy, and security. It enables individuals to own and con-
trol their personal identifying data, as well as share it se-
lectively with others, without the need for intermediaries
or centralized authority. SSI systems use decentralized,
distributed ledger technologies (such as blockchain) and
provide safe, private, and portable identity credentials
that may be utilized across multiple applications and
services. SSI can be structured in a hierarchical manner
in which each level of the hierarchy can issue and verify
credentials for the entities below it, while also relying on
the credentials issued by the levels above it. This creates
a chain of trust that extends from the root of the hierarchy
to the individual entities at the bottom.

As the number of connected devices and the trans-
mission of sensitive information grows, security will be a
major concern for cellular technology. Effective security
measures such as secure device identification, safe data
storage, and encrypted data transmission will be crucial
for protecting the privacy and security of users and their
data. As a solution to device authentication, hierarchical
SSI can allow each individual device, user, etc. to have a
digital identity within a cluster and control over their
personal data while relying on BCN. They can also
selectively share it with different organizations or persons
at different levels of trust and verifiability. As a result,
users can safely access and keep their own data while,
at their choice, granting access to other people or orga-
nizations. Users can also establish digital identities that
are connected to their physical identities. This enables



them to safely access the services and resources that are
made available by other users or companies. Users may
now access, store, and share their data in a safe manner
while maintaining their privacy and security.

B. A HFL Framework Leveraging SSI

Unlike in the conventional HFL where workers are
the sole owners of their dataset, in a combined HFL
and hierarchical SSI scenario, multiple entities can be
authorized to access datasets, leading to a hybrid sharing
of both model parameters as well as datasets or their
compressed representations. Hierarchical SSI ensures the
data (which can be organized into groups based on trust
level) to be shared only with enterprises or persons
that are trusted while ensuring them control over their
datasets. This can be performed using digital signatures
and encryption algorithms that can be tied to the SSI of
each entity. HFL, on the other hand, ensures the model
training done on the private data within each secure
group. By combining HFL with hierarchical SSI, model
training can be done on high-quality and personal data
within each group while preserving the individual privacy
and control over such private data across HFL secure
groups. The strategies might differ depending on how
the hierarchical SSI and HFL groups are defined. In fact
in the proposed scheme each worker is associated with
two groups, one virtually defines the channel over which
parameter sharing is done using HFL, whereas the other
defines how the additional data sharing is enabled within
the same network of workers using SSI.

C. Objective Subject to SSI

Let us assume N HFL clusters and M HSSI groups
which share the same pool of workers. For a given cluster
i € {1,...,N}, we have ¢; number of nodes sharing
the same privacy hierarchy j € {1,..., M} within the
SSI context. Assuming the set R to be a representation
of all the private datasets of 7; nodes/workers in the
cluster ¢ and privacy hierarchy j. Since the data (or its
representation) is shareable among these 7; nodes subject
to SSI creation (provided in the next section), learning
can be totally asynchronous, decentralized and offline.
Additionally, to mitigate the deviations of the local
models on an arbitrary SSI hierarchy j from that of the
central server, a regularized loss function is minimized
[10] instead, namely,
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Fig. 1: BCN based SSI framework for hierarchical fed-
erated learning in vehicular networks.

demonstrates a hierarchy in the FL and 3||w — wy||?
is the regularization term to control the deviation of
local and central model parameters. As can be seen,
iterations are now conducted between hierarchies of the
FL (BSs, RSUs and workers) as well as across different
hierarchical SSI groups.

V. PHASES OF THE PROPOSED SOLUTION

The process of combining HFL and hierarchical SSI
may involve participation of several entities and may
require several iterations of implementation phases. As
shown in Fig. 1, an initial local FL training is done
among vehicles and RSUs in a small region. Then, a
higher level FL process is performed among RSUs and
BSs in a larger geographical area. By employing HFL,
different features belonging to various traffic regions can
be accommodated. HFL using hierarchical SSI solutions
can be described as follows:

STEP-0 (ldentification of Hierarchy): Both HFL and
SSI need a clear definition of the hierarchy among the
participating nodes/workers. In our analysis, we have
identified three main roles and responsibilities: vehicles
(as data sources), RSUs (as both data provider and aggre-
gator), and BSs (as top-level (central) data aggregators).

STEP-1 (SSI Creation): In this step, each entity
involved in the learning process needs to establish its
SSI first, and each entity’s owned SSIs is created and
linked with their personal data using a decentralized
management solution based on BCNs.

STEP-2 (Local Model Training): Each vehicle user
in the bottom layer trains their local model to refine



hyperparameters based on their own private data.

STEP-3 (Sharing Parameter Learning): In this step,
organizations or vehicle user requests access to the
parameters of the personal vehicle model learning and
the owner of the personal data decides whether or not
to share it with them. This decision depends on the
trust level established between the vehicle user and the
organization requesting the data.

STEP-4 (Hierarchical Model Organization): The
shared learning parameters by the vehicle users are
organized into groups depending on the trust level. These
shared learning results are recorded in BCN. An exclu-
sive distributed ledger is used to enhance security during
the sharing process. The interaction between vehicles
during HFL and hierarchical SSI process is encapsulated
as a form of transaction. This transaction can be audited
and recorded by all peers in the network via a consensus
protocol for immutable storage. The learning results
are sent to nearby servers (e.g., RSUs) which collect
transactions within their reach and build blocks in BCN
(through consensus within the same secure group) which
typically contain trained parameters of the local FL.

STEP-5 (Model Aggregation): The trained model
parameters within each group are aggregated at the top-
level hierarchy to obtain a global model. In the middle
layer, RSUs work as clients in the global FL and integrate
results from the workers layer (which are obtained from
vehicle clients) and its own learning parameters built
based on the sensing environment to train middle layer
learning parameters. Similar to the previous step, in this
layer, BSs collect the transactions sent by RSUs and
assembles them into blocks in BCN. In this step, the
ledger contains the shared knowledge from both RSUs
and vehicle users that participated in FL. Note that during
this process, RSUs have two different digital identities,
i.e., worked both as publishers of blocks in lower layer
BCN and the producers of transactions in top layer BCN.

STEP-6 (Model Distribution): Global model param-
eters are distributed back (relayed) to all vehicle users
in the bottom layer. This model can be used for various
purposes such as image detection, traffic analysis, etc.
from a global perspective while keeping each vehicle
user preserve and control their personal data. We finally
remark that during the above 6-step process, all vehi-
cles, RSUs and BSs work collaboratively to obtain a
global shared model while ensuring the privacy as well
as immutable persistence of the generated data among
constituent secure groups of the system.
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Fig. 2: SSI based identities can be configured for various
use cases in vehicular networks with HFL, (a) Road
safety, (b) Data sharing for handover.

VI. USE CASES AND SECURITY ANALYSIS

Two use cases as described in Fig. 2 are given in this
section. (i) Road Safety: Combining HFL with SSI can
improve the road safety of vehicular networks through
providing a secure, decentralized and privacy-preserving
solution as given in Fig. 2(a). In a HFL setting, vehicles
can collect data from various sensors including Global
Positioning System (GPS), sensors, accelerometers or
cameras, whereas RSUs can collect their own data (e.g.,
long historical data, critical data). The collected data
from RSUs and vehicles based on the hierarchy can be
used to train ML models using HFL to detect and predict
potential hazards in the road real-time. This enables
training process to be concluded without having to share
any sensitive data with a central server. Hierarchical SSI,
on the other hand, can be used to prevent unauthorized
access to sensitive information and ensure secure data
exchange with BCN while registration phase of HFL
process. In case of erroneous outcomes of the model
prediction, regulation authority can retain the control
over the top level data and can delegate access to lower
level data. (ii) Data sharing for handover: In this use
case, the data can be partitioned into different levels, with
the most sensitive data at the top level (such as vehicle



user information) and less sensitive data (such as vehicle
location, speed or network conditions) at bottom levels
as given in Fig. 2(b). Together with SSI-enabled HFL,
multiple vehicles can be allowed to share information
about the network conditions and optimize the handover
process in the cellular network. Finally, in both use cases,
HFL can be implemented using existing FL. frameworks
such as TensorFlow Federated” or PySyft3.

The SSI-based solution stores the verification and
encryption keys on the blockchain while the signing
and decryption keys remain on the HFL nodes. This
offers defense against serious cyberattacks including
phishing, man-in-the-middle attacks and replay attacks
for the locally trained ML models. A public, unchange-
able blockchain ledger ensures the system’s security and
the veracity of the constituted model. Secure access
management, a security element of the blockchain au-
thentication protocol, will help reduce the need for time-
consuming and expensive enterprise-wide password reset
procedures. An identity management system’s complex-
ity increases the number of potential attack surfaces that
are used to compromise system security and steal data.
By using blockchain helps to keep this attack surface
small. Identity management records (including creation,
deletion, and update) are included in the ledger, and the
integrity of the data is clear. For identity management
and forensic reasons, secure blockchain authentication
ledgers offer immutable data.

In addition to the temper-proof model update storage,
smart contract-based incentives can be used to help
participants to contribute to the overall learning process.
For example, rewards can be automatically distributed
to the participants who contribute to the model updates.
Participants in the HFL system can communicate their
data with one another without disclosing their raw data
by using privacy-preserving technologies like homomor-
phic encryption. This aids in preserving the participants’
and their data’s privacy. Connected to privacy, with SSI
implemented on blockchain, participants can have full
control over their personal data, thereby reducing the risk
of data breaches and misuses. BCNs may also be applied
to provide a decentralized forum for settling potential
participant conflicts. This can support maintaining the
system’s fairness and openness. Plus, the resistance to
quantum computers can be obtained by using post-
quantum security techniques [11].

*Online: https://www.tensorflow.org/federated, Available:
February-2023.
3Online: https://github.com/OpenMined/PySyft, Available:

February-2023.

VII. CONCLUSIONS

Using SSI during HFL is a promising approach and
can provide a secure and decentralized system for train-
ing machine learning models hierarchically in vehicular
networks. It can also help maintain the privacy and auton-
omy of each participating entity in the vehicular network
(i.e., vehicles, RSUs or BSs). In this paper, we investi-
gated how blockchain-based SSI integration can provide
a robust and scalable solution to identity management
in vehicular networks during HFL. Incorporating SSI in
the optimization formulations of HFL phases is briefly
described. With potential 6G applications, two novel use
cases are also proposed that can show the potential of the
proposed approach to improve the security and efficiency
of vehicular networks. A few limitations and challenges
such as ensuring fairness during HFL process or scaling
in complex and large vehicular network scenarios for
future 6G use cases still need to be addressed.
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